An Ideal-based Cozero-divisor Graph of a Commutative Ring

H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenar

ABSTRACT: Let R be a commutative ring and let I be an ideal of R. In this article, we introduce the cozero-divisor graph $\dot{\Gamma}_{I}(R)$ of R and explore some of its basic properties. This graph can be regarded as a dual notion of an ideal-based zero-divisor graph.

Key Words: Zero-divisor, Cozero-divisor, Connected, Bipartite, Secondal ideal.

Contents

1 Introduction

1
2 On the generalization of the cozero-divisor graph 2
3 Secondal ideals 6

1. Introduction

Throughout this paper R denotes a commutative ring with a non-zero identity. Also we denote the set of all maximal ideals and the Jacobson radical of R by $\operatorname{Max}(R)$ and $J(R)$, respectively.

Let $Z(R)$ be the set of all zero-divisors of R. Anderson and Livingston, in [5], introduced the zerodivisor graph of R, denoted by $\Gamma(R)$, as the (undirected) graph with vertices $Z^{*}(R)=Z(R) \backslash\{0\}$ and for two distinct elements x and y in $Z^{*}(R)$, the vertices x and y are adjacent if and only if $x y=0$.

In [16], Redmond introduced the definition of the zero-divisor graph with respect to an ideal. Let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by $\Gamma_{I}(R)$, is the graph whose vertices are the set $\{x \in R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$ with distinct vertices x and y are adjacent if and only if $x y \in I$. Thus if $I=0$, then $\Gamma_{I}(R)=\Gamma(R)$, and I is a non-zero prime ideal of R if and only if $\Gamma_{I}(R)=\emptyset$.

In [1], Afkhami and Khashayarmanesh introduced and studied the cozero-divisor graph $\check{\Gamma}(R)$ of R, in which the vertices are precisely the nonzero, non-unit elements of R, denoted by $W^{*}(R)$, and two distinct vertices x and y are adjacent if and only if $x \notin y R$ and $y \notin x R$.

Let I be an ideal of R. In this article, we introduce and study the cozero-divisor $\operatorname{graph}_{\Gamma_{I}}(R)$ of R with vertices $\left\{x \in R \backslash A n n_{R}(I) \mid x I \neq I\right\}$ and two distinct vertices x and y are adjacent if and only if $x \notin y I$ and $y \notin x I$. This can be regarded as a dual notion of ideal-based zero-divisor graph introduced by S.P. Redmond in [16]. Also this is a generalization of cozero-divisor graph introduced in [1] when $I=R$, i.e., we have $\Gamma_{R}(R)=\prime^{\prime}(R)$.

There is considerable researches concerning the ideal-based zero-divisor graph and this notion has attracted attention by a number of authors (for example, see [2], [3], [4], [6], [11], [14], and [15]). It is natural to ask the following question: To what extent does the dual of these results hold for ideal-based cozero-divisor graph? The main purpose of this paper is to provide some useful information in this case.

We will include some basic definitions from graph theory as needed. In a graph G, the distance between two distinct vertices a and b, denoted by $d(a, b)$ is the length of the shortest path connecting a and b. If there is not a path between a and $b, d(a, b)=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=$ $\sup \{d(a, b): a$ and b are distinct vertices of $G\}$. The girth of G, is the length of the shortest cycle in G and it is denoted by $g(G)$. If G has no cycle, we define the girth of G to be infinite. An r-partite graph is one whose vertex set can be partitioned into r subsets such that no edge has both ends in any one subset. A complete r-partite graph is one each vertex is jointed to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m, n}$.

[^0]
2. On the generalization of the cozero-divisor graph

Definition 2.1. Let I be an ideal of R. We define the ideal-based cozero-divisor graph $\Gamma_{I}(R)$ of R with vertices $\left\{x \in R \backslash A n n_{R}(I) \mid x I \neq I\right\}$. The distinct vertices x and y are adjacent if and only if $x \notin y I$ and $y \notin x I$. Clearly, when $I=R$ we have $\dot{\Gamma}_{I}(R)=\dot{\Gamma}(R)$.

Example 2.2. Let $R=\mathbb{Z}_{12}$ and $I=(\overline{3})$. Then $\Gamma_{I}(R)=\emptyset$. Also, in the following figures we can see the difference between the graphs $\Gamma(R), \dot{\Gamma}_{I}(R)$, and $\Gamma(R)$.

$$
\text { (a) } \dot{\Gamma}(R) \text {. }
$$

Let I be an ideal of R. Then I is said to be a second ideal if $I \neq 0$ and for every element r of R we have either $r I=0$ or $r I=I$.

Lemma 2.3. I is a second ideal of R if and only if $\Gamma_{I}(R)=\emptyset$.
Proof. Straightforward.

Theorem 2.4. Let I be a proper ideal of R. Then we have the following.
(a) The graph $\dot{\Gamma}_{I}(R) \backslash J(R)$ is connected.
(b) If R is a non-local ring, then $\operatorname{diam}\left(\dot{\Gamma}_{I}(R) \backslash J(R)\right) \leq 2$.

Proof. (a) If R has only one maximal ideal, then $V\left(\dot{\Gamma}_{I}(R)\right) \backslash J(R)$ is the empty set; which is connected. So we may assume that $|\operatorname{Max}(R)|>1$. Let $a, b \in V\left(\dot{\Gamma}_{I}(R)\right) \backslash J(R)$ be two distinct elements. Without loss of generality, we may assume that $a \in b I$. Since $a \notin J(R)$, there exists a maximal ideal m such that $a \notin m$. We claim that $m \nsubseteq J(R) \cup b I$. Otherwise, $m \subseteq J(R) \cup b I$. This implies that $m \subseteq J(R)$ or $m \subseteq b I$. But $m \neq J(R)$. Hence we have $m \subseteq b I \nsubseteq R$, so $m=b I$. This implies that $a \in m$, a contradiction. Choose the element $c \in m \backslash J(R) \cup b I$. It is easy to check that $a-c-b$.
(b) This follows from part (a).

Remark 2.5. Figure (B) in Example 2.2 shows that $J(R)$ cannot be omitted in Theorem 2.4.
Theorem 2.6. Let R be a non-local ring and I a proper ideal of R such that for every element $a \in J(R)$, there exists $m \in \operatorname{Max}(R)$ and $b \in m \backslash J(R)$ with $a \notin b R$. Then $\dot{\Gamma}_{I}(R)$ is connected and diam $\left(\bar{\Gamma}_{I}(R)\right) \leqslant 3$.

Proof. Use the technique of [1, Theorem 2.5].
Theorem 2.7. Let R be a non-local ring and I be a proper ideal of R. Then $g\left(\Gamma_{I}(R) \backslash J(R)\right) \leqslant 5$ or $g\left(\dot{\Gamma}_{I}(R) \backslash J(R)\right)=\infty$.

Proof. Use the technique of [1, Theorem 2.8] along with Theorem 2.4.

Theorem 2.8. Let I be a non-zero ideal of R. If $V(\dot{\Gamma}(R))=V\left(\dot{\Gamma}_{I}(R)\right)$, then $A n n_{R}(I)=0$ or $I=R$. The converse holds if I is finitely generated.

Proof. Let $W^{*}(R)=V(\dot{\Gamma}(R))=V\left(\dot{\Gamma}_{I}(R)\right)$ and $A n n_{R}(I) \neq 0$. Then $W^{*}(R)=R \backslash A n n_{R}(I)$. Thus $W(R) \cap \operatorname{Ann}_{R}(I)=\{0\}$. Now suppose contrary that $I \neq R$. Let $0 \neq x \in A n n_{R}(I)$ and $y \in W(R)$. Then $x y \in W(R) \cap A n n_{R}(I)=\{0\}$ and $x \notin W(R)$. It follows that $y=0$ and hence $W(R)=\{0\}$. Therefore R is a field, a contradiction. Conversely, if $I=R$ the result is clear. Now suppose that $I \neq R$ is a finitely generated ideal of R such that $A n n_{R}(I)=0$ and $x \in V(\hat{\Gamma}(R))$. Then $x I \neq 0$. If $x I=I$, then since I is finitely generated, there exists $t \in R$ such that $(1+t x) I=0$ by [13, Theoram 75]. Thus $1+t x \in \operatorname{Ann}_{R}(I)=0$. This implies that $R x=R$, which is a contradiction. Hence $x \in V\left(\bar{\Gamma}_{I}(R)\right)$. Therefore $V(\dot{\Gamma}(R)) \subseteq V\left(\dot{\Gamma}_{I}(R)\right)$. The inverse inclusion is clear.

We will use the following lemma frequently in the sequel.
Lemma 2.9. Let $I \neq R$ be a finitely generated ideal of R with $\operatorname{Ann}_{R}(I)=0$. Then $\Gamma(R)$ is a subgraph of $\dot{\Gamma}_{I}(R)$.

Proof. By Theorem 2.8, we have $V\left(\dot{\Gamma}_{I}(R)\right)=V(\dot{\Gamma}(R))$. Now let $x, y \in V(\dot{\Gamma}(R))=V\left(\dot{\Gamma}_{I}(R)\right)$ and x is adjacent to y in $\dot{\Gamma}(R)$. Then clearly, they are adjacent in $\dot{\Gamma}_{I}(R)$. Otherwise, we may assume that $x \in y I$. This implies that $x \in y R$, which is a contradiction. Hence $\dot{\Gamma}(R)$ is a subgraph of $\dot{\Gamma}_{I}(R)$.

The following example shows that the inclusion relation between $\dot{\Gamma}_{I}(R)$ and $\dot{\Gamma}(R)$ in Lemma 2.9 may be a restrict inclusion.

Example 2.10. Let $R:=\mathbb{Z}$ and $I:=5 \mathbb{Z}$. Then $V\left(\dot{\Gamma}_{I}(R)\right)=V(\dot{\Gamma}(R))=\mathbb{Z} \backslash\{-1,0,1\}$. Now by Lemma 2.9, $\bar{\Gamma}(R)$ is subgraph of $\dot{\Gamma}_{I}(R)$. However, the elements 2 and 6 are adjacent in $\dot{\Gamma}_{I}(R)$ but they are not adjacent in $\dot{\Gamma}(R)$.

Theorem 2.11. Let $I \neq R$ be a finitely generated ideal of R with Ann $_{R}(I)=0$. Suppose that $|M a x(R)| \geq$ 3. Then $g\left(\dot{\Gamma}_{I}(R)\right)=3$.

Proof. Use the technique of [1, Theorem 2.9].

As we mentioned before, $V\left(\Gamma_{I}(R)\right)=\{x \in R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$. We will show this set by $Z_{I}(R)$. Clearly, for $I=0, Z_{I}(R)=Z^{*}(R)$.

Lemma 2.12. Let $I \neq R$ be a finitely generated ideal of R with $A n n_{R}(I)=0$. Then $Z_{I}(R) \subseteq V\left(\Gamma_{I}(R)\right)$.
Proof. If $I=0$, then the claim is clear. So we assume that $I \neq 0$. Now let $x \in Z_{I}(R)$ then $x \neq 0$ and there exists $y \in R \backslash I$ such that $x y \in I$. Clearly, $x I \neq 0$. Further $x I \neq I$. Otherwise, $x I=I$. Since I is finitely generated, there exists $t \in R$ such that $(1+t x) I=0$ by [13, Theorem 75$]$. This implies that $1+t x=0$. So x is a unit element of R and hence $y \in I$, which is a contradiction. Therefore $x \in V\left(\dot{\Gamma}_{I}(R)\right)$.

The next example shows that the inclusion in Lemma 2.12 is not strict in general.
Example 2.13. Let I be a finitely generated ideal of R with $A n n_{R}(I)=0$. Further we assume that R is an Artinian ring with $Z(R) \cap I=0$. Then we have $V\left(\dot{\Gamma}_{I}(R)\right)=Z_{I}(R)$. To see this, it is enough to prove that $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq Z_{I}(R)$ by Lemma 2.12. Let $x \in V\left(\dot{\Gamma}_{I}(R)\right.$. Then we have $x \neq 0$ and $x I \neq I$. This implies that $x R \neq R$ and hence x is a non-unit element of R. Since R is Artinian, the set of non-unit elements of R is the same as the set of zero-divisors of R. So $x \in Z(R)$. This shows that $x \notin I$ and there exists $0 \neq y \in R \backslash I$ such that $x y=0 \in I$. Clearly, $x, y \in Z(R)$. Therefore, $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq Z_{I}(R)$.

Theorem 2.14. Let I be a finitely generated ideal of R with $\sqrt{I}=I$ and $A n n_{R}(I)=0$. Suppose that $Z_{I}(R)=V\left(\dot{\Gamma}_{I}(R)\right)$. If $\Gamma_{I}(R)$ is complete, then $\dot{\Gamma}_{I}(R)$ is also a complete graph.

Proof. Assume on the contrary that $\dot{\Gamma}_{I}(R)$ is not complete. So there exist $a, b \in V\left(\dot{\Gamma}_{I}(R)\right)$ such that $a \in b I$ or $b \in a I$. Without loss of generality, we may assume that $a \in b I$. So, there exists $i \in I$ such that $a=b i$. We claim that i is a unit element. Otherwise, $i \in V\left(\dot{\Gamma}(R)\right.$. Thus we have $i \in V\left(\dot{\Gamma}_{I}(R)\right)$ by Lemma 2.9. Hence $i \in Z_{I}(R)$ by assumption, which is a contradiction. Now $a b=b^{2} i \in I$. So there exist $i_{1} \in I$ such that $b^{2} i=i_{1}$. Then $b^{2}=i^{-1} i_{1} \in I$. Therefore, $b \in \sqrt{I}=I$, a contradiction.

Proposition 2.15. Let I be a proper ideal of R and $\dot{\Gamma}_{I}(R)$ a complete bipartite graph with parts V_{i}, $i=1,2$. Then every cyclic ideal $\boldsymbol{a}, \boldsymbol{b} \subseteq V_{i}$, for some $i=1,2$, are totally ordered.

Proof. Assume on the contrary that there exist ideals $a R$ and $b R$ in V_{1} such that $a R \nsubseteq b R$ and $b R \nsubseteq a R$. It follows that $b \notin a R$ and $a \notin b R$. Hence $b \notin a I$ and $a \notin b I$. This means a is adjacent to b, a contradiction.

Proposition 2.16. Let $I \neq R$ be a finitely generated ideal of R with $A n n_{R}(I)=0$. If the graph $\dot{\Gamma}_{I}(R) \backslash J(R)$ is n-partite for some positive integer n, then $|\operatorname{Max}(R)| \leq n$.

Proof. Assume contrary that $|\operatorname{Max}(R)|>n$. Since $\dot{\Gamma}_{I}(R) \backslash J(R)$ is a n-partite graph and $V\left(\dot{\Gamma}_{I}(R)\right)=$ $V(\dot{\Gamma}(R))$ by Lemma 2.9, there exist $m, \dot{m} \in \operatorname{Max}(R)$ and $a \in m \backslash \dot{m}, b \in \dot{m} \backslash m$ such that a, b belong to a same part. Clearly, $a \notin b I$ and $b \notin a I$, which is a contradiction.

For a graph G, let $\chi(G)$ denote the chromatic number of the graph G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A clique of a graph G is a complete subgraph of G and the number of vertices in the largest clique of G, denoted by clique (G), is called the clique number of G.

Theorem 2.17.

(1) Let $I \neq R$ be a finitely generated ideal of R with $\operatorname{Ann}_{R}(I)=0$. Then if R has infinite member of maximal ideal, then clique $\dot{\Gamma}_{I}(R)$ is also infinite; otherwise clique $\left(\dot{\Gamma}_{I}(R)\right) \geqslant|\operatorname{Max}(R)|$.
(2) If $\chi\left(\dot{\Gamma}_{I}(R)\right)<\infty$, then $|\operatorname{Max}(R)|<\infty$.

Proof. (1) This follows from Lemma 2.9 and [1, Theorem 2.14].
(2) Use part (1) along with [1, Theorem 2.14].

Theorem 2.18. Let $R=S_{1}+S_{2}$, where S_{1} and S_{2} are second ideals of R. If $P_{1}=A n n_{R}\left(S_{1}\right)$ and $P_{2}=\operatorname{Ann}_{R}\left(S_{2}\right)$, then $V(\dot{\Gamma}(R))=\left(P_{1} \backslash P_{2}\right) \cup\left(P_{2} \backslash P_{1}\right)$ and $\dot{\Gamma}(R)$ is a complete bipartite graph.
Proof. Let $x \in V(\Gamma(R))$, so we have $x R \neq 0$ and $x R \neq R$. Since $x R \neq 0, x S_{1} \neq 0$ or $x S_{2} \neq 0$. First we show that $V(\dot{\Gamma}(R))=\left(P_{1} \backslash P_{2}\right) \cup\left(P_{2} \backslash P_{1}\right)$. If $x S_{1} \neq 0$, then $x \notin P_{1}$. So $x S_{1}=S_{1}$. We claim that $x S_{2}=0$. Otherwise, $x S_{2} \neq 0$ so that $x \notin P_{2}$. It means that $x S_{2}=S_{2}$. Thus $x R=R$, a contradiction. So we have $x \in P_{2}$ hence $x \in\left(P_{2} \backslash P_{1}\right) \cup\left(P_{2} \backslash P_{1}\right)$. We have similar arguments for reverse inclusion. Now let $x \in P_{1} \backslash P_{2}$ and $y \in P_{2} \backslash P_{1}$. We show that $x \notin y R$ and $y \notin x R$. Otherwise, $x \in y R$ or $y \in x R$. Without loss of generality, $x \in y R$. Then there exists $t \in R$ such that $x=t y$. But $x \notin P_{2}$ implies that $t y \notin A n n_{R}\left(S_{2}\right)$ so that $t y S_{2} \neq 0$, a contradiction. Thus, x is adjacent to y. Now we show that x and y can not lie in $P_{1} \backslash P_{2}$ or $P_{1} \backslash P_{2}$. To see this let $x, y \in P_{1} \backslash P_{2}$ and assume that they are adjacent. Then we have $x \notin y R$ and $y \notin x R$. Now by using our assumptions, we conclude that $x \notin x R$, a contradiction.

Theorem 2.19. Let $I \neq R$ be a finitely generated ideal of R with $A n n_{R}(I)=0$. Assume that $|M a x(R)| \geq$ 5. Then $\dot{\Gamma}_{I}(R)$ is not planar.

Proof. This follows from Lemma 2.9 and [1, Theorem 3.9].
Proposition 2.20. Let I be a proper ideal. Then the following hold.
(a) $V\left(\Gamma_{A n n(I)}(R)\right) \subseteq V\left(\bar{\Gamma}_{I}(R)\right)$.
(b) If R be a reduced ring, then $\Gamma_{A n n(I)}(R)$ is a subgraph of $\Gamma_{I}(R)$.

Proof. (a) Let $x \in V\left(\Gamma_{\operatorname{Ann}(I)}(R)\right)$. Then there exists $y \in R \backslash A n n_{R}(I)$ such that $x y \in A n n_{R}(I)$. We claim that $x I \neq I$. Otherwise, $x I=I$. Then $x y I=y I$ so that $y I=0$. This implies that $y \in A n n_{R}(I)$, a contradiction. Therefore, $V\left(\Gamma_{A n n(I)}(R)\right) \subseteq V\left(\bar{\Gamma}_{I}(R)\right)$.
(b) By part (a), V($\left.\Gamma_{\operatorname{Ann}(I)}(R)\right) \subseteq V\left(\Gamma_{I}(R)\right)$. Now we suppose that x is adjacent to y in $\Gamma_{A n n(I)}(R)$. We show that x is adjacent to y in $\dot{\Gamma}_{I}(R)$. Otherwise, without loss of generality, we assume that $x \in y I$. So that $x^{2} \in x y I$. Thus $x^{2}=0$. This implies that $x \in A n n_{R}(I)$, a contradiction.

Proposition 2.21. Let I be a finitely generated non-zero ideal of R. Suppose that $x, y \in R \backslash A n n_{R}(I)$.
(a) $x \in V\left(\left(\Gamma_{I}(R)\right)\right.$ if and only if $x+\operatorname{Ann}_{R}(I) \in V\left(\dot{\Gamma}\left(R / A n n_{R}(I)\right)\right.$.
(b) If $x+A n n_{R}(I)$ is adjacent to $y+A n n_{R}(I)$ in $\dot{\Gamma}\left(R / A n n_{R}(I)\right)$, then x is adjacent to y in $\dot{\Gamma}_{I}(R)$.

Proof. a) Let $x \in V\left(\dot{\Gamma}_{I}(R)\right)$ and $x \in V\left(\left(\dot{\Gamma}\left(R / A n n_{R}(I)\right)\right.\right.$. Then there exists $y+A n n_{R}(I)$ such that $x y+A n n_{R}(I)=1+A n n_{R}(I)$. Thus $(x y-1) \in A n n_{R}(I)$. Since I is a finite generated ideal, there exists $r \in R$ such that $(r(x y-1)+1) I=0$ and so $r(x y-1)+1 \in A n n_{R}(I)$. Thus $1 \in A n n_{R}(I)$ which implies that $I=0$, a contradiction.
b) This is straightforward.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=A n n_{M}(I)$, equivalently, for each submodule N of M, we have $N=$ $A n n_{M}\left(A n n_{R}(N)\right)$ [7]. R is said to be a comultiplication ring if R is a comultiplication R-module.
Theorem 2.22. Let I be a proper ideal of R. Then $V\left(\dot{\Gamma}_{I}(R)\right)=V\left(\Gamma_{A n n(I)}(R)\right)$ if one of the following conditions hold.
(a) R is a comultiplication ring.
(b) $R / A n n_{R}(I)=Z\left(R / A n n_{R}(I)\right) \cup U\left(R / A n n_{R}(I)\right)$.

Proof. Clearly $V\left(\Gamma_{\operatorname{Ann}(I)}(R)\right) \subseteq V\left(\dot{\Gamma}_{I}(R)\right)$.
(a) Let $x \in V\left(\dot{\Gamma}_{I}(R)\right)$. Then $x I \neq 0$ and $x I \neq I$. Since R is a comultiplication ring, this implies that $A n n_{R}(x I) \neq A n n_{R}(I)$. Thus there exists $y \in A n n_{R}(x I) \backslash A n n_{R}(I)$. Therefore, $x \in V\left(\Gamma_{A n n(I)}(R)\right)$.
(b) Let $x \in V\left(\dot{\Gamma}_{I}(R)\right)$. Then $x I \neq 0$ and $x I \neq I$. By assumption, $x+A n n_{R}(I) \in Z\left(R / A n n_{R}(I)\right)$ or $x+A n n_{R}(I) \in U\left(R / A n n_{R}(I)\right)$. If $x+A n n_{R}(I) \in Z\left(R / A n n_{R}(I)\right)$, then there exists $y \in R \backslash A n n_{R}(I)$ such that $x y \in A n n_{R}(I)$. Therefore, $x \in V\left(\Gamma_{A n n(I)}(R)\right)$. If $x+A n n_{R}(I) \in U\left(R / A n n_{R}(I)\right)$, then there exists $z+A n n_{R}(I) \in R / A n n_{R}(I)$ such that $x z+A n n_{R}(I)=1+A n n_{R}(I)$. Thus $1=x z+a$ for some $a \in A n n_{R}(I)$. Now we have $I=1 I=(x z+a) I=x z I \subseteq x I$, a contradiction.

Theorem 2.23. Let $I \subseteq J$ be non-zero ideals of R. Then we have the following.
(a) If $R / A n n_{R}(J)=Z\left(R / A n n_{R}(J)\right) \bigcup U\left(R / A n n_{R}(J)\right)$, then $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq V\left(\dot{\Gamma}_{J}(R)\right)$.
(b) If $\operatorname{dim}(R)=0$, then $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq V\left(\dot{\Gamma}_{J}(R)\right)$. In particular, this holds if R is a finite ring.

Proof. (a) This follows from Theorem 2.22 (b) and [6, Theorem 2.8].
(b) $\operatorname{dim}(R)=0$ implies that $\operatorname{dim}(R / J)=0$. It follows that

$$
R / A n n_{R}(J)=Z\left(R / A n n_{R}(J)\right) \bigcup U\left(R / A n n_{R}(J)\right)
$$

Now the result follows from part (a).
Proposition 2.24. Let I be a non-zero ideal R with $R=Z(R) \cup U(R)$ and $V\left(\dot{\Gamma}_{I}(R)\right)=V(\dot{\Gamma}(R))$. Then $A n n_{R}(I)=0$.
Proof. Suppose that $V\left(\dot{\Gamma}_{I}(R)\right)=V(\dot{\Gamma}(R))$. Since $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq R \backslash A n n_{R}(I)$, we have $V(\dot{\Gamma}(R)) \subseteq R \backslash$ $A n n_{R}(I)$. Thus $A n n_{R}(I) \subseteq R \backslash V(\Gamma(R))=\{0\} \cup U(R)$ by hypothesis. Therefore, $A n n_{R}(I)=0$.

3. Secondal ideals

In this section, we will study the ideal-based cozero-divisor graph with respect to secondal ideals.
The element $a \in R$ is called prime to an ideal I of R if $r a \in I$ (where $r \in R$) implies that $r \in I$. The set of elements of R which are not prime to I is denoted by $S(I)$. A proper ideal I of R is said to be primal if $S(I)$ is an ideal of R [12].

A non-zero submodule N of an R-module M is said to be secondal if $W_{R}(N)=\{a \in R: a N \neq N\}$ is an ideal of R [8]. A secondal ideal is defined similarly when $N=I$ is an ideal of R. In this case, we say I is P-secondal, where $P=W(I)$ is a prime ideal of R.

Lemma 3.1. Let I be a non-zero ideal of R. Then the following hold.
(a) $A n n_{R}(I) \subseteq W(I)$.
(b) $Z_{R}\left(R / A n n_{R}(I)\right) \subseteq W(I)$.
(c) $V\left(\dot{\Gamma}_{I}(R)\right)=W(I) \backslash A n n_{R}(I)$. In particular, $V\left(\dot{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)=W(I)$.
(d) If $A n n_{R}(I)$ is a radical ideal of R, then $\bigcup_{P \in \operatorname{Min}\left(A n n_{R}(I)\right)} P \subseteq W(I)$.

Proof. (a) Let $r \in A n n_{R}(I)$. Then $r I=0 \neq I$. Thus $r \in W(I)$.
(b) Let $x \in Z_{R}\left(R / A n n_{R}(I)\right)$ and $x \notin W(I)$. Then there exists $y \in R \backslash A n n_{R}(I)$ such that $x y I=0$. Hence $x I=I$ implies that $y I=0$, a contradiction.
(c) Let $r \in V\left(\dot{\Gamma}_{I}(R)\right)$. Then $r \in R \backslash A n n_{R}(I)$ and $r I \neq I$; hence $r \in W(I) \backslash A n n_{R}(I)$. Thus $V\left(\dot{\Gamma}_{I}(R)\right) \subseteq W(I) \backslash A n n_{R}(I)$. Conversely, we assume that $x \in W(I) \backslash A n n_{R}(I)$. So $x I \neq I$ and $x I \neq 0$. Then $x \in V\left(\dot{\Gamma}_{I}(R)\right)$, so we have equality.
(d) By [13, Exer 13, page 63], $Z_{R}(R / I)=\bigcup_{P \in \operatorname{Min}(I)} P$, where I is a radical ideal of R. Thus $Z_{R}\left(R / A n n_{R}(I)\right)=\bigcup_{P \in \operatorname{Min}\left(\operatorname{Ann} n_{R}(I)\right)} P$. Hence $\bigcup_{P \in \operatorname{Min}\left(\operatorname{Ann}_{R}(I)\right)} P \subseteq W(I)$ by part (b).

Remark 3.2. Let $R=\mathbb{Z}, I=2 \mathbb{Z}$. Then $Z_{R}\left(R / A n n_{R}(I)\right)=Z_{R}(R)=0$ and $W(I)=\mathbb{Z} \backslash\{-1,1\}$. Therefore the converse of part (b) of the above lemma is not true in general.
Proposition 3.3. Let I and P be ideals of R with $\operatorname{Ann}_{R}(I) \subseteq P$. Then I is a P-secondal ideal of R if only if $V\left(\dot{\Gamma}_{I}(R)\right)=P \backslash \operatorname{Ann}_{R}(I)$.
Proof. Straightforward.
Theorem 3.4. Let I be an ideal of R. Then I is a secondal ideal of R if and only if $V\left(\dot{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)$ is an (prime) ideal of R.
Proof. Let I be a secondal ideal. Then $W(I)$ is a prime ideal and by Lemma 3.1(c), $V\left(\bar{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)=$ $W(I)$. Thus $V\left(\dot{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)$ is an ideal of R. Conversely, suppose that $V\left(\dot{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)$ is a (prime) ideal. Then by Lemma 3.1(c) , $V\left(\dot{\Gamma}_{I}(R)\right) \cup A n n_{R}(I)=W(I)$ is a prime ideal. Hence I is a secondal ideal.

Theorem 3.5. Let I and J be P-secondal ideals of R. Then $V\left(\dot{\Gamma}_{I}(R)\right)=V\left(\dot{\Gamma}_{J}(R)\right)$ if and only if $A n n_{R}(I)=A n n_{R}(J)$.
Proof. By Lemma 3.1 (a), $A n n_{R}(I) \subseteq P$ and $A n n_{R}(J) \subseteq P$. It then follows from Proposition 3.3 that $V\left(\dot{\Gamma}_{I}(R)\right)=V\left(\dot{\Gamma}_{J}(R)\right)$ if and only if $P \backslash A n n_{R}(I)=P \backslash A n n_{R}(J)$; and this holds if and only if $A n n_{R}(I)=A n n_{R}(J)$.

Lemma 3.6. Let N be a secondary submodule of an R-module M. Then $\sqrt{A n n_{R}(N)}=W(N)$.
Proof. Let $x \in W(N)$. Then $x N \neq N$. Since N is a secondary R-module, there exists a positive integer n such that $x^{n} N=0$. Thus $x \in \sqrt{A n n_{R}(N)}$. Hence $W(N) \subseteq \sqrt{A n n_{R}(N)}$. To see the reverse inclusion, let $x \in \sqrt{A n n_{R}(N)}$ and $x \notin W(N)$. Then $x^{n} N=0$ for some positive integer n and $x N=N$. Therefore $N=0$, a contradiction.

Theorem 3.7. Let I be an ideal of R. Then I is secondary ideal if and only if $V\left(\dot{\Gamma}_{I}(R)\right)=\sqrt{A n n_{R}(I)} \backslash$ $A n n_{R}(I)$.

Proof. If I is secondary, then $\sqrt{A n n_{R}(I)}=W(I)$ by Lemma 3.6. Hence I is a $\sqrt{A n n_{R}(I)}$-secondal ideal of R. Then Proposition 3.3 implies that $V\left(\hat{\Gamma}_{I}(R)\right)=\sqrt{A n n_{R}(I)} \backslash A n n_{R}(I)$. Conversely, suppose that $x \in R, x I \neq I$, and $x \notin \sqrt{A n n_{R}(I)}$. Then $x \in W(I)$ and $x \notin A n n_{R}(I)$. Thus $x \in V\left(\Gamma_{I}(R)\right)$ and so $x \in \sqrt{A n n_{R}(I)} \backslash A n n_{R}(I)$ by assumption, a contradiction.

Definition 3.8. Let I be an ideal of R. We say that an ideal J of R is second to I if $I J=I$.
Proposition 3.9. Let I be an ideal of R. If I is not secondal, then there exist $x, y \in V\left(\dot{\Gamma}_{I}(R)\right)$ such that $<x, y>$ is second to I.

Proof. Suppose that I is an ideal of R such that it is not secondal. Then by Lemma 3.1 (c), $V\left(\dot{\Gamma}_{I}(R)\right) \cup$ $A n n_{R}(I)=W(I)$ is not an ideal of R, so there exist $x, y \in W(I)$ with $x-y \notin W(I)$ and so $(x-y) I=I$. Hence $<x, y>I=I$. Now we claim that $x, y \notin A n n_{R}(I)$. Otherwise, we have $x \in A n n_{R}(I)$ or $y \in A n n_{R}(I)$. If $x, y \in A n n_{R}(I)$, then $x-y \in A n n_{R}(I) \subseteq W(I)$, a contradiction. If $x \in A n n_{R}(I)$ and $y \notin A n n_{R}(I)$, then $I=(x-y) I \subseteq x I+y I=0+y I$, a contradiction. Similarly, we get a contradiction when $x \notin A n n_{R}(I)$ and $y \in A n n_{R}(I)$. Thus we have $x, y \notin A n n_{R}(I)$.

Proposition 3.10. Let I be an ideal of R. Then the following hold.
(a) Let x, y be distinct elements of $\sqrt{A n n_{R}(I)} \backslash A n n_{R}(I)$ with $x y \notin A n n_{R}(I)$. Then the ideal $<x, y>$ is not second to I.
(b) If I is a secondary ideal, then the $\operatorname{diam}\left(\Gamma_{\text {Ann }(I)}(R)\right) \leq 2$.

Proof. (a) Let ideal $<x, y>$ be second to I. Since $x, y \in \sqrt{A n n_{R}(I)} \backslash A n n_{R}(I)$, there exists the least positive integer n such that $x^{n} y \in \operatorname{Ann}(I)$. As $x y \notin A n n_{R}(I)$, we have $n \geqslant 2$. Let m be the least positive such that $x^{n-1} y^{m} \in A n n_{R}(I)$. Now clearly $m \geqslant 2$ because $x^{n-1} y \notin A n n_{R}(I)$. This yields that the contradiction

$$
0=x^{n-1} y^{m-1}(x, y) I=x^{n-1} y^{m-1} I \neq 0
$$

(b) If I is secondary, then $W(I)=\sqrt{A n n_{R}(I)}$ by Lemma 3.6. Choose two distinct vertices x, y in $\Gamma_{A n n(I)}(R)$. If $x y \in A n n_{R}(I)$, then $d(x, y)=1$. So we assume that $x y \notin A n n_{R}(I)$. Then by Proposition 2.20 (a) and Lemma 3.1, $x, y \in W(I) \backslash A n n_{R}(I)$. Also we have $x, y \in \sqrt{A n n_{R}(I)} \backslash A n n_{R}(I)$ by Theorem 3.7. As in the proof of (a), we have the path $x-x^{n-1} y^{m-1}-y$ from x to y in $\Gamma_{\operatorname{Ann}(I)}(R)$. Hence $d(x, y)=2$. Therefore, $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(I)}(R)\right) \leq 2$.

Acknowledgments

We would like to thank the referee for careful reading our manuscript and valuable comments.

References

1. M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35, 753-762, (2011).
2. M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35, 935-944, (2012).
3. M. Afkhami and K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings, Appl. Math. 4, 979-985, (2013).
4. D. F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, On the diameter of the graph $\Gamma_{A n n(M)}(R)$, Filomat 26 (3), 623-629, (2012).
5. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447, (1999).
6. D.F. Anderson and S. Shirinkam, Some remarks on the graph $\Gamma_{I}(R)$, Comm. Algebra 42, 545-562, (2014).
7. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4), 1189-1201, (2007).
8. H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra 39, 2396-2416, (2011).
9. J.A. Bondy and U.S.R. Murty, Graph theory with applications, American Elsevier, New York, 1976.
10. S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc. 46, 313-325, (2009).
11. P. Dheena and B. Elavarasan, An ideal-based zero-divisor graph of 2-primal near-rings, Bull. Korean Math. Soc. 46 , 1051-1060, (2009).
12. L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1, 1-6, (1950).
13. I. Kaplansky, Commutative rings, University of Chicago, (1978).
14. M.J. Nikmehr and S. Khojasteh, A generalized ideal-based zero-divisor graph, J. Alegbra Appl. 14 (6), 1550079, (2015).
15. H. R. Maimani, M. R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (3), 923-929, (2006).
16. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31, 4425-4443, (2003).
17. A. Yousefian Darani, Notes on the ideal-based zero-divisor graph, J. Math. Appl. 32, 103-107, (2010).
```
H. Ansari-Toroghy,
Department of Pure Mathematics,
Faculty of Mathematical Sciences,
University of Guilan,
Rasht,
Iran.
E-mail address: ansari@guilan.ac.ir
and
F. Farshadifar,
Assistant Professor,
Department of Mathematics,
Farhangian University,
Tehran,
Iran.
E-mail address: f.farshadifar@cfu.ac.ir
and
F. Mahboobi-Abkenar,
Department of Pure Mathematics,
Faculty of Mathematical Sciences,
University of Guilan,
Rasht,
Iran.
E-mail address: mahboobi@phd.guilan.ac.ir
```


[^0]: 2010 Mathematics Subject Classification: 05C75, 13A99, 05C99.
 Submitted June 13, 2018. Published December 02, 2018

