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abstract: In this paper we consider the existence and uniqueness of positive solutions to the following
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T1(x, x) + T2(x, x) = x, x ∈ P,

where P is a cone in E. We study an application for fractional differential equations.
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1. Introduction and preliminaries

In [4] Liu and coauthors supposed the existence and uniqueness of positive solutions to the following
operator equation in ordered Banach spaces E,

T1(x, x) + T2(x, x) = x, x ∈ P, (1.1)

where P is a cone in E, and T1, T2 : P × P → P are two mixed monotone operators, which satisfy the
following conditions:
(i) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1], such that for all x, y ∈ P ,

T1(tx,
1

t
y) ≥ ψ(t)T1(x, y).

(ii) for all t ∈ (0, 1), x, y ∈ P ,

T2(tx,
1

t
y) ≥ tT2(x, y).

In 2013, Y. Sang [6,7] proved some results on a class of mixed monotone operators with perturbations.
In this paper, by applying results of Liu and Sang, we obtain some new results on the existence and
uniqueness of positive solutions for operator equation T1(x, x) + T2(x, x) = x, x ∈ P . In the last section,
we study an application for fractional differential equations.
Suppose that (E, ‖ . ‖) is a Banach space which is partially ordered by a cone P ⊆ E, that is, x ≤ y if
and only if y − x ∈ P . If x 6= y, then we denote x < y or x > y. We denote the zero element of E by θ.
Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0 =⇒ λx ∈ P ,
(ii) x ∈ P, −x ∈ P =⇒ x = θ. A cone P is called normal if there exists a constant N > 0 such that
θ ≤ x ≤ y implies ‖ x ‖≤ N ‖ y ‖. Also we define the ordered interval [x1, x2] = {x ∈ E|x1 ≤ x ≤ x2}
for all x1, x2 ∈ E. We say that an operator T : E → E is increasing whenever x ≤ y implies Tx ≤ Ty. T
is called a positive operator if T (x) ≥ θ for any x ≥ θ.
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Definition 1.1. [1,2] T : P ×P → P is said to be a mixed monotone operator if T (x, y) is increasing
in x and decreasing in y, i.e., ui, vi ∈ P (i = 1, 2), u1 ≤ u2, v1 ≥ v2 imply T (u1, v1) ≤ T (u2, v2). The
element x ∈ P is called a fixed point of T if T (x, x) = x.
An element x∗ ∈ D is called a fixed point of T if it satisfies T (x∗, x∗) = x∗. Let h > θ, write

Ph = {x ∈ E|∃λ, µ > 0 such that λh ≤ x ≤ µh}.
Throughout this section, we work in the Banach space

C[0, 1] = {x : [0, 1] → R is continuous}

with the standard norm ‖ x ‖= sup{|x(t)| : t ∈ [0, 1]}. Let

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]},

then it is a normal cone in C[0, 1] and the normality constant is 1. We know that this space can be
equipped with a partial order given by

x ≤ y, x, y ∈ C[0, 1] ⇔ x(t) ≤ y(t), t ∈ [0, 1].

Definition 1.2. [3,5] The Riemann-Liouville fractional derivative of order α for a continuous function
f is defined by

Dαf(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

0

f(s)

(t− s)α−n+1
ds, (n = [α] + 1)

where the right-hand side is pointwise defined on (0,∞).

Definition 1.3. [3,5] Let [a, b] be an interval in R and α > 0. The Riemann-Liouville fractional order
integral of a function f ∈ L1([a, b],R) is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds,

whenever the integral exists.

2. Main results

Lemma 2.1. Let P be a normal cone in E. Assume that T : P × P → P is a mixed monotone operator
and satisfies:
(A1): there exists h ∈ P with h 6= θ such that T (h, h) ∈ Ph;
(A2): for any u, v ∈ P and t ∈ (a, b), there exists ψ(t) ∈ (0, 1], τ (t) : (a, b) → (0, 1) (τ (t) is surjection),
with ψ(t) > τ (t) such that

T (τ(t)u,
1

τ (t)
v) ≥ ψ(t)T (u, v), ∀u, v ∈ P.

Then
(i) T : Ph × Ph → Ph;
(ii) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 ≤ v0, u0 ≤ T (u0, v0) ≤ T (v0, u0) ≤ v0;

(iii) T has a unique fixed point x∗ in Ph;
(iv) for any initial values x0, y0 ∈ Ph, by constructing successively the sequences as follows

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, . . .

we have xn → x∗, yn → y∗.
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Proof: Firstly, from condition (A2) we get

T (
1

τ(t)
x, τ (t)y) ≤

1

ψ(t)
T (x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.1)

For any u, v ∈ Ph there exist τ (t1), τ(t2) ∈ (0, 1) such that

τ (t1)h ≤ u ≤
1

τ(t1)
h, τ (t2)h ≤ v ≤

1

τ(t2)
h.

Let τ (t) = min{τ(t1), τ (t2)}. Then τ (t) ∈ (0, 1). From (2.1) and the mixed monotone properties of
operator T , we have

T (u, v) ≤ T (
1

τ(t1)
h, τ (t2)h) ≤ T (

1

τ(t)
h, τ(t)h) ≤

1

ψ(t)
T (h, h),

T (u, v) ≥ T (τ(t1)h,
1

τ (t2)
h) ≥ T (τ(t)h,

1

τ (t)
h) ≥ ψ(t)T (h, h).

It follows from T (h, h) ∈ Ph that T (u, v) ∈ Ph. Hence we have T : Ph × Ph → Ph. Since T (h, h) ∈ Ph,
we can choose a sufficiently small number t0 ∈ (a, b) and function τ(t0) ∈ (0, 1) such that

τ (t0)h ≤ T (h, h) ≤
1

τ (t0)
h. (2.2)

Noting that τ (t0) < ψ(t0) ≤ 1, we can take a positive integer k such that

(
ψ(t0)

τ(t0)
)k >

1

τ (t0)
. (2.3)

Put u0 = (τ (t0))
kh, v0 = 1

(τ(t0))k
h. Evidently, u0, v0 ∈ Ph and u0 = (τ (t0))

2kv0 < v0. Take, r ∈
(

0, (τ(t0))
2k
]

, then r ∈ (0, 1) and u0 > rv0. By the mixed monotone properties of T, we have T (u0, v0) ≤
T (v0, u0). Further, combining condition (A2) with (2.2) and (2.3) we have

T (u0, v0) = T ((τ (t0))
kh,

1

(τ (t0))k
h) = T ((τ(t0)).(τ (t0))

k−1h,
1

τ (t0)
.

1

(τ (t0))k−1
h)

> ψ(t0)T ((τ (t0))
k−1h,

1

(τ (t0))k−1
h)

= ψ(t0)T ((τ (t0)).(τ (t0))
k−2h,

1

(τ (t0))
.

1

(τ (t0))k−2
h)

> ψ(t0).ψ(t0)T ((τ (t0))
k−2h,

1

(τ (t0))k−2
h)

> . . . > (ψ(t0))
kT (h, h) > (ψ(t0))

kτ (t0)h > (τ (t0))
kh = u0.

From (2.1) we get

T (v0, u0) = T (
1

(τ(t0))k
h, (τ (t0))

kh) = T (
1

(τ(t0))
.

1

(τ (t0))k−1
h, (τ (t0)).(τ (t0))

k−1h)

6
1

ψ(t0)
T (

1

(τ(t0))k−1
h, (τ (t0))

k−1h)

=
1

ψ(t0)
T (

1

(τ(t0))
.

1

(τ (t0))k−2
h, (τ (t0)).(τ (t0))

k−2h)

6
1

ψ(t0)
.

1

ψ(t0)
T (

1

(τ(t0))k−2
h, (τ (t0))

k−2h)

6 ... 6
1

(ψ(t0))k
T (h, h) 6

1

τ (t0)(ψ(t0))k
h 6

1

(τ (t0))k
h = v0.
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Thus we have u0 ≤ T (u0, v0) ≤ T (v0, u0) ≤ v0.
Construct successively the sequences

un = T (un−1, vn−1), vn = T (vn−1, un−1), n = 1, 2, ....

Evidently, u1 6 v1. By the mixed monotone properties of T , we obtain un 6 vn, n = 1, 2, .... It also
follows from the mixed monotone properties of T that

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0. (2.4)

Noting that u0 > rv0, we can get un > u0 > rv0 > rvn, n = 1, 2, .... Let

rn = sup{r > 0|un ≥ rvn}, n = 1, 2, . . . .

Thus we have un ≥ rvn, n = 1, 2, . . . . and then un+1 ≥ un ≥ rnvn ≥ rnvn+1, n = 1, 2, . . . . Therefore,
rn+1 ≥ rn, i.e., {rn} is increasing in (0, 1]. Suppose rn → r∗ as n → ∞, then r∗ = 1. Otherwise,
0 < r∗ < 1, by (A2) there exists z1 ∈ (a, b) such that τ (z1) = r∗. Consider the following two cases:
Cases i: There exists an integer N such that rN = r∗. In this case, we have rn = r∗ and un ≥ r∗vn for
all n ≥ N hold. Hence

un+1 = T (un, vn) ≥ T (r∗vn,
1

r∗
un) = T (τ(z1)vn,

1

τ (z1)
un)

≥ ψ(z1)T (vn, un) = ψ(z1)vn+1 n ≥ N.

By the definition of rn, we have rn+1 = r∗ ≥ ψ(z1) > τ(z1) = r∗, n ≥ N, which is a contradiction.
Case ii: For all integers n, rn < r∗. Then we obtain 0 < rn

r∗
< 1. By (A2), there exist zn ∈ (a, b) such

that τ (zn) =
rn
r∗
. Hence

un+1 = T (un, vn) ≥ T (rnvn,
1

rn
un) = T (

rn

r∗
r∗vn,

1
rn
r∗
r∗
un)

≥ T (τ(zn)r
∗vn,

1

τ(zn)r∗
un)

≥ ψ(zn)T (r
∗vn,

1

r∗
un) = ψ(zn)T (τ(z1)vn,

1

τ(z1)
un) ≥ ψ(zn)ψ(z1)T (vn, un)

≥ ψ(zn)ψ(z1)vn+1

By the definition of rn, we have rn+1 ≥ ψ(zn)ψ(z1) ≥ τ (zn)ψ(z1) = rn
r∗
τ (z1). Let n → ∞, we have

r∗ ≥ ψ(z1) > τ(z1) = r∗ which is also a contradiction. Thus, limn→∞ rn = 1. For any natural number p
we have

θ ≤ un+p − un ≤ vn − un ≤ vn − rnvn = (1− rn)vn ≤ (1 − rn)v0,

θ ≤ vn − vn+p ≤ vn − un ≤ vn − rnvn ≤ (1− rn)v0.

Since the cone P is normal, we have

‖ un+p − un ‖≤ N(1− rn) ‖ v0 ‖→ 0, (as n→ ∞),

‖ vn − vn+p ‖≤ N(1− rn) ‖ v0 ‖→ 0, (as n→ ∞),

where N is the normality constant of P . So we can claim that {un} and {vn} are cauchy sequences.
Because E is complete, there exist u∗, v∗ such that un → u∗, vn → v∗as n → ∞. By (2.4), we know
that un ≤ u∗ ≤ v∗ ≤ vn with u∗, v∗ ∈ Ph and we have θ ≤ v∗ − u∗ ≤ vn − un ≤ (1− rn)v0. Further

‖ v∗ − u∗ ‖≤ N(1− rn) ‖ v0 ‖→ 0, (as n→ ∞).
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Thus u∗ = v∗. Let x∗ := u∗ = v∗ and then we obtain

un+1 = T (un, vn) ≤ T (x∗, x∗) ≤ T (vn, un) = vn+1,

Let n→ ∞, we get x∗ = T (x∗, x∗). That is, x∗ is a fixed point of T in Ph . In the following, we prove that
x∗ is the unique fixed point of T in Ph. In fact, suppose x̄ is a fixed point of T in Ph. Since x∗, x̄ ∈ Ph,
there exist positive numbers µ̄1, µ̄2, λ̄1, λ̄2 > 0 such that

µ̄1h 6 x∗ 6 λ̄1h, µ̄2h 6 x̄ 6 λ̄2h.

Then we obtain

x̄ 6 λ̄2h =
λ̄2

µ̄1

µ̄1h 6
λ̄2

µ̄1

x∗, x̄ > µ̄2h =
µ̄2h

λ̄1
λ̄1h >

µ̄2

λ̄1
x∗.

Let e1 = sup{0 < e ≤ 1|ex∗ ≤ x̄ ≤ e−1x∗}. Evidently, 0 < e1 ≤ 1, e1x
∗ ≤ x̄ ≤ e−1

1 x∗. If 0 < e1 < 1,
according to (H1) there exists z2 ∈ (a, b) such that τ (z2) = e1. then

x̄ = T (x̄, x̄) ≥ T (e1x
∗, e−1

1 x∗) = T (τ(z2)x
∗, τ−1(z2)x

∗) ≥ ψ(z2)T (x
∗, x∗)

= ψ(z2)x
∗.

and

x̄ = T (x̄, x̄) ≤ T (e−1
1 x∗, e1x

∗) = T (τ−1(z2)x
∗, τ (z2)x

∗) ≤
1

ψ(z2)
T (x∗, x∗)

=
1

ψ(z2)
x∗.

we have

ψ(z2)x
∗ ≤ x̄ ≤

1

ψ(z2)
x∗.

Hence e1 ≥ ψ(z2) > τ(z2) = e1 which is a contradiction. Thus we have e1 = 1 i.e. x̄ = x∗. Therefore,
T has a unique fixed point x∗ in Ph. Note that [u0, v0] ⊂ Ph, then we know that x∗ is the unique
fixed point of T in [u0, v0]. Now we construct successively the sequences xn = T (xn−1, yn−1), yn =
T (yn−1, xn−1), n = 1, 2, ..., for any initial points x0, y0 ∈ Ph. Since x0, y0 ∈ Ph, we can choose numbers
e2, e3 ∈ (0, 1) such that

e2h 6 x0 6
1

e2
h, e3h 6 y0 6

1

e3
h.

From (H1) there is z3 ∈ (a, b) such that Let τ (z3) = e∗ = min{e2, e3}. Then e∗ ∈ (0, 1) and e∗h 6 x0

, y0 6 1
e∗
h. We can choose a sufficiently large positive integer m such that (ψ(z3)

τ(z3)
)m > 1

τ(z3)
. Put

ū0 = τ (z3)h, v̄0 = 1
τ(z3)

h. It is easy to see that ū0, v̄0 ∈ Ph and ū0 ≤ x0 , y0 ≤ v̄0. Constructing

successively the sequences

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n = 1, 2, ...,

ūn = T ( ¯un−1, ¯vn−1), v̄n = T ( ¯vn−1, ¯un−1), n = 1, 2, ...,

By using the mixed monotone properties of operator T , we have ūn ≤ xn , yn ≤ v̄n, n = 1, 2, ..., similarly,
it follows that there exists y∗ ∈ Ph such that T (y∗, y∗) = y∗,limn→∞ ūn = limn→∞ v̄n = y∗. By the
uniqueness of fixed points of operator T in Ph, we get x∗ = y∗. Since cone P is normal, we have
limn→∞ ūn = limn→∞ v̄n = x∗. This completes the proof. �
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Theorem 2.1. Let P be a normal cone in E, and T1, T2 : P ×P → P be two mixed monotone operators.
Assume that for all a < t < b, there exist two positive-valued functions τ (t), ϕ(t, x, y) (with ϕ(t, x, y) ≤ 1)
on an interval (a, b) such that;
(H11) τ : (a, b) → (0, 1) is a surjection;
(H12) there exists a constant δ > 0 such that T1(x, y) ≥ δT2(x, y) for all x ∈ P ;
(H13) T1(τ (t)x,

1
τ(t)y) ≥ ϕ(t, x, y)T1(x, y), T2(τ (t)x,

1
τ(t)y) ≥ τ(t)T2(x, y) and

τ(t) ≤ (1 − ϕ(t, x, y))δ + 1 for all t ∈ (a, b), x, y ∈ P ;
(H14) there is h ∈ P with h > θ such that T1(h, h) ∈ Ph, T2(h, h) ∈ Ph.
Then the operator equation T1(x, x) + T2(x, x) = x has a unique solution x∗ in Ph. Moreover, for any
initial values x0, y0 ∈ Ph, by constructing successively the sequence as follows

xn = T1(xn−1, yn−1) + T2(xn−1, yn−1)

yn = T1(yn−1, xn−1) + T2(yn−1, xn−1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ in E as n→ ∞.

Proof: Firstly, from (H13) for any t ∈ (a, b) and x, y ∈ P , we have

T1(
1

τ (t)
x, τ (t)y) ≤

1

ϕ(t, x, y)
T1(x, y) (2.5)

and

T2(
1

τ(t)
x, τ (t)y) ≤

1

τ (t)
T2(x, y). (2.6)

Since T1(h, h) ∈ Ph, T2(h, h) ∈ Ph, there exist constants ai > 0, bi > 0 (i = 1, 2) such that

a1h ≤ T1(h, h) ≤ b1h, (2.7)

a2h ≤ T2(h, h) ≤ b2h. (2.8)

Next we show T1 : Ph×Ph → Ph. For any x, y ∈ Ph, we can choose two sufficiently functions τ (t1), τ (t2) :
(a, b) → (0, 1) such that

τ (t1)h ≤ x ≤
1

τ (t1)
h, τ(t2)h ≤ y ≤

1

τ (t2)
h. (2.9)

Let τ (t) = min{τ(t1), τ (t2)}, then τ (t) : (a, b) → (0, 1), by (2.5), (2.7) and (2.9), we have

T1(x, y) ≤ T1(
1

τ(t)
h, τ(t)h) ≤

1

ϕ(t, x, y)
T1(h, h) ≤

b1h

ϕ(t, x, y)
,

T1(x, y) ≥ T1(τ (t)h,
1

τ (t)
h) ≥ ϕ(t, x, y)T1(h, h) ≥ ϕ(t, x, y)a1h.

Evidently b1
ϕ(t,x,y) , ϕ(t, x, y)a1 > 0. thus T1(x, y) ∈ Ph; that is, T1 : Ph × Ph → Ph. Finally, we show

T2 : Ph × Ph → Ph. for any x, y ∈ Ph, we can choose two sufficiently function τ (t3), τ(t4) : (a, b) → (0, 1)
such that

τ (t3)h ≤ x ≤
1

τ (t3)
h, τ(t4)h ≤ y ≤

1

τ (t4)
h. (2.10)

Let τ (t′) = min{τ(t3), τ(t4)}, then τ(t
′) ∈ (0, 1), by (2.6), (2.8) and (2.10), we have

T2(x, y) ≤ T2(
1

τ (t′)
h, τ(t′)h) ≤

1

τ (t′)
T2(h, h) ≤

1

τ (t′)
b2h,

T2(x, y) ≥ T2(τ (t
′)h,

1

τ (t′)
h) ≥ τ(t′)T2(h, h) ≥ τ(t′)a2h.
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Evidently, 1
τ(t′)b2, τ(t

′)a2 > 0. Thus T2(x, y) ∈ Ph, that is, T2 : Ph × Ph → Ph. Now we define the

operator T = T1 + T2 : Ph × Ph → Ph by

T (x, y) = T1(x, y) + T2(x, y), x, y ∈ Ph. (2.11)

Then T : Ph × Ph → Ph is a mixed monotone operator since T1(h, h) ∈ Ph, T2(h, h) ∈ Ph, we get
T (h, h) = T1(h, h) + T2(h, h) ∈ Ph. In the following, we show that for any t ∈ (a, b), there exists
ψ(t) ∈ (0, 1] such that for all x, y ∈ P ,

T (τ(t)x,
1

τ(t)
y) ≥ ψ(t)T (x, y),

For any x, y ∈ P , by (H12), we have

T1(x, y) + δT1(x, y) ≥ δT2(x, y) + δT1(x, y). (2.12)

It follows from (2.12) that

T1(x, y) ≥
T1(x, y) + T2(x, y)

1 + δ−1 =
T (x, y)

1 + δ−1 . (2.13)

By (H13), for all x, y ∈ P , we have

T (τ(t)x, τ−1(t)y)− tT (x, y) =T1(τ (t)x, τ
−1(t)y) + T2(τ (t)x, τ

−1(t)y)

− t(T1(x, y) + T2(x, y))

≥ϕ(t, x, y)T1(x, y) + τ (t)T2(x, y)

− t(T1(x, y) + T2(x, y))

≥(ϕ(t, x, y)− t)T1(x, y) + (τ (t)− t)T2(x, y)

≥(ϕ(t, x, y)− t)T1(x, y) + (τ (t)− t)δ−1T1(x, y)

≥(ϕ(t, x, y)− t)
T (x, y)

1 + δ−1 + (τ (t)− t)δ−1 T (x, y)

1 + δ−1

≥
(ϕ(t, x, y)− t) + (τ (t)− t)δ−1)T (x, y)

1 + δ−1

It follows from up that for all x, y ∈ P ,

T (τ(t)x, τ−1(t)y) ≥ tT (x, y) +
(ϕ(t, x, y)− t) + (τ (t)− t)δ−1)

1 + δ−1 T (x, y)

≥ (t+
(ϕ(t, x, y)− t) + (τ (t)− t)δ−1)

1 + δ−1 )T (x, y)

Let ψ(t) = (t + (ϕ(t,x,y)−t)+(τ(t)−t)δ−1)
1+δ−1 ) =

ϕ(t, x, y) + τ (t)δ−1

1 + δ−1 , then ψ(t) ∈ (0, 1], τ (t) ∈ (0, 1), t ∈ (a, b)

and

T (τ(t)x, τ−1(t)y) ≥ ψ(t)T (x, y),

By Lemma 2.1 the conclusions of Theorem 2.1 holds. �

3. Applications

In this section, we apply the results in Section 2 to study nonlinear fractional differential equations
with two-point boundary conditions. We here consider the existence and uniqueness of positive solutions
for the following fractional boundary value problem (FBVP for short):

−D
α
0+u(w) = F1(w, u(w)) + F2(w, u(w)), w = τ(t), 0 < w < 1, n− 1 < α ≤ n

u
i(0) = 0, 0 ≤ i ≤ n− 2,

[Dβ

0+
u(w)]w=1 = 0, 1 ≤ β ≤ n− 2,

(3.1)

where Dα
0+

u(w) is the Riemann-Liouville fractional derivative of order α, n > 2, n ∈ N.
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Theorem 3.1. Assume that F1(w, x) = f1(w, x, x), F2(w, x) = f2(w, x, x) and satisfying the following conditions
H1 −H4:
(H1) f1, f2 : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous, and for all w ∈ [0, 1], f2(w, 0, 1) 6≡ 0;
(H2) for fixed w ∈ [0, 1], y ∈ [0,+∞), f1(w, x, y), f2(w, x, y) are increasing in x ∈ [0,+∞); for fixed w ∈ [0, 1]
and x ∈ [0,+∞), f1(w, x, y), f2(w, x, y) are decreasing in y ∈ [0,+∞);
(H3) for all λ ∈ (a, b), there exist τ(λ) ∈ [0, 1] (τ(t) : (a, b) → [0, 1] is a surjection) such that for all w ∈ [0, 1],
x, y ∈ [0,+∞), f1(w, τ(λ)x, τ−1(λ)y) ≥ ϕ(t, x, y)f1(w, x, y), f2(w, τ (λ)x, τ−1(λ)y) ≥ τ(λ)f2(w, x, y);
(H4) there exists a constant δ > 0, such that for all w ∈ [0, 1], x, y ∈ [0,+∞), f1(w, x, y) ≥ δf2(w, x, y).
Then the problem (3.1) has a unique positive solution u∗ in Ph, where h(t) = τα−1(t), w = τ(t) ∈ [0, 1], and for
any u0, v0 ∈ Ph, by constructing successively the sequences as follows

un+1(w) =

∫

1

0

G(w, s)[f1(s, vn(s), un(s)) + f2(s, vn(s), un(s))]ds, n = 0, 1, ...

vn+1(w) =

∫

1

0

G(w, s)[f1(s, vn(s), un(s)) + f2(s, vn(s), un(s))]ds, n = 0, 1, ...,

we have un(w) ⇒ u∗(w), w ∈ [0, 1] and vn(w) ⇒ u∗(w), w ∈ [0, 1] that is, {un(w)} and {vn(w)} both converges to
u∗(w) uniformly for all w ∈ [0, 1].

Proof: The proof is similar with the proof of the Theorem 4.4 in [4]. �

Example 3.1. Consider the following two-point boundary value problem

−D
α
0+u(w) = 2w3 + 3

√
u+

1
3
√
u+ 1

+

√
u+ 1√
u+ 1

0 < w < 1, n− 1 < α ≤ n

u
i(0) = 0, 0 ≤ i ≤ n− 2,

[Dβ

0+
u(w)]w=1 = 0, 1 ≤ β ≤ n− 2.

(3.2)

The above equations can be written in the form of problem with the functions f1, f2 : [0, 1]× [0,+∞)× [0,+∞) →
[0,+∞) defined by

f1(w, x, y) = w
3 + 3

√
x+

1
3
√
y + 1

, w = τ (t) ∈ [0, 1], x, y ≥ 0

f2(w, x, y) = w
3 +

√
x+ 1√
y + 1

, w = τ(t) ∈ [0, 1], x, y ≥ 0.

Now we show in the following that all the conditions of Theorem 3.1 are satisfied

1) Clearly, the functions f1, f2 : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous with f2(w, 0, 1) 6≡ 0

2) We observe that for fixed w = τ(t) ∈ [0, 1] and y ∈ [0,+∞), f1(w, x, y), f2(w, x, y) are increasing in
x ∈ [0,+∞); for fixed τ(t) ∈ [0, 1] and x ∈ [0,+∞), f1(w, x, y), f2(w, x, y) are decreasing in y ∈ [0,+∞);

3) For all λ ∈ (a, b), t ∈ (a, b), τ (λ) ∈ [0, 1] and x ≥ 0, y ≥ 0, taking ϕ(t, x, y) = 3
√

τ (λ), we have

f1(w, τ(λ)x, τ−1(λ)y) = (w3 + 3
√

τ (λ)x+
1

3
√

τ−1(λ)y + 1
)

= (w3 + 3
√

τ (λ)x+
3
√

τ(λ)
3
√

y + τ(λ)
)

≥ 3
√

τ(λ)(w3 + 3
√
x+

1
3
√
1 + y

)

= 3
√

τ(λ)f1(w, x, y)

= ϕ(t, x, y)f1(w, x, y).

For all λ ∈ (a, b), t ∈ (a, b), τ (λ) ∈ [0, 1] and x ≥ 0, y ≥ 0, we have

f2(w, τ (λ)x, τ−1(λ)y) = (w3 +

√

τ(λ)x+ 1
√

τ−1(λ)y + 1
) ≥ (w3 +

√

τ(λ)x+ τ(λ)
√

τ−1(λ)y + τ−1(λ)
)

= (w3 +
(τ

1
2 (λ))

√
x+ 1

(τ
−1

2 (λ))
√
y + 1

) ≥ (τ(λ)w3 + τ(λ)

√
x+ 1√
y + 1

)

= τ(λ)f2(w, x, y).
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4) Taking δ = 1, for all w = τ (t) ∈ [0, 1] and x ≥ 0, y ≥ 0, we have

f1(w, x, y) = w
3 + 3

√

τ (λ)x+
1

3
√

τ−1(λ)y + 1

≥ w
3 +

√

τ(λ)x+ 1
√

τ−1(λ)y + 1

= f2(w, x, y).

Thus we have proved that all the conditions of Theorem 3.1 are satisfied. Hence we deduce that (3.2) has one
and only one positive solution x∗ ∈ Ph, where h(t) = τα−1(t), τ (t) ∈ [0, 1].
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