
Bol. Soc. Paran. Mat. (3s.) v. 2022 (40) : 1–5.
c©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.44323

Generalization of Hartshorne’s Connectedness Theorem
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abstract: In this paper, we use local cohomology theory to present some results about connectedness
property of prime spectrum of modules. In particular, we generalize the Hartshorne’s connectedness theorem.
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1. Introduction

In last decades, the connectedness of some varieties of the prime spectra of a commutative ring is
investigated by many authors. Falting’s connectedness theorem asserts that in an analytically irreducible
local ring (R,m) of dimension n, if a ⊆ m is an ideal generated by at most n − 2 elements, then the
punctured spectrum of R/a is connected (see [10]). On the other hand, Hartshorne’s connectedness

result (see [12]), says that Spec(R) \ V (a) is a connected subset of Spec(R) provided grade(a, R) > 1. In
[8] Divaani-Aazar and Schenzel proved a generalization of these results for finitely generated modules.
The reader can refer to [7,9,19,20] for more references to the subject mentioned above. In this paper,
we use local cohomology to prove some connectedness results for varieties of prime spectrum of certain
modules. In particular, we generalize the Hartshorne’s connectedness theorem.

Over the past several decades, the theory of prime modules and prime submodules (and its related
topics such as Zariski topology on the prime spectrum of modules) is investigated by many algebraist
(see [1,2,6,11,13,14]). The Zariski topology on the spectrum of prime ideals of a ring is one of the main
tools in algebraic geometry. In the literature, there are many different generalizations of the Zariski
topology of rings to modules via prime submodules (see [3,16,18]). Here, we use the Zariski topology on
the prime spectrum of modules which is considered by C. P. Lu in [16]. It is shown by Lu that if M is
finitely generated, then Spec(M), the set of all prime submodule of M when is equipped with the Zariski
topology, is connected if and only if Spec(R/Ann(M)) is a connected space (see [16]). We find that, this
is the only result on the connectedness of the prime spectra of modules in the previous literatures. Here,
we are going to give some connectedness results for certain subspaces of prime spectrum of a module.

Throughout this paper, all rings are commutative with identity and all modules are unital. For a
submodule N of an R-module M , (N :R M) denotes the ideal {r ∈ R | rM ⊆ N} and annihilator of M ,
denoted by AnnR(M), is the ideal (0 :R M). If there is no ambiguity, we will consider (N : M) (resp.
Ann(M)) instead of (N :R M) (resp. AnnR(M)). A submodule N of an R-module M is said to be prime

if N 6= M and whenever rm ∈ N (where r ∈ R and m ∈ M), then r ∈ (N : M) or m ∈ N . If N is
prime, then p = (N : M) is a prime ideal of R. In this case, N is said to be p-prime (see [14]). The set
of all prime submodules of an R-module M is called the prime spectrum of M and denoted by Spec(M).
Similarly, the collection of all p-prime submodules of an R-module M for any p ∈ Spec(R) is designated
by Specp(M).

We remark that Spec(0) = ∅ and that Spec(M) may be empty for some nonzero R-module M (for
example see [15,18]). Let B be a nonzero finitely generated R-module. Since every proper submodule
of B is contained in a maximal submodule and since every maximal submodule is prime, Spec(B) is
nonempty.
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Suppose that M is an R-module. For any submodule N of M , V (N) is defined as {P ∈ Spec(M) | (P :
M) ⊇ (N : M)}. Set Z(M) = {V (N) |N ≤ M}. Then the elements of the set Z(M) satisfy the axioms
for closed sets in a topological space Spec(M) (see [16]). The resulting topology due to Z(M) is called
the Zariski topology relative to M . We recall that the Zariski radical of a submodule N of an R-module
M , denoted by rad(N), is the intersection of all members of V (N), that is, rad(N) = ∩P∈V (N)P (see
[17, Definitions 1.3]).

Let N be an R-module. For an ideal I of R we recall that the i-th local cohomology module of N with

respect to I is defined as

Hi
I(N) = lim

−→

n∈N

ExtiR(R/In, N).

The reader can refer to [4] for the basic properties of local cohomology modules. Let H be an R-module.
An element a ∈ R is said to be H-regular if ax 6= 0 for all 0 6= x ∈ H . A sequence a1, . . . , an of elements of
R is an H-sequence (or an H-regular sequence) if the following two conditions hold: (1) a1 is H-regular,

a2 is (H/a1H)-regular, . . ., an is (H/
∑n−1

i=1 aiH)-regular; (2) H/
∑n

i=1 aiH 6= 0. Let R be a noetherian
ring, M a finitely generated R-module and I an ideal such that IM 6= M . Then the common length of
the maximal M -sequences in I is called the grade of I on M denoted by grade(I,M).

2. Main Results

Our first main result is the following statement which is a generalization of Hartshorne’s connectedness
result [12, Proposition 2.1].

Theorem 2.1. Let R be a noetherian ring, M a finitely generated indecomposable R-module and N be

a submodule of M such that grade((N : M),M) > 1. Then Spec(M) \ V (N) is connected.

Proof. Suppose that Spec(M) \V (N) is disconnected. Then there are submodules N1 and N2 of M such
that the following items hold:

1. Spec(M) \ V (N1) and Spec(M) \ V (N2) are disjoint and nonempty open subsets of Spec(M) and;

2. Spec(M) \ V (N) = [Spec(M) \ V (N1)] ∪ [Spec(M) \ V (N2)].

The item (1) implies that

∅ = [Spec(M) \ V (N1)] ∩ [Spec(M) \ V (N2)]

= Spec(M) \ [V (N1) ∪ V (N2)]

= Spec(M) \ V (N1 ∩N2).

Since M is finitely generated, V (N1 ∩ N2) = Spec(M). Thus, for every prime submodule P of M we
have (N1 ∩ N2 : M) ⊆ (P : M). By [17, Proposition 2.3(5)], (N1 ∩ N2 : M) ⊆

√

Ann(M). Since R is
noetherian, there exists an integer t such that

(N1 ∩N2 : M)t ⊆
(

√

Ann(M)
)t

⊆ Ann(M). (2.1)

From item (2), we deduce that Spec(M) \ V (N) = Spec(M) \ [V (N1) ∩ V (N2)]. Thus,

V (N) = V (N1) ∩ V (N2)

= V ((N1 : M)M + (N2 : M)M)

= V ([(N1 : M) + (N2 : M)]M).

Let A := (N1 : M) + (N2 : M). Then rad(N) = rad(AM). This implies that

(rad(N) : M) = (rad(AM) : M).
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Since M is finitely generated, we infer that

√

(N : M) = (rad(N) : M) by [17, Proposition 2.3(5)]

= (rad(AM) : M)

=
√

(AM : M) by [17, Proposition 2.3(5)]

=
√

Ann(M/AM)

=
√

A+Ann(M).

Since Ann(M) ⊆ A, we have

√

(N : M) =
√
A =

√

(N1 : M) + (N2 : M). (2.2)

Now, we consider the Mayer-Vietoris sequence

0 → H0
(N1:M)+(N2:M)(M) → H0

(N1:M)(M)⊕H0
(N2:M)(M)

→ H0
(N1:M)∩(N2:M)(M) → H1

(N1:M)+(N2:M)(M) → · · · . (2.3)

By (2.2) and [4, Remark 1.2.3], we have Hi
(N1:M)+(N2:M)(M) = Hi

(N :M)(M) for each i. Since

grade((N : M),M) > 1, Hi
(N :M)(M) = 0, for i = 0, 1. So, in the light of (2.3), we obtain that

H0
(N1:M)(M)⊕H0

(N2:M)(M) ∼= H0
(N1:M)∩(N2:M)(M). (2.4)

By (2.1), H0
(N1:M)∩(N2:M)(M) is equal to M . Since M is indecomposable, it follows from (2.4) that either

M = H0
(N1:M)(M) and H0

(N2:M)(M) = 0 or M = H0
(N2:M)(M) and H0

(N1:M)(M) = 0. Thus, there are

integers a, b such that (N1 : M)a ⊆ Ann(M) or (N2 : M)b ⊆ Ann(M). Therefore, V (N1) = Spec(M) or
V (N2) = Spec(M), contrary to item (1). �

Theorem 2.1 yields the following interesting consequences.

Corollary 2.2. Let R be a noetherian ring and M be a finitely generated indecomposable R-module.

Suppose that I is an ideal of R such that
√
I ⊇ Ann(M) and grade(I,M) > 1. Then Spec(M) \ V (IM)

is connected.

Proof. By [14, p. 65, Proposition 8], (
√
IM : M) =

√
I. Hence, by [5, Proposition 1.2.10(b)],

grade((
√
IM : M),M) = grade(

√
I,M) = grade(I,M) > 1.

Therefore, Spec(M) \ V (
√
IM) is connected by Theorem 2.1. It is easy to see that V (

√
IM) = V (IM).

Consequently, Spec(M) \ V (IM) is connected. �

Corollary 2.3. Let R be a noetherian ring and M be a finitely generated indecomposable R-module.

Suppose that p ∈ Supp(M) and grade(p,M) > 1. Then Spec(M) \ V (pM) is connected.

Proof. Use Corollary 2.2. �

Corollary 2.4. (Hartshorne’s connectedness result) Let (R,m) be a noetherian local ring and

depth(R) > 1. Then Spec(R) \ V (m) is connected.

Proof. Use Corollary 2.3. �

Before bringing the final main result of this paper, recall that for any topological space Z and y ∈ Z,
Zy is the set of all points y′ ∈ Z whose closure contains y (see [12]).
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Lemma 2.5. Let T be a connected topological space and Y a closed subspace such that for each y ∈ Y ,

Ty \ {y} is nonempty and connected. Then T \ Y is connected.

Proof. See [12, Lemma 1.2]. �

We are now ready to state and prove the second main result which is an application of Theorem 2.1.

Theorem 2.6. Let R be a noetherian ring and M be an R-module such that X := Spec(M) is a

connected topological space. Suppose that Y is a closed subset of X such that for each P ∈ Y , Mp, where

p := (P : M), is a cyclic indecomposable Rp-module with depth(Mp) > 1. Then Spec(M)\Y is connected.

Proof. By Lemma 2.5, it is enough to show that for each P ∈ Y , XP \ {P} is nonempty and connected.
Note that by [16, Proposition 5.2(1)], XP can be described as following:

XP = {Q ∈ X |P ∈ V (Q)} = {Q ∈ X | (Q : M) ⊆ (P : M)}.

By [17, Theorem 3.7(1)], this set (as a subspace of X) is homeomorphic to Spec(Mp). More precisely,
P ∈ XP is corresponded to P e ∈ Spec(Mp) (the extension of P with respect to the natural mapM → Mp).
Moreover,

(P :R M)p = (P e :Rp
Mp) = pRp ∈ Max(Rp).

Since, Mp is a cyclic Rp-module, |Specq(Mp)| ≤ 1 for all q ∈ Spec(Rp) by [18, Theorem 3.5]. Therefore,
P e = pMp is the unique maximal submodule of Mp. Hence, XP \ {P} is homeomorphic to

Spec(Mp) \ {pMp} = Spec(Mp) \ V (pMp).

Since 1 < depth(Mp) ≤ dim(Mp), there are distinct prime ideals p0, p1, p2 in the SuppRp
(Mp) such that

p0 ⊂ p1 ⊂ p2. Since Mp is cyclic, according to [16], there are prime submodules P0, P1, P2 ofMp such that
pi = (Pi :Rp

Mp) for i = 0, 1, 2. These prime submodules are distinct and P2 = pMp by [18, Theorem
3.5]. Therefore, Spec(Mp) \ {pMp} is nonempty. Since

grade((pMp : Mp),Mp) = grade(pRp,Mp) = depth(Mp) > 1,

Spec(Mp) \ {pMp} is connected by Theorem 2.1. This completes the proof. �

Recently, a sheaf on the prime spectra of modules is introduced in [13]. Let N be an R-module.
Then the sheaf associated to N relative to M is denoted by A(N,M). For exact definition and the
results on this sheaf see [13]. By [13, Proposition 3.2], for each P ∈ Spec(M), the stalk A(N,M)P =
lim−→P∈U

A(N,M)(U) of the sheaf A(N,M) is isomorphic to Np, where p := (P : M).

Corollary 2.7. Let R be a noetherian ring and M be an R-module such that Spec(M) is a connected

topological space. Suppose that Y is a closed subset of Spec(M) such that for each P ∈ Y , the stalk of the

sheaf A(M,M) at P , is a cyclic indecomposable Rp-module with depth(Mp) > 1, where p := (P : M).
Then Spec(M) \ Y is connected.

Proof. Use Theorem 2.6. �
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