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abstract: Motivated by the work of Boulaaras and Haiour in [7], we provide a maximum norm analysis
of Schwarz alternating method for parabolic p(x)-Laplacian equation, where an optimal error analysis each
subdomain between the discrete Schwarz sequence and the continuous solution of the presented problem is
established
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1. Introduction

The problem: find u ∈ L2
(
0, T ;W

1,p(x)
0 (Ω)

)
∩ C2

(
0, T,W−1,p(x) (Ω)

)
solution of






∂u

∂t
−∆p(x)u+ αu = f(u), in Σ,

u = 0 in Γ,

u(., 0) = u0, in Ω,

(1.1)

where Σ is a set in R
2×R defined as Σ = Ω× [0, T ] with T̈ < +∞ , where Ω is a smooth bounded domain

of R2 with boundary Γ, and 2 < p(x), q(x) ∈ C1(Ω̄) are function with

2 < p− := inf
x∈Ω

≤ p+ := sup
x∈Ω

< ∞.

∗ This work is to discuss Ph. D thesis of the first author. His main supervisor is the second author.
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Operator ∆p(x) is called p(x)-Laplacian defined as:

∆p(x)u = div(|∇u|p(x)−2∇u)

The constant α is assumed to be nonnegative satisfies

α ≥
1

λ
> 0, (1.2)

f is a regular function such that

f ∈ L2
(
0, T, Lp(x) (Ω)

)
∩ C1

(
0, T, Lq(x) (Ω)

)
with

1

p(x)
+

1

q(x)
= 1.

In [7] Boulaaras and Haiour provided a maximum norm analysis of a finite element Schwarz alternating
method for a nonlinear parabolic partial differential equations on two overlapping subdomains with
nonmatching grids. They considered a domain which is the union of two overlapping subdomains where
each subdomain has its own independently generated grid. The two meshes being mutually independent
on the overlap region,where a triangle belonging to one triangulation does not necessarily belong to the
other one. Then according to Lipschitz assumption, they proved that for each subdomain an optimal
error has been estimated by applying uniform norm between the discrete Schwarz sequence and the exact
solution of a nonlinear parabolic partial differential equations. In this paper, the same approach can be
extended to other types as a linear parabolic partial differential equations see [2] and singularly perturbed
advection-diffusion equations (see [11]) using the overlapping domain decomposition method, where we
applied it in a full discrete (see [7], [5] and [9]).

In [7], the authors studied the overlapping domain decomposition method combined with a finite
element approximation for Laplace equation, where an overlapping Schwarz method on nonmatching
grids has been used on uniform norm of and they also proved the geometric convergence on every
subdomain.

Aforementioned, in this paper, we can extend the study to p(x)-Laplacian equation, where we apply
a maximum norm analysis of the finite element Schwarz alternating method of the presented problem
on two overlapping subdomains with nonmatching grids. and we are following up the same procedures
that have been mentioned above in [7] with respect to the stability analysis which has been given by
our previous work in [7], we establish on each subdomain, an optimal error analysis between the discrete
Schwarz sequence and the continuous solution of p(x)-Laplacian equation. In addition the geometric
convergence is proved.

2. Nonlinear parabolic equation with function independent with solution

In this section we consider the parabolic problem and transform it into elliptic system and give some
definitions and classical results related to nonlinear elliptic equations with the function f is a regular and
independent of the solution u .

We define the space

C+(Ω̄) = {continuous function p(·) : Ω̄ → R+ such that 2 < p− < p+ < ∞}

where

p− = min
x∈Ω̄

p(x) and p+ = max
x∈Ω̄

.

Let p(·) ∈ C+(Ω), we define the Lebesgue space with variable exponent

Lp(·) =

{
u : Ω → R measurable :

∫

Ω

|u(x)|p(x) dx

}
.
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endowed with Luxembourg norm :

‖u‖p(·) = ‖u‖Lp(·) = inf

{
ε > 0,

∫

Ω

|
u(x)

ε
|p(x) dx ≤ 1

}

The space (Lp(·)(Ω), ‖.‖p(·)) is a reflexive Banach space, uniformly convex and its dual space is isomorphic

to (Lp(·)(Ω), ‖.‖q(x)) where
1

p(x)
+

1

q(x)
= 1

and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)},

with the norm
‖u‖ = ‖u‖p(x) + ‖∇u‖p(x), u ∈ W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 in W 1,p(x)(Ω).

2.1. The semi-discrete of parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic variational equation:

find u ∈ L2
(
0, T,W

1,p(x)
0 (Ω)

)
solution of






(
∂u

∂t
, v

)
+A (u, v) + α (u, v) = (f, v) ,

u = 0 in Γ,
u (x, 0) = u0 in Ω,

(2.1)

where A (., .) is the Nonlinear form defined as:

u, v ∈ W
1,p(x)
0 (Ω) : A (u, v) =

∫

Ω

|∇u|p(x)−2∇u.∇v dx+ α

∫

Ω

u.v dx. (2.2)

The goal of this discretization is transform the parabolic equation into system of the elliptic equations,
for this we apply the θ-schema in the equation(2.1). Thus we have, for any θ ∈ [0, 1] and k = 1, ..., N

(
uk − uk−1, v

)
Ω
+ (∆t)A

(
uθ,k, v

)
+ α

(
uθ, v

)
= (∆t)

(
f θ,k, vh

)
Ω
, (2.3)

where
uθ,k = θuk + (1− θ)uk−1,

By multiplying and dividing by θ and by adding

(
uk−1

θ∆t
, v

)
to both parties of the equalities (2.3), we get

(
uθ,k

θ∆t
, v

)

Ω

+A
(
uθ,k, v

)
+ α

(
uθ,k, v

)
=

(
f θ,k +

uθ,k−1

θ∆t
, v

)

Ω

(2.4)

Then, the problem (2.4) can be reformulated into the following coercive discrete system of elliptic
quasi-variational inequalities

B
(
uθ,k, v

)
+ α

(
uθ,k, v

)
=

(
F θ,k, vh

)
Ω
, v, uθ,k ∈ V, (2.5)

where 



B
(
uθ,k, v

)
= µ

(
uθ,k
h , vh

)

Ω
+A

(
uθ,k, v

)
, v ∈ V,

µ =
1

θ∆t
= ... =

N

θT

(2.6)

and
F θ,k = fθ,k + µuθ,k−1
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2.2. Nonlinear elliptic equation

We consider the elliptic problem :find uθ,k ∈ W 1,p(x)(Ω)






B
(
uθ,k, v

)
+ α

(
uθ,k, v

)
=

(
F θ,k, v

)
,

uθ,k = 0 in Γ,
uθ,k (x, 0) = u0 in Ω,

(2.7)

Where B(uθ,k, v) is Nonlinear form defined as below, and (F θ,k, v) is linear form defined as (F θ,k, v) =∫
Ωi

F θ,k.v dx,

Remark 2.1. As well F θ,k is a regular function, because f it is .

2.2.1. The space discretization. Let Ω be decomposed into triangles and τh denotes the set of those
elements, where h > 0 is the mesh size. We assume that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functions ϕi i = {1, ...,m (h)} defined by ϕi (Mj) = δij where Mj is a
vertex of the considered triangulation. We introduce the following discrete spaces Vh of finite element

Vh =





v ∈
(
L2

(
0, T,W

1,p(x)
0 (Ω)

)
∩C

(
0, T,W

1,p(x)
0

(
Ω̄
)))

such that vh |K= P1, k ∈ τh,

vh (., 0) = vh0 in Ω,

vh = 0 in Γ,





(2.8)

We discretize in space, i.e., we approach the space W
1,p(x)
0 by a space discretization of finite dimensional

Vh ⊂
(
L2

(
0, T,W

1,p(x)
0 (Ω)

)
∩ C

(
0, T,W

1,p(x)
0

(
Ω̄
)))

, we get the following discrete system of elliptic

equations

B

(
uθ,k
h , vh

)
+ α

(
uθ,k
h , vh

)

Ω
=

(
F θ,k, vh

)
Ω
. (2.9)

Theorem 2.2. see ( [24] page 54) . Under suitable regularity of the solution of problem (1.1 ), there
exists a constant C independent of h such that

‖uh − u‖ ≤ Ch2 |log h| . (2.10)

Lemma 2.3. Let w ∈ H1 (Ω)∩C
(
Ω̄
)
satisfies a (w, φ) +λ (w, φ) ≥ 0 or all nonnegative φ ∈ H1 (Ω) and

w ≥ 0 on Γ, then w ≥ 0 on Ω̄.

Proof. The proof is easy, and the similar to that use in [18] �

Notation 2.4. (F θ,k, ϕθ,k); (F̃ θ,k, ϕ̃θ,k) be a pair of data and ζθ,k = ∂(F θ,k, ϕθ,k); ζ̃
θ,k

= ∂(F̃ θ,k, ϕ̃θ,k)
the corresponding solutions to (2.5) .

Proposition 2.5. Under the previous notation and lemma 1, we have

∥∥∥ζθ,k − ζθ,k
∥∥∥
L∞(Ω)

≤ λ
∥∥∥F θ,k − F̃ θ,k

∥∥∥
L∞(Ω)

. (2.11)

Proof. First, putting

µθ,k =
∥∥∥F θ,k − F̃ θ,k

∥∥∥
L∞(Ω)

, (2.12)

then
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



F̃ θ,k ≤ F θ,k +
∥∥∥F θ,k − F̃ θ,k

∥∥∥
L∞(Ω)

≤ F θ,k + αλ
∥∥∥F θ,k − F̃ θ,k

∥∥∥
L∞(Ω)

≤ F θ,k + αµθ,k.

So

B

(
ζ̃
θ,k

, φ
)
+ α

(
ζ̃
θ,k

, φ
)

≤ B

(
ζθ,k, φ

)
+ α

(
ζθ,k, φ

)
+ α

(
µθ,k, φ

)

≤ B

(
ζθ,k + µθ,k, φ

)
+ α

(
ζθ,k + µθ,k, φ

)

=
(
F θ,k + λµθ,k, φ

)
,

(2.13)

for all φ ≥ 0, φ ∈ W
1,p(x)
0 (Ω). On the other hand, we have

ζθ,k + φ− ζ̃
θ,k

≥ 0 on Γ. (2.14)

So

b(ζθ,k + φ− ζ̃
θ,k

) ≥ 0. (2.15)

By using the result of lemma 1, we get

ζ̃
θ,k

+ φ− ζθ,k ≥ 0 on Ω (2.16)

Similarly, interchanging the roles of the couples (F θ,k, ϕθ,k) and (F̃ θ,k, ϕ̃θ,k), we get

ζ̃
θ,k

+ φ− ζθ,k ≥ 0 on Ω, (2.17)

which completes the proof. �

2.2.2. The discrete maximum principle assumption (DMP). We assume the matrices resulting
from the finite element discretization are M-matrix ( [12] and [13]). For convenience in all the sequels, C
will be a generic constant independent on h. Then we have the following

Lemma 2.6. Let w ∈ Vh satisfy b(wθ,k, φs) > 0 for s = 1, 2...m(h)and wθ,k ≥ 0 on Γ. Then wθ,k ≥ 0
on (Ω).

Proof. The proof is similar to that use in lemma 1. �

Notation 2.7. (F θ,k, ϕθ,k); (F̃ θ,k, ϕ̃θ,k) be a pair of data and ζθ,kh = ∂(F θ,k, ϕθ,k); ζ̃
θ,k

h = ∂(F̃ θ,k, ϕ̃θ,k)
the corresponding solutions to (2.5) .

Proposition 2.8. Let DMP hold, we have

∥∥∥ζθ,kh − ζθ,kh

∥∥∥
L∞(Ω)

≤ λ
∥∥∥F θ,k − F̃ θ,k

∥∥∥
L∞(Ω)

. (2.18)

Proof. The proof is similar to that of the continuous case. �
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3. Nonlinear parabolic equation with nonlinear function

Consider the nonlinear elliptic problem :find uθ,k ∈ W
1,p(x)
0 (Ω)





∂u

∂t
−∆p(x)u+ αu = f(u), in Σ,

u = 0 in Γ,

u(., 0) = u0, in Ω,

(3.1)

with Σ defined as blow and the function f is is a nondecreasing nonlinearity, assuming that f(·) is a
Lipschitz continuous on R; that is

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ R (3.2)

such that
1

2
< Kλ < 1 (3.3)

Using the semi-discrete parabolic equation and variational formulation of (3.1) we find the following :find

uθ,k ∈ W
1,p(x)
0 (Ω) {

B
(
uθ,k, v

)
+ α

(
uθ,k, v

)
=

(
F θ,k(uθ,k), v

)

uθ,k = 0 on Γ
(3.4)

in this case F θ,k is Nonlinear Lipschitz continuous on R, because f that is.

3.1. Schwarz alternating methods for parabolic equation

We decompose (Ω) in two overlapping smooth subdomain Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2, we
denote by ∂Ωi the boundary of Ωi and Γi = ∂Ωi∩Ωj and assume that the intersection of Γi and Γj ;i 6= j
is empty. Let

Vi =






v ∈
(
L2

(
0, T,W

1,p(x)
0 (Ω)

)
∩ C

(
0, T,W

1,p(x)
0

(
Ω̄
)))

such that v = wj on Γi and v = 0 on Γ ∩ Γi.

We associate with problem (3.1) the following system: find (uθ,k
1 , uθ,k

2 ) ∈ V θ,k
1 × V θ,k

2 solution to





B1(u
θ,k
1 , v) + α(uθ,k, v)Ω1 = (F

θ,k

, v)Ω1 ,

B2(u
θ,k
2 , v) + α(uθ,k, v)Ω2 = (F

θ,k

, v)Ω2 ,

(3.5)

where

u, v ∈ W
1,p(x)
0 (Ω) : Bi

(
uθ,k, v

)
=

∫

Ωi

|∇uθ,k|p(x)−2∇uθ,k.∇v dx (3.6)

and
uθ,k
i = uθ,k/Ωi; i = 1, 2

3.2. The Continuous Schwartz Sequences

Let u0 be an initialization in C0

(
Ω
)
,i.e., continuous functions vanishing on ∂Ω such that

B(u0, v) + α(u0, v) = (F θ,k(u0), v). (3.7)

Starting from u0 = u0/Ω2 , we respectively define the alternating Schwarz sequences
(
un+1
1

)
on Ω1

such that uθ,k,n+1
1 ∈ V

(uθ,k,n
2 )

1 solves of

B1(u
θ,k,n+1
1 , v) + α(uθ,k,n+1

1 , k) = (F θ,k
1 (uθ,k,n+1

1 ), v), (3.8)
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and (uθ,k,n+1
2 )on Ω2 such that uθ,k,n+1

2 ∈ V
(θ,k,uθ,k,n+1

1 )
2 solves

B2(u
θ,k,n+1
2 , v) + α(uθ,k,n+1

2 , v) = (F θ,k
1 (uθ,k,n+1

2 ), v), (3.9)

Theorem 3.1. [7] The sequences (un+1
h ); (un+1

h ), n ≥ 0 produced by the Schwarz alternating method
converge geometrically to a solution u of the elliptic obstacle problem. More precisely, there exist δ1, δ2
∈ (0, 1) which depend on (Ω1,Γ2) and (Ω2,Γ1) such that for all n ≥ 0,

sup
Ω1

∣∣uh − u2n+1
∣∣ ≤ δn1 δ

n
2 sup

Γ1

∣∣uh − u0
h

∣∣ (3.10)

and
sup
Ω2

∣∣uh − u2n
∣∣ ≤ δn1 δ

n−1
2 sup

Γ2

∣∣uh − u0
h

∣∣ . (3.11)

3.3. The discrete Schwartz sequences

As we have defined before, for i = 1, 2, let τhi be a standard regular and quasiuniform finite element
triangulation in Ωi;hi , being the mesh size. The two meshes being mutually independent Ω1 ∩ Ω2 , a
triangle belonging to one triangulation does not necessarily belong to the other and for every w ∈ C (Ωi)
, we set

V
(wθ,k

j
)

hi =





v ∈
(
L2

(
0, T,W

1,p(x)
0 (Ω)

)
∩ C

(
0, T,W

1,p(x)
0

(
Ω̄
)))

such that v = 0 on Γ ∩ Γi; v = πhi
(w) on Γi,





.

where πhi
denote an interpolation operator on Γ0i.

Now, we define the discrete counterparts of the continuous Schwarz sequences defined in (3.8) and
(3.9) .

Indeed, let u0h be the discrete analog of u0, defined in (3.7), we respectively, define by uθ,k,n+1
1h ∈

V
(uθ,k,n

2h )
h1 such that

B1(u
θ,k,n+1
1h , v) + α(uθ,k,n+1

1h , v) = (F θ,k(uθ,k,n+1
1h ), v), ∀v ∈ V

(ϕ)
h ; n ≥ 0 (3.12)

and uθ,k,n+1
2h ∈ V

(uθ,k,n+1
1h )

h2 such that

B2(u
θ,k,n+1
2h , v) + α(uθ,k,n+1

2h , v) = (F θ,k(uθ,k,n+1
2h ), v), ∀v ∈ V

(ϕ)
h ; n ≥ 0. (3.13)

4. Maximum norm analysis of asymptotic behavior

We begin by introducing two discrete auxiliary sequences and prove a fundamental lemma.

4.1. Two auxiliary Schwarz sequences

For w0
2h = u0

2h , we define the sequences wθ,∞,n+1
1h and wθ,n+1

2h such that uθ,n+1
1h ∈ V

(uθ,n
2 )

h1 solves

B1(w
θ,n+1
1h , v) + α(wθ,∞,n+1

1h , v) = (F θ,k(uθ,n+1
1h ), v), ∀v ∈ V

(ϕ)
h1 ;n ≥ 0, (4.1)

and wθ,n+1
2h ∈ V

(uθ,n+1
1h )

2h solves

B2(w
θ,n+1
2h , v) + α(wθ,n+1

2h , v) = (F θ,k(uθ,n+1
2h ), v), ∀v ∈ V

(ϕ)
h2 ;n ≥ 0, (4.2)

respectively. It is then clear that wθ,∞,n+1
1h and wθ,∞,n+1

2h are the finite element approximation of uθ,∞,n+1
1

and uθ,∞,n+1
2 defined in (4.1), (4.2), respectively. Then, as F θ,k (.) is continuous,

∥∥∥F θ,k
(
uθ,k,n+1
i

)∥∥∥
∞
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≤ λ
∥∥∥uθ,k,n+1

i

∥∥∥
∞
, (independent i of n). Therefore, making use of standard maximum norm estimates for

nonlinear parabolic problems with f independent of solution, we have
∥∥∥uθ,k,n

i − uθ,k,n
ih

∥∥∥
L∞(Ωi)

≤ Ch2 |log h| (4.3)

where C is a constant independent of both h and n.

Notation 4.1. From now on, we shall adopt the following notations: |.|1 = |.|L∞(Γ1),
|.|2 = |.|L∞(Γ2),

‖.‖1 = ‖.‖L∞(Γ1)
, ‖.‖2 = ‖.‖L∞(Γ2),

and we set πh1 = πh2 = πh.

4.2. Iterative discrete algorithm

We give our following discrete algorithm

uθ,k,n+1
ih = Thu

k−1,n+1
ih , k = 1, ..., p, uθ,k,n+1

ih ∈ V
(uθ,k,n

2 )
hi (4.4)

where uθ,k
h is the solution of the problem (3.4) and the first iteration u0

h is solution of (3.7).

Lemma 4.2. under assumption (3), there exists a constant C independent of both h and n such that

∥∥∥uθ,k,n+1
i − uθ,k,n+1

ih

∥∥∥
i
≤

Ch2 |log h|

1− ρ
, i = 1, 2. (4.5)

Proof. We know from standard error estimate on uniform norm for linear problem [24] that there exists
a constant C independent of h such that

∥∥u0 − u0
h

∥∥
L=(Ω)

≤ Ch2 |log h| . (4.6)

Let us now prove (4.5) by induction. Indeed for n = 1, using the result of Proposition 1, we have in
Ω1

‖uθ,k,1
1 − uθ,k,1

1h ‖1 ≤ ‖uθ,k,1
1 − wθ,k,1

1h ‖1 + ‖wθ,k,1
1h − uθ,k,1

1h ‖1

≤ Ch2| log h|+ ‖wθ,k,1
1h − uθ,k,1

1h ‖1

≤ Ch2| log h|+ λ‖F θ,k(uθ,k,1
1 )− F θ,k(uθ,k,1

1h )‖1

≤ Ch2| log h|+Kλ‖uθ,k,1
1 − uθ,k,1

1h ‖1

Which give
‖uθ,k,1

1 − uθ,k,1
1h ‖1 ≤ Ch2| log h| (4.7)

Similar for Ω2

‖uθ,k,1
2 − uθ,k,1

2h ‖2 ≤ Ch2| log h| (4.8)

Now, let assume that
‖uθ,k,n

1 − uθ,k,n
1h ‖1 ≤ Ch2| log h|

and prove that,
‖uθ,k,n+1

1 − uθ,k,n+1
1h ‖1 ≤ Ch2| log h|

So,

‖uθ,k,n+1
1 − uθ,k,n+1

1h ‖1 ≤ ‖uθ,k,n+1
1 − wθ,k,n+1

1h ‖1 + ‖wθ,k,n+1
1h − uθ,k,n+1

1h ‖1

≤ Ch2| log h|+ ‖wθ,k,n+1
1h − uθ,k,n+1

1h ‖1

≤ Ch2| log h|+ λ‖F θ,k(uθ,k,n+1
1 )− F θ,k(uθ,k,n+1

1h )‖1

≤ Ch2| log h|+Kλ‖uθ,k,n+1
1 − uθ,k,n+1

1h ‖1
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Which give that,
‖uθ,k,n+1

1 − uθ,k,n+1
1h ‖1 ≤ Ch2| log h|. (4.9)

Similar assume that
‖uθ,k,n

2 − uθ,k,n
2h ‖2 ≤ Ch2| log h|

and prove that,
‖uθ,k,n+1

2 − uθ,k,n+1
2h ‖2 ≤ Ch2| log h|.

�

Putting an fundamental theorem in present paper,

Theorem 4.3. Let h = max (h1, h2). Then, for n large enough, there exists a constant C independent
of both h and n such that

∥∥∥uθ,k,n+1
i − uθ,k,n+1

ih

∥∥∥
1
≤ Ch2 |log h| , ∀i = 1, 2. (4.10)

Proof. Let us give the proof for i = 1. The one for i = 2 is similar and so will be omitted. Indeed, Let
δ = δ1δ2, then making use of Theorem 2 and Lemma 3, we get

∥∥∥uθ,k
1 − uθ,k,n+1

1h

∥∥∥
1

≤
∥∥∥uθ,k

1 − uθ,k,n+1
1

∥∥∥
1
+
∥∥∥uθ,k,n+1

1 − uθ,k,n+1
1h

∥∥∥
1

≤ δn1 δ
n
2

∣∣u0 − u
∣∣
1
+

Ch2 |log h|

1− ρ

≤ δ2n
∣∣u0 − u

∣∣
1
+

Ch2 |log h|

1− ρ
.

So, for n large enough, we have
δ2n ≤ h2 (4.11)

and thus ∥∥∥uθ,k
1 − uθ,k,n+1

1h

∥∥∥
1

≤ Ch2 + Ch2 |log h|

≤ Ch2 |log h| ,

which is the desired result. �

4.3. Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we prove the theorem
of the asymptotic behavior in L∞-norm for parabolic variational inequalities, where we evaluate the
variation in L∞ between uh (T ) , the discrete solution calculated at the moment T = p∆t and u∞, the
asymptotic continuous solution of (3.4). We begin by introducing new two discrete auxiliary sequences
and prove a new fundamental lemma

4.3.1. New two auxiliary Schwarz sequences. For w0
2h = u0

2h , we define the sequences wθ,k,n+1
1h and

wθ,k,n+1
2h such that uθ,n+1

1h ∈ V
(uθ,n

2 )
h1 solves

B1(w
θ,n+1
1h , v) + α(wθ,∞,n+1

1h , v) = (F θ,k(uθ,n+1
1h ), v), ∀v ∈ V

(ϕ)
h1 ;n ≥ 0, (4.12)

and wθ,n+1
2h ∈ V

(uθ,n+1
1h )

2h solves

B2(w
θ,n+1
2h , v) + α(wθ,n+1

2h , v) = (F θ,k(uθ,n+1
2h ), v), ∀v ∈ V

(ϕ)
h2 ;n ≥ 0, (4.13)

respectively. It is then clear that wθ,∞,n+1
1h and wθ,∞,n+1

2h are the finite discritisation of u∞,n+1
1 and

u∞,n+1
2 defined in (4.12), (4.13), respectively.
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Proposition 4.4. [3]Under the previous hypotheses and notations, we have the following estimate of

convergence if θ ≥
1

2
∥∥∥uθ,k,n+1

h − u∞
h

∥∥∥
∞

≤

(
1

1 + θ∆t

)k

‖u∞
h − uh0‖∞ , (4.14)

if 0 ≤ θ <
1

2
, we have

∥∥∥uθ,k,2n+1
h − u∞

h

∥∥∥
∞

≤

(
2

2 + θ (1− 2θ) ρ (A)

)k

‖u∞
h − uh0‖∞ , (4.15)

where ρ (A) is the spectral radius of the elliptic operator.

Remark 4.5. the last proposition stay true in the case of the function fθ,k independent with the solution
uθ,k

So, for this case (the function F θ,k dependent of the solution uθ,k) we need the following lemma

Lemma 4.6. Under the assumption (3), we have the following estimate of convergence if θ ≥
1

2

∥∥∥uθ,k,n+1
h − u∞

h

∥∥∥
∞

≤

(
1

1 + θ∆t

)k

‖u∞
h − uh0‖∞ , (4.16)

if 0 ≤ θ <
1

2
, we have

∥∥∥uθ,k,2n+1
h − u∞

h

∥∥∥
∞

≤

(
2

2 + θ (1− 2θ) ρ (A)

)k

‖u∞
h − uh0‖∞ , (4.17)

where ρ (A) is the spectral radius of the elliptic operator.

Proof. Using the proposition (1) and (3) , the assumption (3) which give that:

Case (1) if θ ≥
1

2

∥∥∥uθ,k,n+1
h − u∞

h

∥∥∥
∞

≤
∥∥∥uθ,k,n+1

h − w∞
h

∥∥∥
∞

+
∥∥∥wθ,k,n+1

h − u∞
h

∥∥∥
∞

≤

(
1

1 + θ∆t

)k

‖u∞
h − uh0‖∞

+λ‖F θ,k(wθ,k,n+1
h )− F θ,k(u∞

h )‖

≤

(
1

1 + θ∆t

)k

‖u∞
h − uh0‖∞ +Kλ

∥∥∥uθ,k,n+1
h − u∞

h

∥∥∥
∞

≤
1

1−Kλ

(
1

1 + θ∆t

)k

‖u∞
h − uh0‖∞ .

(4.18)

Case (2) if 0 ≤ θ ≤
1

2
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∥∥∥uθ,k,2n+1
h − u∞

h

∥∥∥
∞

≤
∥∥∥uθ,k,2n+1

h − wθ,k,2n+1
h

∥∥∥
∞

+
∥∥∥wθ,k,2n+1

h − u∞
h

∥∥∥
∞

≤

(
2

2 + θ (1− 2θ) ρ (A)

)k

‖u∞
h − uh0‖∞

+λ‖F θ,k(wθ,k,2n+1
h )− F θ,k(u∞

h )‖

≤

(
2

2 + θ (1− 2θ) ρ (A)

)k

‖u∞
h − uh0‖∞

+Kλ
∥∥∥uθ,k,2n+1

h − u∞
h

∥∥∥
∞

≤
1

1−Kλ

(
2

2 + θ (1− 2θ) ρ (A)

)k

‖u∞
h − uh0‖∞ .

(4.19)

�

Theorem 4.7. According to the results of lemma 4 and theorem 3,there exist C independent of both h
and nsuch that

case (1) if θ ≥
1

2 ∥∥∥uθ,p,n+1
1h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|+

(
1

1 + θ∆t

)p]
, (4.20)

and ∥∥∥uθ,p,n+1
2h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|+

(
1

1 + θ∆t

)p]
, (4.21)

case (2) for 0 ≤ θ <
1

2

∥∥∥uθ,p,n+1
1h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|+

(
2

2 + θ (1− 2θ) ρ (A)

)p]
(4.22)

and ∥∥∥uθ,p,n+1
2h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|+

(
2

2 + θ (1− 2θ) ρ (A)

)p]
, (4.23)

where C is a constant independent of h and k.

Proof. We have ∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤
∥∥∥uθ,p,2n+1

h − u∞
h

∥∥∥
∞

+ ‖u∞
h − u∞‖∞ .

Using the lemma 4 and theorem 3, we have for θ ≥
1

2

∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|

3
+

(
1

1 + θ∆t

)p]
,

and for 0 ≤ θ <
1

2
we have

∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|

3
+

(
2

2 + θ (1− 2θ) ρ (∆)

)p]

In the same proofing that (4.22) and (4.23) . �
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Remark 4.8. It can be seen in the previous estimates (4.20) up to (4.23),

(
1

1 + βθ∆t

)p

,
(

2

2 + θ (1− 2θ) ρ (∆)

)p

goes to 0 when p tend to infinity. Therefore, the estimation order for both

the coercive and noncoercive problems is

∥∥∥u∞ − u∞,n+1
1h

∥∥∥
L∞(Ω̄1)

≤ Ch2 |log h|
3

and ∥∥∥u∞ − u∞,n+1
2h

∥∥∥
L∞(Ω̄2)

≤ Ch2 |log h|
3
.
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