(3s.) v. 2022 (40): 1-9.

The Unique Solution of Some Operator Equations With an Application for Fractional Differential Equations

Hojjat Afshari and Leila Khoshvaghti

ABSTRACT: In this paper we consider the existence and uniqueness of positive solutions to the following operator equation in an ordered Banach space E

$$
T_{1}(x, x)+T_{2}(x, x)=x, x \in P
$$

where P is a cone in E. We study an application for fractional differential equations.
Key Words: Fractional differential equation, Mixed monotone operator, Boundary value problem, Positive solution.

Contents

1 Introduction and preliminaries

1. Introduction and preliminaries

In [4] Liu and coauthors supposed the existence and uniqueness of positive solutions to the following operator equation in ordered Banach spaces E,

$$
\begin{equation*}
T_{1}(x, x)+T_{2}(x, x)=x, x \in P, \tag{1.1}
\end{equation*}
$$

where P is a cone in E, and $T_{1}, T_{2}: P \times P \rightarrow P$ are two mixed monotone operators, which satisfy the following conditions:
(i) for all $t \in(0,1)$, there exists $\psi(t) \in(t, 1]$, such that for all $x, y \in P$,

$$
T_{1}\left(t x, \frac{1}{t} y\right) \geq \psi(t) T_{1}(x, y)
$$

(ii) for all $t \in(0,1), x, y \in P$,

$$
T_{2}\left(t x, \frac{1}{t} y\right) \geq t T_{2}(x, y) .
$$

In 2013, Y. Sang [6,7] proved some results on a class of mixed monotone operators with perturbations. In this paper, by applying results of Liu and Sang, we obtain some new results on the existence and uniqueness of positive solutions for operator equation $T_{1}(x, x)+T_{2}(x, x)=x, x \in P$. In the last section, we study an application for fractional differential equations.
Suppose that $(E,\|\|$.$) is a Banach space which is partially ordered by a cone P \subseteq E$, that is, $x \leq y$ if and only if $y-x \in P$. If $x \neq y$, then we denote $x<y$ or $x>y$. We denote the zero element of E by θ. Recall that a non-empty closed convex set $P \subset E$ is a cone if it satisfies (i) $x \in P, \lambda \geq 0 \Longrightarrow \lambda x \in P$, (ii) $x \in P,-x \in P \Longrightarrow x=\theta$. A cone P is called normal if there exists a constant $N>0$ such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$. Also we define the ordered interval $\left[x_{1}, x_{2}\right]=\left\{x \in E \mid x_{1} \leq x \leq x_{2}\right\}$ for all $x_{1}, x_{2} \in E$. We say that an operator $T: E \rightarrow E$ is increasing whenever $x \leq y$ implies $T x \leq T y$. T is called a positive operator if $T(x) \geq \theta$ for any $x \geq \theta$.

[^0]Definition 1.1. [1,2] $T: P \times P \rightarrow P$ is said to be a mixed monotone operator if $T(x, y)$ is increasing in x and decreasing in y, i.e., $u_{i}, v_{i} \in P(i=1,2), u_{1} \leq u_{2}, v_{1} \geq v_{2} \operatorname{imply} T\left(u_{1}, v_{1}\right) \leq T\left(u_{2}, v_{2}\right)$. The element $x \in P$ is called a fixed point of T if $T(x, x)=x$.
An element $x^{*} \in D$ is called a fixed point of T if it satisfies $T\left(x^{*}, x^{*}\right)=x^{*}$. Let $h>\theta$, write $P_{h}=\{x \in E \mid \exists \lambda, \mu>0$ such that $\lambda h \leq x \leq \mu h\}$.
Throughout this section, we work in the Banach space

$$
C[0,1]=\{x:[0,1] \rightarrow \mathbb{R} \text { is continuous }\}
$$

with the standard norm $\|x\|=\sup \{|x(t)|: t \in[0,1]\}$. Let

$$
P=\{x \in C[0,1]: x(t) \geq 0, t \in[0,1]\}
$$

then it is a normal cone in $C[0,1]$ and the normality constant is 1 . We know that this space can be equipped with a partial order given by

$$
x \leq y, \quad x, y \in C[0,1] \Leftrightarrow x(t) \leq y(t), t \in[0,1]
$$

Definition 1.2. [3,5] The Riemann-Liouville fractional derivative of order α for a continuous function
f is defined by

$$
D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} d s, \quad(n=[\alpha]+1)
$$

where the right-hand side is pointwise defined on $(0, \infty)$.
Definition 1.3. $[3,5]$ Let $[a, b]$ be an interval in \mathbb{R} and $\alpha>0$. The Riemann-Liouville fractional order integral of a function $f \in L^{1}([a, b], \mathbb{R})$ is defined by

$$
I_{a}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\alpha}} d s
$$

whenever the integral exists.

2. Main results

Lemma 2.1. Let P be a normal cone in E. Assume that $T: P \times P \rightarrow P$ is a mixed monotone operator and satisfies:
$\left(A_{1}\right):$ there exists $h \in P$ with $h \neq \theta$ such that $T(h, h) \in P_{h}$;
$\left(A_{2}\right):$ for any $u, v \in P$ and $t \in(a, b)$, there exists $\psi(t) \in(0,1], \tau(t):(a, b) \rightarrow(0,1)(\tau(t)$ is surjection $)$, with $\psi(t)>\tau(t)$ such that

$$
T\left(\tau(t) u, \frac{1}{\tau(t)} v\right) \geq \psi(t) T(u, v), \quad \forall u, v \in P
$$

Then
(i) $T: P_{h} \times P_{h} \rightarrow P_{h}$;
(ii) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0} \leq v_{0}, \quad u_{0} \leq T\left(u_{0}, v_{0}\right) \leq T\left(v_{0}, u_{0}\right) \leq v_{0}
$$

(iii) T has a unique fixed point x^{*} in P_{h};
(iv) for any initial values $x_{0}, y_{0} \in P_{h}$, by constructing successively the sequences as follows

$$
x_{n}=T\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=T\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots
$$

we have $x_{n} \rightarrow x^{*}, y_{n} \rightarrow y^{*}$.

Proof: Firstly, from condition $\left(A_{2}\right)$ we get

$$
\begin{equation*}
T\left(\frac{1}{\tau(t)} x, \tau(t) y\right) \leq \frac{1}{\psi(t)} T(x, y), \quad \forall t \in(0,1), x, y \in P \tag{2.1}
\end{equation*}
$$

For any $u, v \in P_{h}$ there exist $\tau\left(t_{1}\right), \tau\left(t_{2}\right) \in(0,1)$ such that

$$
\tau\left(t_{1}\right) h \leq u \leq \frac{1}{\tau\left(t_{1}\right)} h, \quad \tau\left(t_{2}\right) h \leq v \leq \frac{1}{\tau\left(t_{2}\right)} h .
$$

Let $\tau(t)=\min \left\{\tau\left(t_{1}\right), \tau\left(t_{2}\right)\right\}$. Then $\tau(t) \in(0,1)$. From (2.1) and the mixed monotone properties of operator T, we have

$$
\begin{aligned}
T(u, v) & \leq T\left(\frac{1}{\tau\left(t_{1}\right)} h, \tau\left(t_{2}\right) h\right) \leq T\left(\frac{1}{\tau(t)} h, \tau(t) h\right) \leq \frac{1}{\psi(t)} T(h, h) \\
T(u, v) & \geq T\left(\tau\left(t_{1}\right) h, \frac{1}{\tau\left(t_{2}\right)} h\right) \geq T\left(\tau(t) h, \frac{1}{\tau(t)} h\right) \geq \psi(t) T(h, h)
\end{aligned}
$$

It follows from $T(h, h) \in P_{h}$ that $T(u, v) \in P_{h}$. Hence we have $T: P_{h} \times P_{h} \rightarrow P_{h}$. Since $T(h, h) \in P_{h}$, we can choose a sufficiently small number $t_{0} \in(a, b)$ and function $\tau\left(t_{0}\right) \in(0,1)$ such that

$$
\begin{equation*}
\tau\left(t_{0}\right) h \leq T(h, h) \leq \frac{1}{\tau\left(t_{0}\right)} h \tag{2.2}
\end{equation*}
$$

Noting that $\tau\left(t_{0}\right)<\psi\left(t_{0}\right) \leq 1$, we can take a positive integer k such that

$$
\begin{equation*}
\left(\frac{\psi\left(t_{0}\right)}{\tau\left(t_{0}\right)}\right)^{k} \geqslant \frac{1}{\tau\left(t_{0}\right)} \tag{2.3}
\end{equation*}
$$

Put $u_{0}=\left(\tau\left(t_{0}\right)\right)^{k} h, v_{0}=\frac{1}{\left(\tau\left(t_{0}\right)\right)^{k}} h$. Evidently, $u_{0}, v_{0} \in P_{h}$ and $u_{0}=\left(\tau\left(t_{0}\right)\right)^{2 k} v_{0}<v_{0}$. Take, $r \in$ $\left(0,\left(\tau\left(t_{0}\right)\right)^{2 k}\right]$, then $r \in(0,1)$ and $u_{0} \geqslant r v_{0}$. By the mixed monotone properties of T , we have $T\left(u_{0}, v_{0}\right) \leq$ $T\left(v_{0}, u_{0}\right)$. Further, combining condition $\left(A_{2}\right)$ with (2.2) and (2.3) we have

$$
\begin{aligned}
T\left(u_{0}, v_{0}\right) & =T\left(\left(\tau\left(t_{0}\right)\right)^{k} h, \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k}} h\right)=T\left(\left(\tau\left(t_{0}\right)\right) \cdot\left(\tau\left(t_{0}\right)\right)^{k-1} h, \frac{1}{\tau\left(t_{0}\right)} \cdot \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-1}} h\right) \\
& \geqslant \psi\left(t_{0}\right) T\left(\left(\tau\left(t_{0}\right)\right)^{k-1} h, \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-1}} h\right) \\
& =\psi\left(t_{0}\right) T\left(\left(\tau\left(t_{0}\right)\right) \cdot\left(\tau\left(t_{0}\right)\right)^{k-2} h, \frac{1}{\left(\tau\left(t_{0}\right)\right)} \cdot \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-2}} h\right) \\
& \geqslant \psi\left(t_{0}\right) \cdot \psi\left(t_{0}\right) T\left(\left(\tau\left(t_{0}\right)\right)^{k-2} h, \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-2}} h\right) \\
& \geqslant \ldots \geqslant\left(\psi\left(t_{0}\right)\right)^{k} T(h, h) \geqslant\left(\psi\left(t_{0}\right)\right)^{k} \tau\left(t_{0}\right) h \geqslant\left(\tau\left(t_{0}\right)\right)^{k} h=u_{0}
\end{aligned}
$$

From (2.1) we get

$$
\begin{aligned}
T\left(v_{0}, u_{0}\right) & =T\left(\frac{1}{\left(\tau\left(t_{0}\right)\right)^{k}} h,\left(\tau\left(t_{0}\right)\right)^{k} h\right)=T\left(\frac{1}{\left(\tau\left(t_{0}\right)\right)} \cdot \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-1}} h,\left(\tau\left(t_{0}\right)\right) \cdot\left(\tau\left(t_{0}\right)\right)^{k-1} h\right) \\
& \leqslant \frac{1}{\psi\left(t_{0}\right)} T\left(\frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-1}} h,\left(\tau\left(t_{0}\right)\right)^{k-1} h\right) \\
& =\frac{1}{\psi\left(t_{0}\right)} T\left(\frac{1}{\left(\tau\left(t_{0}\right)\right)} \cdot \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-2}} h,\left(\tau\left(t_{0}\right)\right) \cdot\left(\tau\left(t_{0}\right)\right)^{k-2} h\right) \\
& \leqslant \frac{1}{\psi\left(t_{0}\right)} \cdot \frac{1}{\psi\left(t_{0}\right)} T\left(\frac{1}{\left(\tau\left(t_{0}\right)\right)^{k-2}} h,\left(\tau\left(t_{0}\right)\right)^{k-2} h\right) \\
& \leqslant \ldots \leqslant \frac{1}{\left(\psi\left(t_{0}\right)\right)^{k}} T(h, h) \leqslant \frac{1}{\tau\left(t_{0}\right)\left(\psi\left(t_{0}\right)\right)^{k}} h \leqslant \frac{1}{\left(\tau\left(t_{0}\right)\right)^{k}} h=v_{0}
\end{aligned}
$$

Thus we have $u_{0} \leq T\left(u_{0}, v_{0}\right) \leq T\left(v_{0}, u_{0}\right) \leq v_{0}$.
Construct successively the sequences

$$
u_{n}=T\left(u_{n-1}, v_{n-1}\right), \quad v_{n}=T\left(v_{n-1}, u_{n-1}\right), \quad n=1,2, \ldots
$$

Evidently, $u_{1} \leqslant v_{1}$. By the mixed monotone properties of T, we obtain $u_{n} \leqslant v_{n}, n=1,2, \ldots$. It also follows from the mixed monotone properties of T that

$$
\begin{equation*}
u_{0} \leq u_{1} \leq \ldots \leq u_{n} \leq \ldots \leq v_{n} \leq \ldots \leq v_{1} \leq v_{0} \tag{2.4}
\end{equation*}
$$

Noting that $u_{0} \geqslant r v_{0}$, we can get $u_{n} \geqslant u_{0} \geqslant r v_{0} \geqslant r v_{n}, n=1,2, \ldots$ Let

$$
r_{n}=\sup \left\{r>0 \mid u_{n} \geq r v_{n}\right\}, \quad n=1,2, \ldots
$$

Thus we have $u_{n} \geq r v_{n}, n=1,2, \ldots$ and then $u_{n+1} \geq u_{n} \geq r_{n} v_{n} \geq r_{n} v_{n+1}, n=1,2, \ldots$ Therefore, $r_{n+1} \geq r_{n}$, i.e., $\left\{r_{n}\right\}$ is increasing in $(0,1]$. Suppose $r_{n} \rightarrow r^{*}$ as $n \rightarrow \infty$, then $r^{*}=1$. Otherwise, $0<r^{*}<1$, by $\left(A_{2}\right)$ there exists $z_{1} \in(a, b)$ such that $\tau\left(z_{1}\right)=r^{*}$. Consider the following two cases:
Cases i : There exists an integer N such that $r_{N}=r^{*}$. In this case, we have $r_{n}=r^{*}$ and $u_{n} \geq r^{*} v_{n}$ for all $n \geq N$ hold. Hence

$$
\begin{aligned}
u_{n+1} & =T\left(u_{n}, v_{n}\right) \geq T\left(r^{*} v_{n}, \frac{1}{r^{*}} u_{n}\right)=T\left(\tau\left(z_{1}\right) v_{n}, \frac{1}{\tau\left(z_{1}\right)} u_{n}\right) \\
& \geq \psi\left(z_{1}\right) T\left(v_{n}, u_{n}\right)=\psi\left(z_{1}\right) v_{n+1} \quad n \geq N
\end{aligned}
$$

By the definition of r_{n}, we have $r_{n+1}=r^{*} \geq \psi\left(z_{1}\right)>\tau\left(z_{1}\right)=r^{*}, \quad n \geq N$, which is a contradiction.
Case $i i$: For all integers $n, r_{n}<r^{*}$. Then we obtain $0<\frac{r_{n}}{r^{*}}<1$. By $\left(A_{2}\right)$, there exist $z_{n} \in(a, b)$ such that $\tau\left(z_{n}\right)=\frac{r_{n}}{r^{*}}$. Hence

$$
\begin{aligned}
u_{n+1} & =T\left(u_{n}, v_{n}\right) \geq T\left(r_{n} v_{n}, \frac{1}{r_{n}} u_{n}\right)=T\left(\frac{r_{n}}{r^{*}} r^{*} v_{n}, \frac{1}{\frac{r_{n}}{r^{*}} r^{*}} u_{n}\right) \\
& \geq T\left(\tau\left(z_{n}\right) r^{*} v_{n}, \frac{1}{\tau\left(z_{n}\right) r^{*}} u_{n}\right) \\
& \geq \psi\left(z_{n}\right) T\left(r^{*} v_{n}, \frac{1}{r^{*}} u_{n}\right)=\psi\left(z_{n}\right) T\left(\tau\left(z_{1}\right) v_{n}, \frac{1}{\tau\left(z_{1}\right)} u_{n}\right) \geq \psi\left(z_{n}\right) \psi\left(z_{1}\right) T\left(v_{n}, u_{n}\right) \\
& \geq \psi\left(z_{n}\right) \psi\left(z_{1}\right) v_{n+1}
\end{aligned}
$$

By the definition of r_{n}, we have $r_{n+1} \geq \psi\left(z_{n}\right) \psi\left(z_{1}\right) \geq \tau\left(z_{n}\right) \psi\left(z_{1}\right)=\frac{r_{n}}{r^{*}} \tau\left(z_{1}\right)$. Let $n \rightarrow \infty$, we have $r^{*} \geq \psi\left(z_{1}\right)>\tau\left(z_{1}\right)=r^{*}$ which is also a contradiction. Thus, $\lim _{n \rightarrow \infty} r_{n}=1$. For any natural number p we have

$$
\begin{gathered}
\theta \leq u_{n+p}-u_{n} \leq v_{n}-u_{n} \leq v_{n}-r_{n} v_{n}=\left(1-r_{n}\right) v_{n} \leq\left(1-r_{n}\right) v_{0} \\
\theta \leq v_{n}-v_{n+p} \leq v_{n}-u_{n} \leq v_{n}-r_{n} v_{n} \leq\left(1-r_{n}\right) v_{0}
\end{gathered}
$$

Since the cone P is normal, we have

$$
\begin{aligned}
& \left\|u_{n+p}-u_{n}\right\| \leq N\left(1-r_{n}\right)\left\|v_{0}\right\| \rightarrow 0, \quad(\text { as } \quad n \rightarrow \infty) \\
& \left\|v_{n}-v_{n+p}\right\| \leq N\left(1-r_{n}\right)\left\|v_{0}\right\| \rightarrow 0, \quad(\text { as } \quad n \rightarrow \infty)
\end{aligned}
$$

where N is the normality constant of P. So we can claim that $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are cauchy sequences. Because E is complete, there exist u^{*}, v^{*} such that $u_{n} \rightarrow u^{*}, v_{n} \rightarrow v^{*}$ as $n \rightarrow \infty$. By (2.4), we know that $u_{n} \leq u^{*} \leq v^{*} \leq v_{n}$ with $u^{*}, v^{*} \in P_{h}$ and we have $\theta \leq v^{*}-u^{*} \leq v_{n}-u_{n} \leq\left(1-r_{n}\right) v_{0}$. Further

$$
\left\|v^{*}-u^{*}\right\| \leq N\left(1-r_{n}\right)\left\|v_{0}\right\| \rightarrow 0,(\text { as } \quad n \rightarrow \infty)
$$

Thus $u^{*}=v^{*}$. Let $x^{*}:=u^{*}=v^{*}$ and then we obtain

$$
u_{n+1}=T\left(u_{n}, v_{n}\right) \leq T\left(x^{*}, x^{*}\right) \leq T\left(v_{n}, u_{n}\right)=v_{n+1}
$$

Let $n \rightarrow \infty$, we get $x^{*}=T\left(x^{*}, x^{*}\right)$. That is, x^{*} is a fixed point of T in P_{h}. In the following, we prove that x^{*} is the unique fixed point of T in P_{h}. In fact, suppose \bar{x} is a fixed point of T in P_{h}. Since $x^{*}, \bar{x} \in P_{h}$, there exist positive numbers $\overline{\mu_{1}}, \overline{\mu_{2}}, \overline{\lambda_{1}}, \overline{\lambda_{2}}>0$ such that

$$
\overline{\mu_{1}} h \leqslant x^{*} \leqslant \overline{\lambda_{1}} h, \quad \overline{\mu_{2}} h \leqslant \bar{x} \leqslant \overline{\lambda_{2}} h .
$$

Then we obtain

$$
\bar{x} \leqslant \overline{\lambda_{2}} h=\frac{\overline{\lambda_{2}}}{\overline{\mu_{1}}} \overline{\mu_{1}} h \leqslant \frac{\overline{\lambda_{2}}}{\overline{\mu_{1}}} x^{*}, \quad \bar{x} \geqslant \overline{\mu_{2}} h=\frac{\overline{\mu_{2}} h}{\overline{\lambda_{1}}} \overline{\lambda_{1}} h \geqslant \frac{\overline{\mu_{2}}}{\overline{\lambda_{1}}} x^{*} .
$$

Let $e_{1}=\sup \left\{0<e \leq 1 \mid e x^{*} \leq \bar{x} \leq e^{-1} x^{*}\right\}$. Evidently, $0<e_{1} \leq 1, e_{1} x^{*} \leq \bar{x} \leq e_{1}^{-1} x^{*}$. If $0<e_{1}<1$, according to $\left(H_{1}\right)$ there exists $z_{2} \in(a, b)$ such that $\tau\left(z_{2}\right)=e_{1}$. then

$$
\begin{aligned}
\bar{x} & =T(\bar{x}, \bar{x}) \geq T\left(e_{1} x^{*}, e_{1}^{-1} x^{*}\right)=T\left(\tau\left(z_{2}\right) x^{*}, \tau^{-1}\left(z_{2}\right) x^{*}\right) \geq \psi\left(z_{2}\right) T\left(x^{*}, x^{*}\right) \\
& =\psi\left(z_{2}\right) x^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{x} & =T(\bar{x}, \bar{x}) \leq T\left(e_{1}^{-1} x^{*}, e_{1} x^{*}\right)=T\left(\tau^{-1}\left(z_{2}\right) x^{*}, \tau\left(z_{2}\right) x^{*}\right) \leq \frac{1}{\psi\left(z_{2}\right)} T\left(x^{*}, x^{*}\right) \\
& =\frac{1}{\psi\left(z_{2}\right)} x^{*}
\end{aligned}
$$

we have

$$
\psi\left(z_{2}\right) x^{*} \leq \bar{x} \leq \frac{1}{\psi\left(z_{2}\right)} x^{*}
$$

Hence $e_{1} \geq \psi\left(z_{2}\right)>\tau\left(z_{2}\right)=e_{1}$ which is a contradiction. Thus we have $e_{1}=1$ i.e. $\bar{x}=x^{*}$. Therefore, T has a unique fixed point x^{*} in P_{h}. Note that $\left[u_{0}, v_{0}\right] \subset P_{h}$, then we know that x^{*} is the unique fixed point of T in $\left[u_{0}, v_{0}\right]$. Now we construct successively the sequences $x_{n}=T\left(x_{n-1}, y_{n-1}\right), y_{n}=$ $T\left(y_{n-1}, x_{n-1}\right), n=1,2, \ldots$, for any initial points $x_{0}, y_{0} \in P_{h}$. Since $x_{0}, y_{0} \in P_{h}$, we can choose numbers $e_{2}, e_{3} \in(0,1)$ such that

$$
e_{2} h \leqslant x_{0} \leqslant \frac{1}{e_{2}} h, \quad e_{3} h \leqslant y_{0} \leqslant \frac{1}{e_{3}} h
$$

From $\left(H_{1}\right)$ there is $z_{3} \in(a, b)$ such that Let $\tau\left(z_{3}\right)=e^{*}=\min \left\{e_{2}, e_{3}\right\}$. Then $e^{*} \in(0,1)$ and $e^{*} h \leqslant x_{0}$, $y_{0} \leqslant \frac{1}{e^{*}} h$. We can choose a sufficiently large positive integer m such that $\left(\frac{\psi\left(z_{3}\right)}{\tau\left(z_{3}\right)}\right)^{m} \geqslant \frac{1}{\tau\left(z_{3}\right)}$. Put $\overline{u_{0}}=\tau\left(z_{3}\right) h, \overline{v_{0}}=\frac{1}{\tau\left(z_{3}\right)} h$. It is easy to see that $\overline{u_{0}}, \overline{v_{0}} \in P_{h}$ and $\overline{u_{0}} \leq x_{0}, y_{0} \leq \overline{v_{0}}$. Constructing successively the sequences

$$
\begin{aligned}
& x_{n}=T\left(x_{n-1}, y_{n-1}\right), y_{n}=T\left(y_{n-1}, x_{n-1}\right), n=1,2, \ldots \\
& \overline{u_{n}}=T\left(u_{n-1}^{-}, v_{n-1}^{-}\right), \overline{v_{n}}=T\left(v_{n-1}^{-}, u_{n-1}^{-}\right), n=1,2, \ldots,
\end{aligned}
$$

By using the mixed monotone properties of operator T, we have $\overline{u_{n}} \leq x_{n}, y_{n} \leq \overline{v_{n}}, n=1,2, \ldots$, similarly, it follows that there exists $y^{*} \in P_{h}$ such that $T\left(y^{*}, y^{*}\right)=y^{*}, \lim _{n \rightarrow \infty} \overline{u_{n}}=\lim _{n \rightarrow \infty} \overline{v_{n}}=y^{*}$. By the uniqueness of fixed points of operator T in P_{h}, we get $x^{*}=y^{*}$. Since cone P is normal, we have $\lim _{n \rightarrow \infty} \overline{u_{n}}=\lim _{n \rightarrow \infty} \overline{v_{n}}=x^{*}$. This completes the proof.

Theorem 2.1. Let P be a normal cone in E, and $T_{1}, T_{2}: P \times P \rightarrow P$ be two mixed monotone operators. Assume that for all $a<t<b$, there exist two positive-valued functions $\tau(t), \varphi(t, x, y)$ (with $\varphi(t, x, y) \leq 1$) on an interval (a, b) such that;
$\left(H_{11}\right) \tau:(a, b) \rightarrow(0,1)$ is a surjection;
$\left(H_{12}\right)$ there exists a constant $\delta>0$ such that $T_{1}(x, y) \geq \delta T_{2}(x, y)$ for all $x \in P$;
$\left(H_{13}\right) T_{1}\left(\tau(t) x, \frac{1}{\tau(t)} y\right) \geq \varphi(t, x, y) T_{1}(x, y), T_{2}\left(\tau(t) x, \frac{1}{\tau(t)} y\right) \geq \tau(t) T_{2}(x, y)$ and
$\tau(t) \leq(1-\varphi(t, x, y)) \delta+1$ for all $t \in(a, b), x, y \in P$;
$\left(H_{14}\right)$ there is $h \in P$ with $h>\theta$ such that $T_{1}(h, h) \in P_{h}, T_{2}(h, h) \in P_{h}$.
Then the operator equation $T_{1}(x, x)+T_{2}(x, x)=x$ has a unique solution x^{*} in P_{h}. Moreover, for any initial values $x_{0}, y_{0} \in P_{h}$, by constructing successively the sequence as follows

$$
\begin{aligned}
x_{n} & =T_{1}\left(x_{n-1}, y_{n-1}\right)+T_{2}\left(x_{n-1}, y_{n-1}\right) \\
y_{n} & =T_{1}\left(y_{n-1}, x_{n-1}\right)+T_{2}\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots
\end{aligned}
$$

we have $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow x^{*}$ in E as $n \rightarrow \infty$.
Proof: Firstly, from $\left(H_{13}\right)$ for any $t \in(a, b)$ and $x, y \in P$, we have

$$
\begin{equation*}
T_{1}\left(\frac{1}{\tau(t)} x, \tau(t) y\right) \leq \frac{1}{\varphi(t, x, y)} T_{1}(x, y) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}\left(\frac{1}{\tau(t)} x, \tau(t) y\right) \leq \frac{1}{\tau(t)} T_{2}(x, y) \tag{2.6}
\end{equation*}
$$

Since $T_{1}(h, h) \in P_{h}, T_{2}(h, h) \in P_{h}$, there exist constants $a_{i}>0, b_{i}>0(i=1,2)$ such that

$$
\begin{align*}
& a_{1} h \leq T_{1}(h, h) \leq b_{1} h \tag{2.7}\\
& a_{2} h \leq T_{2}(h, h) \leq b_{2} h \tag{2.8}
\end{align*}
$$

Next we show $T_{1}: P_{h} \times P_{h} \rightarrow P_{h}$. For any $x, y \in P_{h}$, we can choose two sufficiently functions $\tau\left(t_{1}\right), \tau\left(t_{2}\right):$ $(a, b) \rightarrow(0,1)$ such that

$$
\begin{equation*}
\tau\left(t_{1}\right) h \leq x \leq \frac{1}{\tau\left(t_{1}\right)} h, \quad \tau\left(t_{2}\right) h \leq y \leq \frac{1}{\tau\left(t_{2}\right)} h \tag{2.9}
\end{equation*}
$$

Let $\tau(t)=\min \left\{\tau\left(t_{1}\right), \tau\left(t_{2}\right)\right\}$, then $\tau(t):(a, b) \rightarrow(0,1)$, by (2.5), (2.7) and (2.9), we have

$$
\begin{gathered}
T_{1}(x, y) \leq T_{1}\left(\frac{1}{\tau(t)} h, \tau(t) h\right) \leq \frac{1}{\varphi(t, x, y)} T_{1}(h, h) \leq \frac{b_{1} h}{\varphi(t, x, y)} \\
T_{1}(x, y) \geq T_{1}\left(\tau(t) h, \frac{1}{\tau(t)} h\right) \geq \varphi(t, x, y) T_{1}(h, h) \geq \varphi(t, x, y) a_{1} h
\end{gathered}
$$

Evidently $\frac{b_{1}}{\varphi(t, x, y)}, \varphi(t, x, y) a_{1}>0$. thus $T_{1}(x, y) \in P_{h}$; that is, $T_{1}: P_{h} \times P_{h} \rightarrow P_{h}$. Finally, we show $T_{2}: P_{h} \times P_{h} \rightarrow P_{h}$. for any $x, y \in P_{h}$, we can choose two sufficiently function $\tau\left(t_{3}\right), \tau\left(t_{4}\right):(a, b) \rightarrow(0,1)$ such that

$$
\begin{equation*}
\tau\left(t_{3}\right) h \leq x \leq \frac{1}{\tau\left(t_{3}\right)} h, \quad \tau\left(t_{4}\right) h \leq y \leq \frac{1}{\tau\left(t_{4}\right)} h \tag{2.10}
\end{equation*}
$$

Let $\tau\left(t^{\prime}\right)=\min \left\{\tau\left(t_{3}\right), \tau\left(t_{4}\right)\right\}$, then $\tau\left(t^{\prime}\right) \in(0,1)$, by (2.6), (2.8) and (2.10), we have

$$
\begin{aligned}
T_{2}(x, y) & \leq T_{2}\left(\frac{1}{\tau\left(t^{\prime}\right)} h, \tau\left(t^{\prime}\right) h\right) \leq \frac{1}{\tau\left(t^{\prime}\right)} T_{2}(h, h) \leq \frac{1}{\tau\left(t^{\prime}\right)} b_{2} h \\
T_{2}(x, y) & \geq T_{2}\left(\tau\left(t^{\prime}\right) h, \frac{1}{\tau\left(t^{\prime}\right)} h\right) \geq \tau\left(t^{\prime}\right) T_{2}(h, h) \geq \tau\left(t^{\prime}\right) a_{2} h
\end{aligned}
$$

Evidently, $\frac{1}{\tau\left(t^{\prime}\right)} b_{2}, \tau\left(t^{\prime}\right) a_{2}>0$. Thus $T_{2}(x, y) \in P_{h}$, that is, $T_{2}: P_{h} \times P_{h} \rightarrow P_{h}$. Now we define the operator $T=T_{1}+T_{2}: P_{h} \times P_{h} \rightarrow P_{h}$ by

$$
\begin{equation*}
T(x, y)=T_{1}(x, y)+T_{2}(x, y), \quad x, y \in P_{h} \tag{2.11}
\end{equation*}
$$

Then $T: P_{h} \times P_{h} \rightarrow P_{h}$ is a mixed monotone operator since $T_{1}(h, h) \in P_{h}, T_{2}(h, h) \in P_{h}$, we get $T(h, h)=T_{1}(h, h)+T_{2}(h, h) \in P_{h}$. In the following, we show that for any $t \in(a, b)$, there exists $\psi(t) \in(0,1]$ such that for all $x, y \in P$,

$$
T\left(\tau(t) x, \frac{1}{\tau(t)} y\right) \geq \psi(t) T(x, y)
$$

For any $x, y \in P$, by $\left(H_{12}\right)$, we have

$$
\begin{equation*}
T_{1}(x, y)+\delta T_{1}(x, y) \geq \delta T_{2}(x, y)+\delta T_{1}(x, y) \tag{2.12}
\end{equation*}
$$

It follows from (2.12) that

$$
\begin{equation*}
T_{1}(x, y) \geq \frac{T_{1}(x, y)+T_{2}(x, y)}{1+\delta^{-1}}=\frac{T(x, y)}{1+\delta^{-1}} \tag{2.13}
\end{equation*}
$$

By $\left(H_{13}\right)$, for all $x, y \in P$, we have

$$
\begin{aligned}
T\left(\tau(t) x, \tau^{-1}(t) y\right)-t T(x, y)= & T_{1}\left(\tau(t) x, \tau^{-1}(t) y\right)+T_{2}\left(\tau(t) x, \tau^{-1}(t) y\right) \\
& -t\left(T_{1}(x, y)+T_{2}(x, y)\right) \\
\geq & \varphi(t, x, y) T_{1}(x, y)+\tau(t) T_{2}(x, y) \\
& -t\left(T_{1}(x, y)+T_{2}(x, y)\right) \\
\geq & (\varphi(t, x, y)-t) T_{1}(x, y)+(\tau(t)-t) T_{2}(x, y) \\
\geq & (\varphi(t, x, y)-t) T_{1}(x, y)+(\tau(t)-t) \delta^{-1} T_{1}(x, y) \\
\geq & (\varphi(t, x, y)-t) \frac{T(x, y)}{1+\delta^{-1}}+(\tau(t)-t) \delta^{-1} \frac{T(x, y)}{1+\delta^{-1}} \\
\geq \geq & \frac{\left.(\varphi(t, x, y)-t)+(\tau(t)-t) \delta^{-1}\right) T(x, y)}{1+\delta^{-1}}
\end{aligned}
$$

It follows from up that for all $x, y \in P$,

$$
\begin{aligned}
T\left(\tau(t) x, \tau^{-1}(t) y\right) & \geq t T(x, y)+\frac{\left.(\varphi(t, x, y)-t)+(\tau(t)-t) \delta^{-1}\right)}{1+\delta^{-1}} T(x, y) \\
& \geq\left(t+\frac{\left.(\varphi(t, x, y)-t)+(\tau(t)-t) \delta^{-1}\right)}{1+\delta^{-1}}\right) T(x, y)
\end{aligned}
$$

Let $\psi(t)=\left(t+\frac{\left.(\varphi(t, x, y)-t)+(\tau(t)-t) \delta^{-1}\right)}{1+\delta^{-1}}\right)=\frac{\varphi(t, x, y)+\tau(t) \delta^{-1}}{1+\delta^{-1}}$, then $\psi(t) \in(0,1], \tau(t) \in(0,1), t \in(a, b)$ and

$$
T\left(\tau(t) x, \tau^{-1}(t) y\right) \geq \psi(t) T(x, y)
$$

By Lemma 2.1 the conclusions of Theorem 2.1 holds.

3. Applications

In this section, we apply the results in Section 2 to study nonlinear fractional differential equations with two-point boundary conditions. We here consider the existence and uniqueness of positive solutions for the following fractional boundary value problem (FBVP for short):

$$
\begin{align*}
& -D_{0^{+}}^{\alpha} u(w)=F_{1}(w, u(w))+F_{2}(w, u(w)), \quad w=\tau(t), 0<w<1, n-1<\alpha \leq n \\
& u^{i}(0)=0, \quad 0 \leq i \leq n-2 \tag{3.1}\\
& {\left[D_{0^{+}}^{\beta} u(w)\right]_{w=1}=0, \quad 1 \leq \beta \leq n-2}
\end{align*}
$$

where $D_{0^{+}}^{\alpha} u(w)$ is the Riemann-Liouville fractional derivative of order $\alpha, n>2, n \in \mathbb{N}$.

Theorem 3.1. Assume that $F_{1}(w, x)=f_{1}(w, x, x), F_{2}(w, x)=f_{2}(w, x, x)$ and satisfying the following conditions $H_{1}-H_{4}$:
$\left(H_{1}\right) f_{1}, f_{2}:[0,1] \times[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty)$ are continuous, and for all $w \in[0,1], f_{2}(w, 0,1) \not \equiv 0$;
$\left(H_{2}\right)$ for fixed $w \in[0,1], y \in[0,+\infty), f_{1}(w, x, y), f_{2}(w, x, y)$ are increasing in $x \in[0,+\infty)$; for fixed $w \in[0,1]$ and $x \in[0,+\infty), f_{1}(w, x, y), f_{2}(w, x, y)$ are decreasing in $y \in[0,+\infty)$;
$\left(H_{3}\right)$ for all $\lambda \in(a, b)$, there exist $\tau(\lambda) \in[0,1](\tau(t):(a, b) \rightarrow[0,1]$ is a surjection) such that for all $w \in[0,1]$, $x, y \in[0,+\infty), f_{1}\left(w, \tau(\lambda) x, \tau^{-1}(\lambda) y\right) \geq \varphi(t, x, y) f_{1}(w, x, y), f_{2}\left(w, \tau(\lambda) x, \tau^{-1}(\lambda) y\right) \geq \tau(\lambda) f_{2}(w, x, y) ;$
$\left(H_{4}\right)$ there exists a constant $\delta>0$, such that for all $w \in[0,1], x, y \in[0,+\infty), f_{1}(w, x, y) \geq \delta f_{2}(w, x, y)$.
Then the problem (3.1) has a unique positive solution u^{*} in P_{h}, where $h(t)=\tau^{\alpha-1}(t), w=\tau(t) \in[0,1]$, and for any $u_{0}, v_{0} \in P_{h}$, by constructing successively the sequences as follows

$$
\begin{array}{ll}
u_{n+1}(w)=\int_{0}^{1} G(w, s)\left[f_{1}\left(s, v_{n}(s), u_{n}(s)\right)+f_{2}\left(s, v_{n}(s), u_{n}(s)\right)\right] d s, & n=0,1, \ldots \\
v_{n+1}(w)=\int_{0}^{1} G(w, s)\left[f_{1}\left(s, v_{n}(s), u_{n}(s)\right)+f_{2}\left(s, v_{n}(s), u_{n}(s)\right)\right] d s, \quad n=0,1, \ldots
\end{array}
$$

we have $u_{n}(w) \rightrightarrows u^{*}(w), w \in[0,1]$ and $v_{n}(w) \rightrightarrows u^{*}(w), w \in[0,1]$ that $i s,\left\{u_{n}(w)\right\}$ and $\left\{v_{n}(w)\right\}$ both converges to $u^{*}(w)$ uniformly for all $w \in[0,1]$.

Proof: The proof is similar with the proof of the Theorem 4.4 in [4].
Example 3.1. Consider the following two-point boundary value problem

$$
\begin{align*}
& -D_{0^{+}}^{\alpha} u(w)=2 w^{3}+\sqrt[3]{u}+\frac{1}{\sqrt[3]{u+1}}+\frac{\sqrt{u+1}}{\sqrt{u+1}} \quad 0<w<1, n-1<\alpha \leq n \\
& u^{i}(0)=0, \quad 0 \leq i \leq n-2 \tag{3.2}\\
& {\left[D_{0^{+}}^{\beta} u(w)\right]_{w=1}=0, \quad 1 \leq \beta \leq n-2 .}
\end{align*}
$$

The above equations can be written in the form of problem with the functions $f_{1}, f_{2}:[0,1] \times[0,+\infty) \times[0,+\infty) \rightarrow$ $[0,+\infty)$ defined by

$$
\begin{aligned}
& f_{1}(w, x, y)=w^{3}+\sqrt[3]{x}+\frac{1}{\sqrt[3]{y+1}}, \quad w=\tau(t) \in[0,1], \quad x, y \geq 0 \\
& f_{2}(w, x, y)=w^{3}+\frac{\sqrt{x+1}}{\sqrt{y+1}}, \quad w=\tau(t) \in[0,1], \quad x, y \geq 0
\end{aligned}
$$

Now we show in the following that all the conditions of Theorem 3.1 are satisfied

1) Clearly, the functions $f_{1}, f_{2}:[0,1] \times[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty)$ are continuous with $f_{2}(w, 0,1) \not \equiv 0$
2) We observe that for fixed $w=\tau(t) \in[0,1]$ and $y \in[0,+\infty), f_{1}(w, x, y), f_{2}(w, x, y)$ are increasing in $x \in[0,+\infty)$; for fixed $\tau(t) \in[0,1]$ and $x \in[0,+\infty), f_{1}(w, x, y), f_{2}(w, x, y)$ are decreasing in $y \in[0,+\infty)$;
3) For all $\lambda \in(a, b), t \in(a, b), \tau(\lambda) \in[0,1]$ and $x \geq 0, y \geq 0$, taking $\varphi(t, x, y)=\sqrt[3]{\tau(\lambda)}$, we have

$$
\begin{aligned}
f_{1}\left(w, \tau(\lambda) x, \tau^{-1}(\lambda) y\right) & =\left(w^{3}+\sqrt[3]{\tau(\lambda) x}+\frac{1}{\sqrt[3]{\tau^{-1}(\lambda) y+1}}\right) \\
& =\left(w^{3}+\sqrt[3]{\tau(\lambda) x}+\frac{\sqrt[3]{\tau(\lambda)}}{\sqrt[3]{y+\tau(\lambda)}}\right) \\
& \geq \sqrt[3]{\tau(\lambda)}\left(w^{3}+\sqrt[3]{x}+\frac{1}{\sqrt[3]{1+y}}\right) \\
& =\sqrt[3]{\tau(\lambda)} f_{1}(w, x, y) \\
& =\varphi(t, x, y) f_{1}(w, x, y)
\end{aligned}
$$

For all $\lambda \in(a, b), t \in(a, b), \tau(\lambda) \in[0,1]$ and $x \geq 0, y \geq 0$, we have

$$
\begin{aligned}
f_{2}\left(w, \tau(\lambda) x, \tau^{-1}(\lambda) y\right) & =\left(w^{3}+\frac{\sqrt{\tau(\lambda) x+1}}{\sqrt{\tau^{-1}(\lambda) y+1}}\right) \geq\left(w^{3}+\frac{\sqrt{\tau(\lambda) x+\tau(\lambda)}}{\sqrt{\tau^{-1}(\lambda) y+\tau^{-1}(\lambda)}}\right) \\
& =\left(w^{3}+\frac{\left(\tau^{\frac{1}{2}}(\lambda)\right) \sqrt{x+1}}{\left(\tau^{\frac{-1}{2}}(\lambda)\right) \sqrt{y+1}}\right) \geq\left(\tau(\lambda) w^{3}+\tau(\lambda) \frac{\sqrt{x+1}}{\sqrt{y+1}}\right) \\
& =\tau(\lambda) f_{2}(w, x, y)
\end{aligned}
$$

4) Taking $\delta=1$, for all $w=\tau(t) \in[0,1]$ and $x \geq 0, y \geq 0$, we have

$$
\begin{aligned}
f_{1}(w, x, y) & =w^{3}+\sqrt[3]{\tau(\lambda) x}+\frac{1}{\sqrt[3]{\tau^{-1}(\lambda) y+1}} \\
& \geq w^{3}+\frac{\sqrt{\tau(\lambda) x+1}}{\sqrt{\tau^{-1}(\lambda) y+1}} \\
& =f_{2}(w, x, y)
\end{aligned}
$$

Thus we have proved that all the conditions of Theorem 3.1 are satisfied. Hence we deduce that (3.2) has one and only one positive solution $x^{*} \in P_{h}$, where $h(t)=\tau^{\alpha-1}(t), \tau(t) \in[0,1]$.

References

1. Guo D, Lakskmikantham, V:Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11(5), 623632(1987).
2. Guo D:Fixed points of mixed monotone operators with application. Appl. Anal. 34, 215-224(1988).
3. Kilbas AA, Srivastava HM, Trujillo, jj: Theory and applications of fractional differential equations. North-Holland Mathematics Studies. 204, 7-10(2006).
4. Liu. L, Zhang. X, Jiang. J, Wu. Y :The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems J. Nonlinear Sci. Appl. 9 (2016), 2943-2958.
5. Podlubny I:Fractional Differential Equations. Academic Press, San Diego, (1999).
6. Sang, Y:Existence and uniqueness of fixed points for mixed monotone operators with perturbations, Electronic Journal of Differential Equations, 233(2013)1-16.
7. Sang, Y:A class of φ-concave operators and applications, Fixed Point Theory and Applications, vol. 2013, 2013.
```
H. Afshari,
Department of Mathematics, Basic Science Faculty,
University of Bonab,
Bonab, Iran.,
E-mail address: hojat.afshari@yahoo.com
and
L. Khoshvaghti,
Department of Mathematics,
University of Azarbaijan Shahid Madani,
Tabriz, Iran.
E-mail address: khoshvaghti.1992@gmail.com
```


[^0]: 2010 Mathematics Subject Classification: $74 \mathrm{H} 10,54 \mathrm{H} 25$.
 Submitted November 10, 2018. Published February 06, 2019

