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An Ideal-based Cozero-divisor Graph of a Commutative Ring

H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenar

abstract: Let R be a commutative ring and let I be an ideal of R. In this article, we introduce the
cozero-divisor graph Γ́I (R) of R and explore some of its basic properties. This graph can be regarded as a
dual notion of an ideal-based zero-divisor graph.
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1. Introduction

Throughout this paper R denotes a commutative ring with a non-zero identity. Also we denote the
set of all maximal ideals and the Jacobson radical of R by Max(R) and J(R), respectively.

Let Z(R) be the set of all zero-divisors of R. Anderson and Livingston, in [5], introduced the zero-
divisor graph of R, denoted by Γ(R), as the (undirected) graph with vertices Z∗(R) = Z(R)\{0} and for
two distinct elements x and y in Z∗(R), the vertices x and y are adjacent if and only if xy = 0.

In [16], Redmond introduced the definition of the zero-divisor graph with respect to an ideal. Let I
be an ideal of R. The zero-divisor graph of R with respect to I, denoted by ΓI(R), is the graph whose
vertices are the set {x ∈ R \ I |xy ∈ I for some y ∈ R \ I} with distinct vertices x and y are adjacent if
and only if xy ∈ I. Thus if I = 0, then ΓI(R) = Γ(R), and I is a non-zero prime ideal of R if and only if
ΓI(R) = ∅.

In [1], Afkhami and Khashayarmanesh introduced and studied the cozero-divisor graph Γ́(R) of R, in
which the vertices are precisely the nonzero, non-unit elements of R, denoted by W ∗(R), and two distinct
vertices x and y are adjacent if and only if x 6∈ yR and y 6∈ xR.

Let I be an ideal of R. In this article, we introduce and study the cozero-divisor graph Γ́I(R) of R
with vertices {x ∈ R \ AnnR(I) | xI 6= I} and two distinct vertices x and y are adjacent if and only if
x 6∈ yI and y 6∈ xI. This can be regarded as a dual notion of ideal-based zero-divisor graph introduced
by S.P. Redmond in [16]. Also this is a generalization of cozero-divisor graph introduced in [1] when
I = R, i.e., we have Γ́R(R) = Γ́(R).

There is considerable researches concerning the ideal-based zero-divisor graph and this notion has
attracted attention by a number of authors (for example, see [2], [3], [4], [6], [11], [14], and [15]). It is
natural to ask the following question: To what extent does the dual of these results hold for ideal-based
cozero-divisor graph? The main purpose of this paper is to provide some useful information in this case.

We will include some basic definitions from graph theory as needed. In a graph G, the distance
between two distinct vertices a and b, denoted by d(a, b) is the length of the shortest path connecting a
and b. If there is not a path between a and b, d(a, b) = ∞. The diameter of a graph G is diam(G) =
sup{d(a, b) : a and b are distinct vertices of G}. The girth of G, is the length of the shortest cycle in G
and it is denoted by g(G). If G has no cycle, we define the girth of G to be infinite. An r-partite graph
is one whose vertex set can be partitioned into r subsets such that no edge has both ends in any one
subset. A complete r-partite graph is one each vertex is jointed to every vertex that is not in the same
subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by Km,n.
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2. On the generalization of the cozero-divisor graph

Definition 2.1. Let I be an ideal of R. We define the ideal-based cozero-divisor graph Γ́I(R) of R with
vertices {x ∈ R \AnnR(I) | xI 6= I}. The distinct vertices x and y are adjacent if and only if x 6∈ yI and
y 6∈ xI. Clearly, when I = R we have Γ́I(R) = Γ́(R).

Example 2.2. Let R = Z12 and I = (3̄). Then ΓI(R) = ∅. Also, in the following figures we can see the
difference between the graphs Γ́(R), Γ́I(R), and Γ(R).

(a) Γ́(R).
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(b) Γ́I(R).
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(c) Γ(R).
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Let I be an ideal of R. Then I is said to be a second ideal if I 6= 0 and for every element r of R we
have either rI = 0 or rI = I.

Lemma 2.3. I is a second ideal of R if and only if Γ́I(R) = ∅.

Proof. Straightforward. �

Theorem 2.4. Let I be a proper ideal of R. Then we have the following.

(a) The graph Γ́I(R) \ J(R) is connected.

(b) If R is a non-local ring, then diam (Γ́I(R) \ J(R)) ≤ 2.

Proof. (a) If R has only one maximal ideal, then V (Γ́I(R)) \ J(R) is the empty set; which is connected.
So we may assume that |Max(R)| > 1. Let a, b ∈ V (Γ́I(R)) \ J(R) be two distinct elements. Without
loss of generality, we may assume that a ∈ bI. Since a 6∈ J(R), there exists a maximal ideal m such that
a 6∈ m. We claim that m * J(R)∪bI. Otherwise, m ⊆ J(R)∪bI. This implies that m ⊆ J(R) or m ⊆ bI.
But m 6= J(R). Hence we have m ⊆ bI  R, so m = bI. This implies that a ∈ m, a contradiction.
Choose the element c ∈ m \ J(R) ∪ bI. It is easy to check that a− c− b.

(b) This follows from part (a). �

Remark 2.5. Figure (B) in Example 2.2 shows that J(R) cannot be omitted in Theorem 2.4.

Theorem 2.6. Let R be a non-local ring and I a proper ideal of R such that for every element a ∈ J(R),
there exists m ∈ Max(R) and b ∈ m\J(R) with a 6∈ bR. Then Γ́I(R) is connected and diam(Γ́I (R)) 6 3.

Proof. Use the technique of [1, Theorem 2.5]. �

Theorem 2.7. Let R be a non-local ring and I be a proper ideal of R. Then g(Γ́I(R) \ J(R)) 6 5 or
g(Γ́I(R) \ J(R)) = ∞.

Proof. Use the technique of [1, Theorem 2.8] along with Theorem 2.4. �
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Theorem 2.8. Let I be a non-zero ideal of R. If V (Γ́(R)) = V (Γ́I(R)), then AnnR(I) = 0 or I = R.
The converse holds if I is finitely generated.

Proof. Let W ∗(R) = V (Γ́(R)) = V (Γ́I(R)) and AnnR(I) 6= 0. Then W ∗(R) = R \ AnnR(I). Thus
W (R) ∩ AnnR(I) = {0}. Now suppose contrary that I 6= R. Let 0 6= x ∈ AnnR(I) and y ∈ W (R).
Then xy ∈ W (R) ∩ AnnR(I) = {0} and x 6∈ W (R). It follows that y = 0 and hence W (R) = {0}.
Therefore R is a field, a contradiction. Conversely, if I = R the result is clear. Now suppose that I 6= R
is a finitely generated ideal of R such that AnnR(I) = 0 and x ∈ V (Γ́(R)). Then xI 6= 0. If xI = I,
then since I is finitely generated, there exists t ∈ R such that (1 + tx)I = 0 by [13, Theoram 75]. Thus
1 + tx ∈ AnnR(I) = 0. This implies that Rx = R, which is a contradiction. Hence x ∈ V (Γ́I(R)).
Therefore V (Γ́(R)) ⊆ V (Γ́I(R)). The inverse inclusion is clear. �

We will use the following lemma frequently in the sequel.

Lemma 2.9. Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. Then Γ́(R) is a subgraph
of Γ́I(R).

Proof. By Theorem 2.8, we have V (Γ́I(R)) = V (Γ́(R)). Now let x, y ∈ V (Γ́(R)) = V (Γ́I(R)) and x is
adjacent to y in Γ́(R). Then clearly, they are adjacent in Γ́I(R). Otherwise, we may assume that x ∈ yI.
This implies that x ∈ yR, which is a contradiction. Hence Γ́(R) is a subgraph of Γ́I(R). �

The following example shows that the inclusion relation between Γ́I(R) and Γ́(R) in Lemma 2.9 may
be a restrict inclusion.

Example 2.10. Let R := Z and I := 5Z. Then V (Γ́I(R)) = V (Γ́(R)) = Z \ {−1, 0, 1}. Now by Lemma
2.9, Γ́(R) is subgraph of Γ́I(R). However, the elements 2 and 6 are adjacent in Γ́I(R) but they are not
adjacent in Γ́(R).

Theorem 2.11. Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. Suppose that |Max(R)| ≥
3. Then g(Γ́I(R)) = 3.

Proof. Use the technique of [1, Theorem 2.9]. �

As we mentioned before, V (ΓI(R)) = {x ∈ R \ I |xy ∈ I for some y ∈ R \ I}. We will show this set
by ZI(R). Clearly, for I = 0, ZI(R) = Z∗(R).

Lemma 2.12. Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. Then ZI(R) ⊆ V (Γ́I(R)).

Proof. If I = 0, then the claim is clear. So we assume that I 6= 0. Now let x ∈ ZI(R) then x 6= 0 and
there exists y ∈ R \ I such that xy ∈ I. Clearly, xI 6= 0. Further xI 6= I. Otherwise, xI = I. Since
I is finitely generated, there exists t ∈ R such that (1 + tx)I = 0 by [13, Theorem 75]. This implies
that 1 + tx = 0. So x is a unit element of R and hence y ∈ I, which is a contradiction. Therefore
x ∈ V (Γ́I(R)). �

The next example shows that the inclusion in Lemma 2.12 is not strict in general.

Example 2.13. Let I be a finitely generated ideal of R with AnnR(I) = 0. Further we assume that R
is an Artinian ring with Z(R) ∩ I = 0. Then we have V (Γ́I(R)) = ZI(R). To see this, it is enough to
prove that V (Γ́I(R)) ⊆ ZI(R) by Lemma 2.12. Let x ∈ V (Γ́I(R). Then we have x 6= 0 and xI 6= I. This
implies that xR 6= R and hence x is a non-unit element of R. Since R is Artinian, the set of non-unit
elements of R is the same as the set of zero-divisors of R. So x ∈ Z(R). This shows that x 6∈ I and there
exists 0 6= y ∈ R \ I such that xy = 0 ∈ I. Clearly, x, y ∈ Z(R). Therefore, V (Γ́I(R)) ⊆ ZI(R).

Theorem 2.14. Let I be a finitely generated ideal of R with
√
I = I and AnnR(I) = 0. Suppose that

ZI(R) = V (Γ́I(R)). If ΓI(R) is complete, then Γ́I(R) is also a complete graph.
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Proof. Assume on the contrary that Γ́I(R) is not complete. So there exist a, b ∈ V (Γ́I(R)) such that
a ∈ bI or b ∈ aI. Without loss of generality, we may assume that a ∈ bI. So, there exists i ∈ I such
that a = bi. We claim that i is a unit element. Otherwise, i ∈ V (Γ́(R). Thus we have i ∈ V (Γ́I(R)) by
Lemma 2.9. Hence i ∈ ZI(R) by assumption, which is a contradiction. Now ab = b2i ∈ I. So there exist
i1 ∈ I such that b2i = i1. Then b2 = i−1i1 ∈ I. Therefore, b ∈

√
I = I, a contradiction. �

Proposition 2.15. Let I be a proper ideal of R and Γ́I(R) a complete bipartite graph with parts Vi,
i = 1, 2. Then every cyclic ideal a, b ⊆ Vi, for some i = 1, 2, are totally ordered.

Proof. Assume on the contrary that there exist ideals aR and bR in V1 such that aR * bR and bR * aR.
It follows that b 6∈ aR and a 6∈ bR. Hence b 6∈ aI and a 6∈ bI. This means a is adjacent to b, a
contradiction. �

Proposition 2.16. Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. If the graph
Γ́I(R) \ J(R) is n-partite for some positive integer n, then |Max(R)| ≤ n.

Proof. Assume contrary that |Max(R)| > n. Since Γ́I(R) \ J(R) is a n-partite graph and V (Γ́I(R)) =
V (Γ́(R)) by Lemma 2.9, there exist m, ḿ ∈ Max(R) and a ∈ m \ ḿ, b ∈ ḿ \m such that a, b belong to a
same part. Clearly, a 6∈ bI and b 6∈ aI, which is a contradiction. �

For a graph G, let χ(G) denote the chromatic number of the graph G, i.e., the minimal number of
colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. A clique of a graph G is a complete subgraph of G and the number of vertices in the
largest clique of G, denoted by clique(G), is called the clique number of G.

Theorem 2.17.

(1) Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. Then if R has infinite member of
maximal ideal, then clique Γ́I(R) is also infinite; otherwise clique (Γ́I(R)) > |Max(R)|.

(2) If χ(Γ́I(R)) < ∞, then |Max(R)| < ∞.

Proof. (1) This follows from Lemma 2.9 and [1, Theorem 2.14].
(2) Use part (1) along with [1, Theorem 2.14]. �

Theorem 2.18. Let R = S1 + S2, where S1 and S2 are second ideals of R. If P1 = AnnR(S1) and
P2 = AnnR(S2), then V (Γ́(R)) = (P1 \ P2) ∪ (P2 \ P1) and Γ́(R) is a complete bipartite graph.

Proof. Let x ∈ V (Γ́(R)), so we have xR 6= 0 and xR 6= R. Since xR 6= 0, xS1 6= 0 or xS2 6= 0. First
we show that V (Γ́(R)) = (P1 \ P2) ∪ (P2 \ P1). If xS1 6= 0, then x 6∈ P1. So xS1 = S1. We claim that
xS2 = 0. Otherwise, xS2 6= 0 so that x 6∈ P2. It means that xS2 = S2. Thus xR = R, a contradiction.
So we have x ∈ P2 hence x ∈ (P2 \P1)∪ (P2 \P1). We have similar arguments for reverse inclusion. Now
let x ∈ P1 \ P2 and y ∈ P2 \ P1. We show that x 6∈ yR and y 6∈ xR. Otherwise, x ∈ yR or y ∈ xR.
Without loss of generality, x ∈ yR. Then there exists t ∈ R such that x = ty. But x 6∈ P2 implies that
ty 6∈ AnnR(S2) so that tyS2 6= 0 , a contradiction. Thus, x is adjacent to y. Now we show that x and y
can not lie in P1 \ P2 or P1 \ P2. To see this let x, y ∈ P1 \ P2 and assume that they are adjacent. Then
we have x 6∈ yR and y 6∈ xR. Now by using our assumptions, we conclude that x 6∈ xR, a contradiction.
�

Theorem 2.19. Let I 6= R be a finitely generated ideal of R with AnnR(I) = 0. Assume that |Max(R)| ≥
5. Then Γ́I(R) is not planar.

Proof. This follows from Lemma 2.9 and [1, Theorem 3.9]. �

Proposition 2.20. Let I be a proper ideal. Then the following hold.
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(a) V (ΓAnn(I)(R)) ⊆ V (Γ́I(R)).

(b) If R be a reduced ring, then ΓAnn(I)(R) is a subgraph of Γ́I(R).

Proof. (a) Let x ∈ V (ΓAnn(I)(R)). Then there exists y ∈ R \ AnnR(I) such that xy ∈ AnnR(I). We
claim that xI 6= I. Otherwise, xI = I. Then xyI = yI so that yI = 0. This implies that y ∈ AnnR(I), a
contradiction. Therefore, V (ΓAnn(I)(R)) ⊆ V (Γ́I(R)).

(b) By part (a), V (ΓAnn(I)(R)) ⊆ V (Γ́I(R)). Now we suppose that x is adjacent to y in ΓAnn(I)(R).

We show that x is adjacent to y in Γ́I(R). Otherwise, without loss of generality, we assume that x ∈ yI.
So that x2 ∈ xyI. Thus x2 = 0. This implies that x ∈ AnnR(I), a contradiction. �

Proposition 2.21. Let I be a finitely generated non-zero ideal of R. Suppose that x, y ∈ R \AnnR(I).

(a) x ∈ V ((Γ́I(R)) if and only if x+AnnR(I) ∈ V (Γ́(R/AnnR(I)).

(b) If x+AnnR(I) is adjacent to y +AnnR(I) in Γ́(R/AnnR(I)), then x is adjacent to y in Γ́I(R).

Proof. a) Let x ∈ V (Γ́I(R)) and x ∈ V ((Γ́(R/AnnR(I)). Then there exists y + AnnR(I) such that
xy+AnnR(I) = 1+AnnR(I). Thus (xy− 1) ∈ AnnR(I). Since I is a finite generated ideal, there exists
r ∈ R such that (r(xy − 1) + 1)I = 0 and so r(xy − 1) + 1 ∈ AnnR(I). Thus 1 ∈ AnnR(I) which implies
that I = 0, a contradiction.

b) This is straightforward. �

An R-module M is said to be a comultiplication module if for every submodule N of M there exists
an ideal I of R such that N = AnnM (I), equivalently, for each submodule N of M , we have N =
AnnM (AnnR(N)) [7]. R is said to be a comultiplication ring if R is a comultiplication R-module.

Theorem 2.22. Let I be a proper ideal of R. Then V (Γ́I(R)) = V (ΓAnn(I)(R)) if one of the following
conditions hold.

(a) R is a comultiplication ring.

(b) R/AnnR(I) = Z(R/AnnR(I)) ∪ U(R/AnnR(I)).

Proof. Clearly V (ΓAnn(I)(R)) ⊆ V (Γ́I(R)).

(a) Let x ∈ V (Γ́I(R)). Then xI 6= 0 and xI 6= I. Since R is a comultiplication ring, this implies that
AnnR(xI) 6= AnnR(I). Thus there exists y ∈ AnnR(xI) \AnnR(I). Therefore, x ∈ V (ΓAnn(I)(R)).

(b) Let x ∈ V (Γ́I(R)). Then xI 6= 0 and xI 6= I. By assumption, x + AnnR(I) ∈ Z(R/AnnR(I)) or
x + AnnR(I) ∈ U(R/AnnR(I)). If x + AnnR(I) ∈ Z(R/AnnR(I)), then there exists y ∈ R \ AnnR(I)
such that xy ∈ AnnR(I). Therefore, x ∈ V (ΓAnn(I)(R)). If x + AnnR(I) ∈ U(R/AnnR(I)), then there
exists z + AnnR(I) ∈ R/AnnR(I) such that xz + AnnR(I) = 1 + AnnR(I). Thus 1 = xz + a for some
a ∈ AnnR(I). Now we have I = 1I = (xz + a)I = xzI ⊆ xI, a contradiction. �

Theorem 2.23. Let I ⊆ J be non-zero ideals of R. Then we have the following.

(a) If R/AnnR(J) = Z(R/AnnR(J))
⋃

U(R/AnnR(J)), then V (Γ́I(R)) ⊆ V (Γ́J (R)).

(b) If dim(R) = 0, then V (Γ́I(R)) ⊆ V (Γ́J (R)). In particular, this holds if R is a finite ring.

Proof. (a) This follows from Theorem 2.22 (b) and [6, Theorem 2.8].
(b) dim(R) = 0 implies that dim(R/J) = 0. It follows that

R/AnnR(J) = Z(R/AnnR(J))
⋃

U(R/AnnR(J)).

Now the result follows from part (a). �

Proposition 2.24. Let I be a non-zero ideal R with R = Z(R)∪U(R) and V (Γ́I(R)) = V (Γ́(R)). Then
AnnR(I) = 0.

Proof. Suppose that V (Γ́I(R)) = V (Γ́(R)). Since V (Γ́I(R)) ⊆ R \ AnnR(I), we have V (Γ́(R)) ⊆ R \
AnnR(I). Thus AnnR(I) ⊆ R \ V (Γ́(R)) = {0} ∪ U(R) by hypothesis. Therefore, AnnR(I) = 0. �
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3. Secondal ideals

In this section, we will study the ideal-based cozero-divisor graph with respect to secondal ideals.
The element a ∈ R is called prime to an ideal I of R if ra ∈ I (where r ∈ R) implies that r ∈ I. The

set of elements of R which are not prime to I is denoted by S(I). A proper ideal I of R is said to be
primal if S(I) is an ideal of R [12].

A non-zero submodule N of an R-module M is said to be secondal if WR(N) = {a ∈ R : aN 6= N}
is an ideal of R [8]. A secondal ideal is defined similarly when N = I is an ideal of R. In this case, we
say I is P -secondal, where P = W (I) is a prime ideal of R.

Lemma 3.1. Let I be a non-zero ideal of R. Then the following hold.

(a) AnnR(I) ⊆ W (I).

(b) ZR(R/AnnR(I)) ⊆ W (I).

(c) V (Γ́I(R)) = W (I) \AnnR(I). In particular, V (Γ́I(R)) ∪ AnnR(I) = W (I).

(d) If AnnR(I) is a radical ideal of R, then
⋃

P∈Min(AnnR(I)) P ⊆ W (I).

Proof. (a) Let r ∈ AnnR(I). Then rI = 0 6= I. Thus r ∈ W (I).
(b) Let x ∈ ZR(R/AnnR(I)) and x 6∈ W (I). Then there exists y ∈ R \ AnnR(I) such that xyI = 0.

Hence xI = I implies that yI = 0, a contradiction.
(c) Let r ∈ V (Γ́I(R)). Then r ∈ R \ AnnR(I) and rI 6= I; hence r ∈ W (I) \ AnnR(I). Thus

V (Γ́I(R)) ⊆ W (I) \ AnnR(I). Conversely, we assume that x ∈ W (I) \AnnR(I). So xI 6= I and xI 6= 0.
Then x ∈ V (Γ́I(R)), so we have equality.

(d) By [13, Exer 13, page 63], ZR(R/I) =
⋃

P∈Min(I) P , where I is a radical ideal of R. Thus

ZR(R/AnnR(I)) =
⋃

P∈Min(AnnR(I)) P . Hence
⋃

P∈Min(AnnR(I))P ⊆ W (I) by part (b). �

Remark 3.2. Let R = Z, I = 2Z. Then ZR(R/AnnR(I)) = ZR(R) = 0 and W (I) = Z \ {−1, 1}.
Therefore the converse of part (b) of the above lemma is not true in general.

Proposition 3.3. Let I and P be ideals of R with AnnR(I) ⊆ P . Then I is a P-secondal ideal of R if
only if V (Γ́I(R)) = P \AnnR(I).

Proof. Straightforward. �

Theorem 3.4. Let I be an ideal of R. Then I is a secondal ideal of R if and only if V (Γ́I(R))∪AnnR(I)
is an (prime) ideal of R.

Proof. Let I be a secondal ideal. ThenW (I) is a prime ideal and by Lemma 3.1(c), V (Γ́I(R))∪AnnR(I) =
W (I). Thus V (Γ́I(R)) ∪ AnnR(I) is an ideal of R. Conversely, suppose that V (Γ́I(R)) ∪ AnnR(I) is
a (prime) ideal. Then by Lemma 3.1(c) , V (Γ́I(R)) ∪ AnnR(I) = W (I) is a prime ideal. Hence I is a
secondal ideal. �

Theorem 3.5. Let I and J be P-secondal ideals of R. Then V (Γ́I(R)) = V (Γ́J(R)) if and only if
AnnR(I) = AnnR(J).

Proof. By Lemma 3.1 (a), AnnR(I) ⊆ P and AnnR(J) ⊆ P . It then follows from Proposition 3.3
that V (Γ́I(R)) = V (Γ́J(R)) if and only if P \ AnnR(I) = P \ AnnR(J); and this holds if and only if
AnnR(I) = AnnR(J). �

Lemma 3.6. Let N be a secondary submodule of an R-module M . Then
√

AnnR(N) = W (N).

Proof. Let x ∈ W (N). Then xN 6= N . Since N is a secondary R-module, there exists a positive integer
n such that xnN = 0. Thus x ∈

√

AnnR(N). Hence W (N) ⊆
√

AnnR(N). To see the reverse inclusion,

let x ∈
√

AnnR(N) and x 6∈ W (N). Then xnN = 0 for some positive integer n and xN = N . Therefore
N = 0, a contradiction. �
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Theorem 3.7. Let I be an ideal of R. Then I is secondary ideal if and only if V (Γ́I(R)) =
√

AnnR(I) \
AnnR(I).

Proof. If I is secondary, then
√

AnnR(I) = W (I) by Lemma 3.6. Hence I is a
√

AnnR(I)-secondal ideal

of R. Then Proposition 3.3 implies that V (Γ́I(R)) =
√

AnnR(I) \ AnnR(I). Conversely, suppose that

x ∈ R, xI 6= I, and x 6∈
√

AnnR(I). Then x ∈ W (I) and x 6∈ AnnR(I). Thus x ∈ V (Γ́I(R)) and so

x ∈
√

AnnR(I) \AnnR(I) by assumption, a contradiction. �

Definition 3.8. Let I be an ideal of R. We say that an ideal J of R is second to I if IJ = I.

Proposition 3.9. Let I be an ideal of R. If I is not secondal, then there exist x, y ∈ V (Γ́I(R)) such that
< x, y > is second to I.

Proof. Suppose that I is an ideal of R such that it is not secondal. Then by Lemma 3.1 (c), V (Γ́I(R)) ∪
AnnR(I) = W (I) is not an ideal of R, so there exist x, y ∈ W (I) with x− y 6∈ W (I) and so (x− y)I = I.
Hence < x, y > I = I. Now we claim that x, y 6∈ AnnR(I). Otherwise, we have x ∈ AnnR(I) or
y ∈ AnnR(I). If x, y ∈ AnnR(I), then x − y ∈ AnnR(I) ⊆ W (I), a contradiction. If x ∈ AnnR(I) and
y 6∈ AnnR(I), then I = (x − y)I ⊆ xI + yI = 0 + yI, a contradiction. Similarly, we get a contradiction
when x 6∈ AnnR(I) and y ∈ AnnR(I). Thus we have x, y 6∈ AnnR(I). �

Proposition 3.10. Let I be an ideal of R. Then the following hold.

(a) Let x, y be distinct elements of
√

AnnR(I) \AnnR(I) with xy 6∈ AnnR(I). Then the ideal < x, y >
is not second to I.

(b) If I is a secondary ideal, then the diam(ΓAnn(I)(R)) ≤ 2.

Proof. (a) Let ideal < x, y > be second to I. Since x, y ∈
√

AnnR(I) \ AnnR(I), there exists the least
positive integer n such that xny ∈ Ann(I). As xy 6∈ AnnR(I), we have n > 2. Let m be the least
positive such that xn−1ym ∈ AnnR(I). Now clearly m > 2 because xn−1y 6∈ AnnR(I). This yields that
the contradiction

0 = xn−1ym−1(x, y)I = xn−1ym−1I 6= 0.

(b) If I is secondary, then W (I) =
√

AnnR(I) by Lemma 3.6. Choose two distinct vertices x, y in
ΓAnn(I)(R). If xy ∈ AnnR(I), then d(x, y) = 1. So we assume that xy 6∈ AnnR(I). Then by Proposition

2.20 (a) and Lemma 3.1, x, y ∈ W (I) \AnnR(I). Also we have x, y ∈
√

AnnR(I) \AnnR(I) by Theorem
3.7. As in the proof of (a), we have the path x − xn−1ym−1 − y from x to y in ΓAnn(I)(R). Hence
d(x, y) = 2. Therefore, diam(ΓAnn(I)(R)) ≤ 2. �
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