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abstract: In this paper, we are interested in a class of bi-nonlocal problems with nonlinear Neumann
boundary conditions and sublinear terms at infinity. Using (S+) mapping theory and variational methods, we
establish the existence of at least two non-trivial weak solutions for the problem provided that the parameters
are large enough. Our result complements and improves some previous ones for the superlinear case when the
Ambrosetti-Rabinowitz type conditions are imposed on the nonlinearities.
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1. Introduction

In this paper, we are interested in a class of Kirchhoff type problems with nonlinear Neumann bound-
ary conditions of the form

{
M1(L1(u))

(
− div( ϕ(x,∇u)) + |u|p−2u

)
= λM2(L2(u)) f(x, u), x ∈ Ω,

M1(L1(u)) ϕ(x,∇u). ν = µg(x, u), x ∈ ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
N (N ≥ 3), ν is the outward normal vector on the boundary

∂Ω, 2 ≤ p < N , λ, µ are parameters, L1(u) =
1
p

∫
Ω
(H(|∇u|p) + |u|p)dx, H(t) =

∫ t

0
h(s)ds for all t ∈ R,

ϕ(x, v) = h(|v|p)|v|p−2v with increasing continuous functions h from R into R, L2(u) =
∫
Ω
F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, s)ds and f : Ω × R → R, g : ∂Ω × R → R satisfy the Carathéodory condition.

Moreover, M1 : R+
0 = [0,+∞) → R and M2 : R+

0 → R are assumed to be continuous functions.
It should be noticed that if h(t) ≡ 1, problem (1.1) becomes a nonlocal Kirchhoff type equation with

nonlinear boundary condition





M1

(
1
p

∫
Ω
(|∇u|p + |u|p) dx

) (
− div(|∇u|p−2∇u) + |u|p−2u

)

= λM2(
∫
Ω F (x, u) dx)f(x, u), x ∈ Ω,

M1

(
1
p

∫
Ω(|∇u|

p + |u|p) dx
)

|∇u|p−2 ∂u

∂ν
= µg(x, u), x ∈ ∂Ω.

(1.2)

Since the first equation in (1.2) contains an integral over Ω, it is no longer a pointwise identity; therefore
it is often called nonlocal problem. The interest of such problems comes from the fact that Kirchhoff
type problems usually model several physical and biological systems, where u describes a process which
depends on the average of itself, such as the population density. Moreover, problem (1.2) is related to
the stationary version of Kirchhoff equation

ρ
∂2u

∂t2
−

(
p0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0 (1.3)
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presentend by Kirchhoff in 1883 (see [15]). This equation is an extension of the classical D’Alembert
wave equation by considering the effects of the changes in the length of the string during the vibrations.
The parameters in (1.3) have the following meanings: ρ denotes the mass density, p0 denote the initial
tension, h denotes the area of the cross-section, E denotes the Young modulus of the material and L

denotes the lengh of the string.

Recently, Kirchhoff type problems have been studied by many authors and many important and
interesting results are established, we refer to [2,6,7,8,9,10,11,13] for the problem with Dirichlet aboundary
condition. In [11], Fan firstly considered a class of bi-nonlocal p(x)-Kirchhoff type problems with Dirichlet
boundary conditions of the form

{
−a
(∫

Ω
1

p(x) |∇u|
p(x) dx

)
div(|∇u|p(x)−2∇u) = b(

∫
Ω
F (x, u) dx)f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

where a, b are continuous functions. Under suitable conditions on a, b and the Ambrosetti-Rabinowitz
type condition on the nonlinear term f , the author proved the existence of at least a non-trivial solution
or the existence of infinitely many solutions for problem (1.4) by using variational methods. We notice
that it follows from the Ambrosetti-Rabinowitz type condition that the nonlinear term is superlinear at
infinity. In [9], Correa et al. considered problem (1.4) in the case when b(t) = tr, r > 0 is a constant and
proved the existence of infinitely many solutions for (1.4) by using Krasnoselskii’s genus. In [12], Guo
et al. developed the results of Fan [11] for the p(x)-Kirchhoff type problem with Neumann nonlinear
boundary condition. Some further results on Kirchhoff type problems with Neumann nonlinear boundary
condition can be found in [14,16,20,21], in which the authors studied the existence and multiplicity of
solutions for the problem by using the Nehari manifold and fibering maps, Ekeland variational principle
or the variational principles due to Bonanno et al. [3,4].

Inspired by the papers mentioned above, in this note we study the existence of solutions for bi-nonlocal
problem (1.1) with Neumann nonlinear boundary condition. More precisely, under the sublinear condition
at infinity on the nonlinearities we obtain a multiplicity result by using the minimum principle combined
with the mountain pass theorem. Our main result complements and improves some previous ones for the
superlinear case when the Ambrosetti-Rabinowitz type conditions are imposed on the nonlinearities. It
is worth mentioning that the nonlinear terms in problem (1.1) may change sign in Ω.

In order to state the main result of this paper, we need the following assumptions for f and g. Denote
F (x, t) =

∫ t

0 f(x, s)ds and G(x, t) =
∫ t

0 g(x, s)ds, then we assume that

(F1) f : Ω× R → R is a Caratheodory function such that

|f(x, t)| ≤ C1(1 + |t|p−1), ∀(x, t) ∈ Ω× R, 2 ≤ p < N ;

(G1) g : ∂Ω× R → R satisfies the Caratheodory function such that

|g(x, t)| ≤ C2(1 + |t|p−1), ∀(x, t) ∈ ∂Ω× R.

Let C̃ be a fixed positive real number. We say that a C1-function γ : R → R
+
0 verifies the property

(Γ) if and only if

γ(t) ≤ C̃|t|p, ∀t ∈ R. (Γ)

Let Ki, i = 1, 2, 3, 4 be four functions satisfying property Γ. We introduce the following assumptions
on the behavior of F and G at origin and at infinity:

(F2) It holds that

lim sup
t→0

F (x, t)

K1(t)
≤ 0

uniformly in x ∈ Ω;
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(F3) It holds that

lim sup
t→+∞

F (x, t)

K2(t)
≤ 0

uniformly in x ∈ Ω.

(G2) It holds that

lim sup
t→0

G(x, t)

K3(t)
≤ 0

uniformly in x ∈ ∂Ω;

(G3) It holds that

lim sup
t→+∞

G(x, t)

K4(t)
≤ 0

uniformly in x ∈ ∂Ω.

We can see that there are many functions Ki satisfying the condition (Γ), for example Ki(t) =
C̃
2 |t|

p,
∀t ∈ R. Taking a C1-function w : R → R such that lim|t|→0 w(t) = lim|t|→+∞ w(t) = 0 we deduce that

F (x, t) = G(x, t) = C̃
2 w(t)|t|

p verify the conditions (F1)-(F3) and (G1)-(G3).
Regarding the functions h and Mi, i = 1, 2, we assume that

(M1) There are two positive constants m0,m1 such that

m0 ≤M1(t) ≤ m1 ∀t ≥ 0.

(M2) There are two positive constants m0,m1 such that

m2 ≤M2(t) ≤ m3 ∀t ≥ 0.

(H1) h : [0,+∞) → R is increasing continuous function and there exist α, β > 0, such that

α ≤ h(t) ≤ β

for all t ≥ 0.

(H2) There is constants θ > 0 , such that

(
h(|ξ|p)|ξ|p−2ξ − h(|η|p)|η|p−2η

)
· (ξ − η) ≥ θ|ξ − η|p,

for all ξ, η ∈ R
N .

It is noticed that the function h(t) = 1 + t√
1+t2

, t ≥ 0 satisfies the conditions (H1)-(H2). In this

case, (1.1) is called a capillarity system, see [17,18] for more details. For this reason, system (1.1) with
the conditions (H1)-(H2) can be understood as a generalized capillarity system with nonlinear boundary
conditions.

Let X =W 1,p(Ω) be the usual Sobolev space equipped with the norm

‖u‖p =

∫

Ω

(|∇u|p + |u|p)dx

and W 1,p
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(Ω). For any 1 ≤ p ≤ N and 1 ≤ q ≤ p∗ = Np
N−p

, we denote

by Sq,Ω the best constant in the embedding W 1,p(Ω) →֒ Lq(Ω) and for all 1 ≤ q ≤ p∗ = (N−1)p
N−p

, we also

denote by Sq,∂Ω the best constant in the embedding W 1,p(Ω) →֒ Lq(∂Ω), i.e.

Sq,∂Ω = inf
u∈W 1,p(Ω)\W 1,p

0
(Ω)

∫
Ω
(|∇u|p + |u|p)dx

(
∫
∂Ω |u|qdσ)

p

q

.
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Moreover, if 1 ≤ q < p∗, then the embedding W 1,p(Ω) →֒ Lq(Ω) is compact and if 1 ≤ q < p∗ then the
embedding W 1,p(Ω) →֒ Lq(∂Ω) is compact .

Let us define the functionals L1 : X → R by

L1(u) =
1

p

∫

Ω

(H(|∇u|p) + |u|p)dx, (1.5)

and L′
1 : X → X∗ by

〈L′
1(u), v〉 =

∫

Ω

(h(|∇u|p)|∇u|p−2∇u∇v + |u|p−2uv)dx.

Let us define the mapping J : X → R by

J(u) = M̂1

(
L1(u)

)
,

where

M̂1(t) =

∫ t

0

M1(s)ds,

and J ′ : X → X∗ by

〈J ′(u), v〉 =M1

(1
p

∫

Ω

(H(|∇u|p + |u|p)dx
)

×

∫

Ω

(h(|∇u|p)|∇u|p−2∇u∇v + |u|p−2uv)dx

for u, v ∈ X .
Let us define the functional L2 : X → R by

L2(u) =

∫

Ω

F (x, u)dx (1.6)

and L′
2 : X → X∗ by

〈L′
2(u), v〉 =

∫

Ω

f(x, u)vdx.

Let us define the mapping I : X → R and ψ : X → R by

I(u) = M̂2

(
L2(u)

)
, ψ(u) =

∫

∂Ω

G(x, u)dσ (1.7)

where

M̂2(t) =

∫ t

0

M2(s)ds,

and I ′ : X → X∗, ψ′ : X → X∗ by

〈I ′(u), v〉 =M2

(∫

Ω

F (x, u)dx
) ∫

Ω

f(x, u)vdx, 〈ψ′(u), v〉 =

∫

∂Ω

g(x, u)vdσ

for any u, v ∈ X .

Definition 1.1. We say that u is a weak solution of problem (1.1) if and only if

〈J ′(u), v〉 = λ〈I ′(u), v〉+ µ〈ψ′(u), v〉

for any v ∈ X.

The main result of this paper is as follows.

Theorem 1.2. Suppose that (F1)-(F3), (G1)-(G3), (M1) − (M2) and (H1)-(H2) are satisfied. More-
over, we assume that there exists t0, such that F (x, t0) > 0 for all x ∈ Ω. Then, there exist λ∗, µ∗ > 0
such that problem (1.1) has at least two distinct, nonnegative, nontrivial weak solutions, provided that
λ ≥ λ∗ and µ ≥ µ∗.
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2. Proofs of the main results

We will prove Theorem 1.2 by using critical point theory. Set f(x, t) = g(x, t) = 0 for t < 0. For all
λ, µ ∈ R, we consider the functional Eλ,µ : X → R given by

Eλ,µ(u) = J(u)− λI(u)− µψ(u). (2.1)

By (F1), (G1), a simple computation implies that Eλ,µ is well-defined and of C1 class in X . Thus, weak
solutions of problem (1.1) correspond to the critical points of Eλ,µ.

Lemma 2.1. The functionals L1, given by (1.5) is sequentially weakly lower semicontinuous.

Proof. By Corollary III.8 in [5], it is enough to show that L1 is sequentially lower semicontinuous. For
this purpose, we fix u ∈ X and ǫ > 0. Since L1 is convex, we deduce that for any v ∈ X the following
inequality holds true

L1(v) ≥ L1(u) + 〈L′
1(u), v − u〉

or

L1(v) ≥ L1(u)−

∫

Ω

h(|∇u|p)|∇u|p−2|∇u||∇v −∇u|dx−

∫

Ω

|u|p−2|u||v − u|dx

≥ L1(u)− β

∫

Ω

|∇u|p−1|∇v −∇u|dx−

∫

Ω

|u|p−1|v − u|dx

≥ L1(u)− β
( ∫

Ω

|∇u|pdx
) p−1

p

(∫

Ω

|∇v −∇u|pdx
) 1

p

−
(∫

Ω

|u|pdx
) p−1

p

(∫

Ω

|v − u|pdx
) 1

p

≥ L1(u)− C‖v − u‖

≥ L1(u)− ǫ

for all v ∈ X with ‖v−u‖ ≤ δ = ǫ
C
, where C is a positive constant. The proof of Lemma 2.1 is complete.

�

Lemma 2.2. The functionals L2 and ψ given by (1.6) and (1.7) are sequentially weakly continuous.

Proof. Let {um} be a sequence converging weakly to u in X . We will show that

(i) lim
m→∞

∫
Ω

F (x, um)dx =

∫
Ω

F (x, u)dx, (ii) lim
m→∞

∫
∂Ω

G(x, um)dσ =

∫
∂Ω

G(x, u)dσ. (2.2)

Indeed, by using (F1) we have

∣∣∣
∫

Ω

[F (x, um)− F (x, u)]dx
∣∣∣ ≤
∫

Ω

|f(x, u+ θm(um − u)||um − u|dx

≤C1

∫

Ω

(
1 + |u+ θm(um − u)|p−1

)
|um − u|dx

≤C1

(
|Ω|

p−1

p

N + ‖u+ θm(um − u)‖p−1
Lp(Ω)

)

× ‖um − u‖Lp(Ω) (2.3)

where 0 ≤ θm(x) ≤ 1 for all x ∈ Ω and |Ω|N denotes the Lebesgue measure of Ω in R
N .

On the other hand, since X →֒ Lp(Ω) is compact, the sequence {um} converges to u in the space
Lp(Ω). Hence, it is easy to see that the sequences {‖u + θm(um − u)‖Lp(Ω)} is bounded. Thus, it
follows from (2.3) that relation (2.2)−(i) holds true. Similarly, since the embedding from X to Lp(∂Ω)
is compact, it follows that relation (2.2)−(ii) hold true. �
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Lemma 2.3. The functional Eλ,µ given by (2.1) is sequentially weakly lower semicontinuous.

Proof. We first prove that J is sequentially weakly lower semicontinuous in X . Let {um} be a sequence
that converges weakly in X . By the sequentially weakly lower semicontinuity of the functional L1, we
have

lim inf
m→∞

L1(um) ≥ L1(u).

Combining this with the continuity and monotonocity of the function t→ M̂1(t), we get

lim inf
m→∞

J(um) = lim inf
m→∞

M̂1(L1(um) ≥ M̂1

(
lim inf
m→∞

L(um)
)
≥ M̂1

(
L1(u)

)
= J(u).

Thus, the functional J is sequentially weakly lower semicontinuous in X .
Next, we prove that the functional I given by (1.7) is sequentially weakly continuous inX . This follows

that Eλ,µ is sequentially weakly lower semicontinuous inX . Let {um} be a sequence that converges weakly
in X . By the sequentially weakly continuity of the functional L2, we have

lim
m→∞

L2(um) = L2(u).

Combining this with the continuity of the function t→ M̂2(t), we get

lim
m→∞

I(um) = lim
m→∞

M̂2(L2(um) = M̂2

(
lim

m→∞
L2(um)

)
= M̂2

(
L2(u)

)
= I(u).

Thus, the functional I is sequentially weakly continuous in X . �

Lemma 2.4. The functional Eλ,µ is coercive and bounded from below.

Proof. Consider C̃ as in (Γ). By (F1), (F3) and (G1), (G3), there exists Cλ = C(λ) > 0 and C′
µ =

C(µ) > 0 such that

λF (x, t) ≤
m0min{1, α}Sp,Ω

4C̃m2p
K2(t) + Cλ, for a.e. x ∈ Ω, t ∈ R

and

µG(x, t) ≤
m0 min{1, α}Sp,∂Ω

4C̃p
K4(t) + C′

µ, for a.e. x ∈ ∂Ω, t ∈ R.

Hence, using (M1) and (H1)

Eλ,µ(u) ≥
m0

p

∫

Ω

(α|∇u|p + |u|p)dx−m2

∫

Ω

(m0 min{1, α}Sp,Ω

4C̃m2p
K2(u) + Cλ

)
dx

−

∫

∂Ω

(m0 min{1, α}Sp,∂Ω

4C̃p
K4(u) + C′

µ

)
dσ

≥
m0 min{1, α}

p

∫

Ω

(|∇u|p + |u|p)dx

−
m0 min{1, α}Sp,Ω

4p

∫

Ω

|u|pdx− Cλ|Ω|N

−
m0 min{1, α}Sp,∂Ω

4p

∫

∂Ω

|u|pdσ − C′
µ|∂Ω|N−1

≥
m0 min{1, α}

p

∫

Ω

(|∇u|p + |u|p)dx −
m0 min{1, α}

4p

∫

Ω

(|∇u|p + |u|p)dx

−
m0 min{1, α}

4p

∫

Ω

(|∇u|p + |u|p)dx − Cλ|Ω|N − C′
µ|∂Ω|N−1

=
m0 min{1, α}

2p

∫

Ω

(|∇u|p + |u|p)dx − Cλ|Ω|N − C′
µ|∂Ω|N−1. (2.4)

Since ∂Ω is bounded, the functional Eλ,µ is coercive and bounded from below and coercive on X . �
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Lemma 2.5. If u ∈ X is a weak solution of problem (1.1) then u ≥ 0 in Ω.

Proof. Observe that if u is a weak solution of (1.1), denoting by u− the negative part of u, i.e. u−(x) =
min{u(x), 0}, we have

0 = 〈E′
λ,µ(u), u−〉

=M1

(
1

p

∫

Ω

(H(|∇u|p + |u|p))dx

)∫

Ω

(h(|∇u|p)|∇u|p−2∇u.∇u− + |u|p−2uu−)dx

− λM2

(∫

Ω

F (x, u−)dx

)∫

Ω

f(x, u)u−dx− µ

∫

∂Ω

g(x, u)u−dσ

≥ m0α

∫

Ω

(|∇u−|
p + |u−|

p) = m0α‖u−‖
p
Xdx.

(2.5)

It is easy to see that if u ∈ X then u− ∈ X , so from (2.5) we have u ≥ 0 in Ω. �

Lemma 2.1 - 2.4 imply by applying the minimum principle in [19] that Eλ,µ has a global minimizer
u1 and by lemma 2.5 , u1 is a non-negative solution of problem (1.1) . The following lemma shows that
the solution u1 is not trivial provided that λ and µ are large enough.

Lemma 2.6. There exists a constant λ∗, µ∗ > 0 such that for all λ ≥ λ∗ and µ ≥ µ∗ we have
infu∈X Eλ,µ(u) < 0 , hence u1 6≡ 0 , i.e., the solution u1 is not trivial.

Proof. Indeed, let Ω′ be a sufficiently large compact subset of Ω and a function u0 ∈ C∞
0 (Ω), such that

u0(x) = t0 on Ω′, 0 ≤ u0(x) ≤ t0 on Ω \ Ω′. Then we have

∫

Ω

F (x, u0)dx =

∫

Ω′

F (x, u0)dx +

∫

Ω\Ω′

F (x, u0)dx

≥

∫

Ω′

F (x, t0)dx− C1

∫

Ω\Ω′

(1 + |u0|
p)dx

≥

∫

Ω′

F (x, t0)dx− C1(1 + |t0|
p)|Ω\Ω′|N > 0,

provided that |Ω\Ω′| > 0 is small enough. So, we deduce that

Eλ,µ(u0) ≤
m1

p

∫

Ω

(β|∇u0|
p + |u0|

p)dx

− λM̂2

(∫

Ω′

F (x, t0)dx− C1(1 + |t0|
p)|Ω\Ω′|N

)
− µ

∫

∂Ω

G(x, u0)dσ

≤
m1

p

∫

Ω

(β|∇u0|
p + |u0|

p)dx

− λm3

(∫

Ω′

F (x, t0)dx− C1(1 + |t0|
p)|Ω\Ω′|N

)

− µC2(1 + |t0|
p)|∂Ω|N−1

< 0

for all λ ≥ λ∗ and µ ≥ µ∗ large enough. This completes the proof. �

Our idea is to obtain the second weak solution u2 ∈ X by applying the mountain pass theorem in [1].
To this purpose, we first show that for all λ ≥ λ∗ and µ ≥ µ∗, the functional Eλ,µ has the geometry of
the mountain pass theorem.

Lemma 2.7. There exist a constant ρ ∈ (0, ‖u1‖X) and a constant r > 0 such that Eλ,µ(u) ≥ r for all
u ∈ X with ‖u‖X = ρ.



8 Ghasem A. Afrouzi, Z. Naghizadeh and N. T. Chung

Proof. By (F1), (F2) and (G1), (G2), we have

λF (x, t) ≤
m0 min{1, α}Sp,Ω

4C̃m2p
K1(t) + Cλ|t|

α, ∀(x, t) ∈ Ω× R (2.6)

and

µG(x, t) ≤
m0 min{1, α}Sp,∂Ω

4C̃p
K3(t) + C′

µ|t|
α, ∀(x, t) ∈ ∂Ω× R, (2.7)

where p < α < p∗. Hence, using the continuous embeddings, we get

Eλ,µ(u) ≥
m0 min{1, α}

p

∫

Ω

(|∇u|p + |u|p)dx − λM̂2

(∫

Ω

F (x, u)dx
)

− µ

∫

∂Ω

G(x, u)dσ

≥
m0 min{1, α}

p

∫

Ω

(|∇u|p + |u|p)dx

−m2

∫

Ω

(
m0 min{1, α}Sp,Ω

4C̃m2p
K1(u) + Cλ|u|

α

)
dx

−

∫

∂Ω

(
m0 min{1, α}Sp,∂Ω

4C̃p
K3(u) + C′

µ|u|
α

)
dσ

≥
m0 min{1, α}

p

∫

Ω

(|∇u|p + |u|p)dx −
m0 min{1, α}Sp,Ω

4p

∫

Ω

|u|pdx

− Cλ

∫

Ω

|u|αdx−
m0 min{1, α}Sp,∂Ω

4p

∫

∂Ω

|u|pdσ − C′
µ

∫

∂Ω

|u|αdσ

≥
m0 min{1, α}

p
‖u‖pX −

m0 min{1, α}

4p
‖u‖pX − Cλ‖u‖

α
X

−
m0 min{1, α}

4p
‖u‖pX − C′

µ‖u‖
α
X

=
(m0 min{1, α}

2p
− Cλ‖u‖

α−p
X − C′

µ‖u‖
α−p
X

)
‖u‖pX ,

where Cλ and C′
µ are positive constants. Since p < α < p∗, there are positive constants ρ < ‖u1‖X and

r such that Eλ,µ(u) ≥ r for all u ∈ X with ‖u‖X = ρ. �

Lemma 2.8. The mappings I ′ and ψ′ are sequentially weakly-strongly continuous, namely, un ⇀ u in
X implies I ′(un) → I ′(u) and ψ′(un) → ψ′(u) in X∗.

Proof. Let {un} be a sequence converging weakly to u in X . Since the embeddings X →֒ Lp(Ω) is
compact, from (F1), we can see that the Nemytskii operator Nf : X → X∗ defined by

〈Nf (u), v〉 =

∫

Ω

f(x, u(x))v(x)dx

is sequentially weakly-strongly continuous (see [11]). By the sequentially weakly continuity of the func-
tional L2 combining with the continuity of the function M2, we get I ′(un) → I ′(u) in X∗. Similarly,
since the embedding X →֒ Lp(∂Ω) is compact, we can see that the functional ψ′ is sequentially weakly-
strongly continuous (see [12]). �

Lemma 2.9. The mapping L′
1 is of type (S+), i.e.

un ⇀ u in X and lim sup
n→∞

〈L′
1(un), un − u〉 ≤ 0, n→ ∞

implies un → u in X.
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Proof. Define the mappings K,G : X → X∗ respectively by

〈K(u), v〉 =

∫

Ω

|u|p−2uvdx, ∀u, v ∈ X,

〈G(u), v〉 =
1

p

∫

Ω

h(|∇u|p)|∇u|p−2∇u∇vdx, ∀u, v ∈ X.

Since the embedding X →֒ Lp(Ω) is compact, we can see that K is sequentially weakly-strongly continu-
ous.

Let {un} be a sequence such that converges weakly to u in X and

lim sup
n→∞

〈G(un), un − u〉 = lim sup
n→∞

∫

Ω

h(|∇un|
p)|∇un|

p−2∇un∇(un − u)dx ≤ 0.

Since {un} converges weakly to u, we have

lim
n→∞

∫

Ω

h(|∇u|p)|∇u|p−2∇u∇(un − u)dx = 0.

From (H2) we have

0 ≥ lim sup
n→∞

[∫

Ω

h(|∇un|
p)|∇un|

p−2∇un∇(un − u)dx

−

∫

Ω

h(|∇u|p)|∇u|p−2∇u∇(un − u)dx

]

= lim sup
n→∞

[∫

Ω

(h(|∇un|
p)|∇un|

p−2∇un − h(|∇u|p)|∇u|p−2∇u)(∇un −∇u)dx

]

≥ lim sup
n→∞

θ

∫

Ω

|∇un −∇u|pdx.

So {un} → u in X . This shows that the functional G is of type (S+). Moreover, since K is sequentially
weakly-strongly continuous, the mapping L′

1 = K−G is of type (S+). This completes the proof of Lemma
2.9. �

Lemma 2.10. The mappings J ′ and E′
λ,µ : X → X∗ are of type (S+).

Proof. Suppose that {un} ⊂ X is a sequence that converges weakly to u in X and

lim sup
n→∞

〈J ′(un), un − u〉 = lim sup
n→∞

M1(L1(un)) 〈L
′
1(un), un − u〉 ≤ 0.

From (M1) we have
lim sup
n→∞

〈L′
1(un), un − u〉 ≤ 0.

Since L′
1 is of type (S+), we have un → u in X . This shows that the mapping J ′ : X → X∗ is of type (S+).

Moreover, since I ′ and ψ′ are sequentially weakly-strongly continuous, this implies that E′
λ,µ : X → X∗

is of type (S+). �

Lemma 2.11. The functional Eλ,µ satisfies the Palais-Smale condition in X, i.e. a sequence {un} such
that Eλ,µ(un) → c and E′

λ,µ(un) → 0, has a strongly convergent subsequence.

Proof. By Lemma 2.4, we deduce that Eλ,µ is coercive on X . Let {un} ⊂ X be a Palais-Smale sequence
for the functional Eλ,µ in X , i.e.

Eλ,µ(um) → c, E′
λ,µ(um) → 0 in X−1 as m→ ∞, (2.8)
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where X−1 is the dual space of X .
Since Eλ,µ is coercive on X , relation (2.8) implies that the sequence {um} is bounded in X . Since X

is reflexive , we can take a subsequence of {un} denoted still by {un} , such that it converges weakly to
u in X . The condition E′

λ,µ(un) → 0 implies that 〈E′
λ,µ(un), un − u〉 → 0. Since E′

λ,µ : X → X∗ is of
type (S+), we have un → u ∈ X . This completes the proof. �

Proof of Theorem 1.2. By Lemmas 2.1-2.6, system (1.1) admits a non-negative, non-trivial weak solution
u1 as the global minimizer of Eλ,µ. Setting

c := inf
χ∈Γ

max
u∈χ([0,1])

Eλ,µ(u), (2.9)

where Γ := {χ ∈ C([0, 1], X) : χ(0) = 0, χ(1) = u1}.
Lemmas 2.7- 2.11 show that all assumptions of the mountain pass theorem in [1] are satisfied,

Eλ,µ(u1) < 0 and ‖u1‖X > ρ. Then, c is a critical value of Eλ,µ, i.e. there exists u2 ∈ X such
that Eλ,µ(u2)(ϕ) = 0 for all ϕ ∈ X or u2 is a weak solution of (1.1). Moreover, u2 is not trivial and
u2 6≡ u1 since Eλ,µ(u2) = c > 0 > Eλ,µ(u1). Theorem 1.2 is proved. �
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