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A New Optimal Control Technique for Solution of HIV Infection Model

Malihe Najafi and Hadi Basirzadeh

abstract: In this paper, we introduce a new method, namely, the optimal control power series technique
by using of the optimal control technique and power series technique. One can obtain numerical solutions
of the HIV infection model of CD4+T cells via this method. The obtained approximate solution is in good
agreement with the experimental results and previous simulations by using of other methods.
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1. Introduction

In this paper, we consider a three dimensional model of the Human Immunodeficiency Virus (HIV)
[1]

dT

dt
= q − αT + r T

(

1−
T + I

Tmax

)

− k V T,

dI

dt
= k V T − β I, (1.1)

dV

dt
= µβ I − γ V,

with the initial conditions: T (0) = T0, I(0) = I0 and V (0) = V0. Here T (t) represents the concentration
of healthy CD4+T cells at time t, I(t) represents the concentration of infected CD4+T cells at time t, and
V (t) represents the concentration of free HIV at time t [2,3]. α, β and γ denote natural turnover rates

of uninfected T cells, infected T cells and virus particles, respectively,
(

1− T+I
Tmax

)

describes the logistic

growth of the healthy CD4+T cells, and proliferation of infected CD4+T cells is neglected [1,3,4]. The
term kV T describes the incidence of HIV infection of healthy CD4+T cells, where k > 0 is the infection
rate. Each infected CD4+T cell is assumed to produce N virus particles during its lifetime, including
any of its daughter cells [5]. The body is believed to produce CD4+T cells from precursors in the bone
marrow and thymus at a constant rate q. T cells multiply through mitosis with a rate r when T cells are
stimulated by antigen or mitogen. Tmax denotes the maximum CD4+T cell concentration in the body
[1,3,4,5].
In recent years, several methods have been proposed to solve numerically the HIV infection model of
CD4+T cells. For example, Ongun [6] presented a numerical solution for HIV CD4+T cells by the Laplace
Adomian decomposition method. New approximate solutions of (1) from Homotopy perturbation method
are obtained in [7]. By using of the Bessel collocation method, new numerical solutions are obtained in
[8]. Merdan et al. [9] by using of the variational iteration method are presented approximate solutions
of HIV CD4+T cells. Also, multistage variational iteration method is applied to compute the numerical
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solutions of (1) in [10]. Ghoreishi et al. [11] applied the homotopy analysis method for HIV CD4+T
cells. Yüzbas.ı and Karac.ayır [12] generalized the exponential polynomials reminiscent of the Galerkin
method and they obtained the numerical solutions of (1). In [13], the differential transform method has
been implemented for a dynamical model of HIV CD4+T cells. Doğan introduced a new method called
multi-step Laplace Adomian decomposition method to solution of the HIV infection model of CD4+T
cells [14]. Khalid et al. [15] developed the perturbation iteration algorithm and successfully applied it
to solve a model for HIV infection of CD4+T cells. For more references, see also [16,17,18,19,20]. In this
paper, we obtain the approximate solutions of model (1) by developing the optimal control technique
[21,22,23,24] and power series technique [25,26,27].
This paper is prepared as follows: In Section 2, the new numerical method to be used is presented. In
Section 3, a dynamical model of HIV CD4+T cells is solved by this method. In the last section, some
conclusions are referred.

2. Method of solution

In this section, we introduce a new method based on optimal control technique and power series
Technique, namely the optimal control power series Technique, for finding the numerical solution of
dynamical epidemic models. We describe the optimal control power series technique in four steps. In
summary, these steps are: Formulating this system as an optimal control problem, determining minimized
function for system, determining optimality conditions, and solving algebraic systems by power series
technique. To explain these fundamental steps in optimal control power series Technique, consider a
nonlinear system as

ẋ = F (x(t)), x(t0) = x0, (2.1)

where x ∈ Rn.

Step 1 We can formulate this system as an optimal control problem for optimization [21,22]. In the
general form is

ẋ = F (x(t), u(t)), x(t0) = x0, (2.2)

where u(t) ∈ Rm are control vectors.

Step 2 The aim of the State-Dependent Riccati Equation (SDRE) control is to determine the sub-optimal
controller for the system (2.2) such that the following coast functional is minimized [23]:

J =
∫∞

t0
(x(t)T Qx(t) + u(t)T Ru(t))dt,

s.t. ẋ = f(t, x(t)) + g(t, x(t))u(t),

(2.3)

Where Q ∈ Rn×n and R ∈ Rm×m are state dependent weighting matrices which satisfy Q ≥ 0 and R > 0
for all x.

Step 3 According to the Pontryagin’s maximum principle [24], the optimality conditions for (2.3) are
determined by the following nonlinear two-point boundary value problem (TPBVP):

ẋ = f(t, x(t)) + g(t, x(t))
[

−R−1 gT (t, x(t))λ(t)
]

,

λ̇ = −

(

Qx(t) + (∂f(t,x(t))
∂x

)T λ(t) +
n
∑

i=1

λi

[

−R−1 gT (t, x(t))λ(t)
]T ∂gi(t,x(t))

∂x

) (2.4)

where λ(t) ∈ Rn. On the other hand, the optimal control law is illustrated by u(t)∗=−R−1 gT (t, x(t))λ(t).
Step 4 The system (2.4) contains a nonlinear TPBVP that cannot be solved analytically. But a

solution can be expressed in terms of a power series which takes the form

x(t) =

∞
∑

n=0

cn (t− t0)
n , λ(t) =

∞
∑

n=0

dn (t− t0)
n, (2.5)
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for some fixed t0. Substituting the power series into the system (2.4) gives relationships among the
coefficients {cn}, which when solved gives a power series solution. This technique is called the power
series method.

3. Numerical application

In this section, we will apply the optimal control power series technique to a dynamical model of HIV
CD4+T cells. Throughout this section, we set q = 0.1, α = 0.02, β = 0.3, r = 3, γ = 2.4, k = 0.0027, N =
10 and Tmax = 1500. We have

dT

dt
= 0.1− 0.02T + 3T

(

1−
T + I

1500

)

− 0.0027V T,

dI

dt
= 0.0027V T − 0.3 I, (3.1)

dV

dt
= 3 I − 2.4V,

given with the initial conditions T (0) = 0.1, I(0) = 0, V (0) = 0 and in the interval 0 ≤ t ≤ 0.9. Applying

all aforementioned terms, in order to minimizing [uT , uI , 0]
T
, we define the minimize objective functional

Min J(u) =
∫ 1

0 (I
2 − T 2 + u2

T + u2
I)dt,

s.t. Ṫ = 0.1− 0.02T + 3T
(

1− T+I
1500

)

− 0.0027V T + uT ,

İ = 0.0027V T − 0.3 I − uI ,

V̇ = 3 I − 2.4V.

Here, uT and uI are the control variables for T (t) and I(t), respectively. Our goal is to increase the
number of the uninfected CD4+T cells and minimizing the cost of treatment.
In this paper, we set ω1 = ω2 = 1. According to the Pontryagin’s maximum principle, we could reach to
the following co-state system:

Ṫ = 0.1− 2.98T − 0.002T 2 − 0.002T, I − 0.0027V T − λ1,

İ = 0.0027V T − 0.3 I,

L̇ = 3 I − 2.4V,

λ̇1 = T − 2.98λ1 + 0.004Tλ1 + 0.002Iλ1 + 0.0027V λ1 − 0.0027V λ2

λ̇2 = −I + 0.002Tλ1 + 0.3λ2 − 3λ3,

λ̇3 = 0.0027Tλ1 − 0.0027Tλ2 + 2.4λ3, (3.2)

and the optimal control law is given by

u∗(t) =













u∗
1(t)

u∗
2(t)

u∗
3(t)













=













−λ1

λ2

0












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By using the power series technique, the approximate solutions of system (8) are:

T (t) =
∑∞

n=0 c1n t
n = T (0) + c11 t+ c12 t

2 + c13 t
3 + · · ·

I(t) =
∑∞

n=0 c2n t
n = I(0) + c21 t+ c22 t

2 + c23 t
3 + · · ·

V (t) =
∑∞

n=0 c3n t
n = V (0) + c31 t+ c32 t

2 + c33 t
3 + · · ·

λ1(t) =
∑∞

n=0 c4n t
n = λ1(0) + c41 t+ c42 t

2 + c43 t
3 + · · ·

λ2(t) =
∑∞

n=0 c5n t
n = λ2(0) + c51 t+ c52 t

2 + c53 t
3 + · · ·

λ3(t) =
∑∞

n=0 c6n t
n = λ3(0) + c61 t+ c62 t

2 + c63 t
3 + · · · .

(3.3)

Substituting approximate solutions (9) into system (8) and equating the terms with identical powers of
t, we can obtain the following approximate solutions:

T = 0.1 + 0.3977800000 t+ 0.5922148450 t2+ 0.5875974940 t3

+ 0.4370467812 t4 + 0.2598795654 t5+ 0.1284691841 t6

+ 0.05433087940 t7+ 0.01990146661 t8+ 0.006438780022 t9,

I = 0.1225420020000 t+ 0.9993696680 t2− 2.120992477 t3

+ 3.799090900 t4 − 4.597792247 t5 + 4.911909967 t6

− 4.262423197 t7 + 3.505583168 t8 − 2.275237974 t9,

V = 0.1− 0.2400000000 t+ 0.1880213003 t2− 0.05048007343 t3

− 0.1601232001 t4 + 0.2882108934 t5− 0.3384965683 t6

+ 0.3108457456 t7 − 0.2444359104 t8+ 0.1690433931 t9,

λ1 = −0.00001349360991 t3+ 0.00004676554452 t4− 0.00008592448460 t5

+ 0.0001201155034 t6− 0.0001276990959 t7+ 0.00009925660561 t8

− 0.00004150041898 t9,

λ2 = 0.1499289990 t2− 0.3181303228 t3+ 0.5533934190 t4

− 0.6896240302 t5 + 0.7218014052 t6− 0.6393289643 t7

+ 0.4958400408 t8 − 0.3412705856 t9,

λ3 = −0.1 t− 0.06267376677 t3− 0.02498424169 t4+ 0.02003220400 t5

− 0.04002226730 t6+ 0.03463473240 t7− 0.02846529848 t8

+ 0.07043474712 t9.

Figure 1: Graphic of the approximate solutions of T(t)
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Figure 2: Graphic of the approximate solutions of I(t)

Figure 3: The control variable uT (t).

Figure 4: The control variable uI(t).

4. Conclusions and Discussions

In this paper, we obtained numerical solutions of a model for HIV infection of CD4+T cells by
presented method. We plotted the solutions of T (t) and I(t) for 0 ≤ t ≤ 0.9, as shown in Figs. 1-2.
Figure 1 shows that applying optimal control the number of concentration of healthy CD4+T cells (T(t))
increases gradually. In Figure 2, after introducing control variable uI(t), the density of the concentration
of infected CD4+T cells (I(t)) declines towards zero.
The obtained numerical solutions are in very good coincidence with the other numerical solutions [7-16].
In Tables 1-2, the obtained values of the approximate solutions of a model for HIV infection of CD4+T
cells at several values of t are compared with those of Laplace Adomian decomposition method with Pade
approximation [6] and Bessel collocation method [8]. In Table 1, it found that the obtained solutions by
using of our method are in a good agreement with the approximate solutions in [6] and [8] at 0 ≤ t ≤ 0.6.
Also, it can be concluded that our present results at 0.6 ≤ t ≤ 0.9, even better than the results obtained
by the Laplace Adomian decomposition method with Pade approximation [6] and the results obtained
by the Bessel collocation method [8]. The results in Table 2 show that, in [6] and [8] the density of
infected cells I(t) increase at 0 ≤ t ≤ 0.9. But in our present method, the intensity of infected cells I(t)
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decrease with the passage of time after applying control variable uI(t). Moreover, in Figs. 3-4, we see
that control variables uT (t) and uI(t) are in agreement with 0 ≤ uT (t), uI(t) ≤ 1. It can be concluded
that our proposed method is powerful mathematical tool for solving a wide variety of other epidemic
models.

Table 1: Numerical comparison for T (t).

t LADM − Pade Bessel coll. P resent method

0 0.1 0.1 0.1
0.2 0.2088072731 0.2038616561 0.2087367817
0.4 0.4061052625 0.3803309335 0.4059521352
0.6 0.7611467713 0.6954623767 0.7635498323
0.9 1.5245154522 1.4521254658 1.977214845

Table 2: Numerical comparison for I(t).

t LADM − Pade Bessel coll. P resent method

0 0 0 0
0.2 0.0000060327 0.0000062478 0.02772720781
0.4 0.0000131591 0.0000129355 0.08586776364
0.6 0.0000212683 0.0000203526 0.16088182680
0.9 0.0000385462 0.0000325452 0.00000600060
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