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Multifractal Dimensions for Projections of Measures

Bilel Selmi

abstract: In this paper, we study the multifractal Hausdorff and packing dimensions of Borel probability
measures and study their behaviors under orthogonal projections. In particular, we try through these results
to improve the main result of M. Dai in [13] about the multifractal analysis of a measure of multifractal exact
dimension.
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1. Introduction

The notion of dimensions is an important tool in the classification of subsets in R
n. The Hausdorff and

packing dimensions appear as some of the most common examples in the literature. The determination
of set’s dimensions is naturally connected to the auxilliary Borel measures supported by these sets.
Moreover, the estimation of a set’s dimension is naturally related to the dimension of a probability
measure ν in R

n. In this way, thinking particularly to sets of measure zero or one, leads to the respective
definitions of the lower and upper Hausdorff dimensions of ν as follows

dim(ν) = inf
{

dim(E); E ⊆ R
n and ν(E) > 0

}

and
dim(ν) = inf

{

dim(E); E ⊆ R
n and ν(E) = 1

}

,

where dim(E) denotes the Hausdorff dimension of E (see [16]). If dim(ν) = dim(ν), this common value
is denoted by dim(ν). In this case, we say that ν is unidimensional. Similarly, we define respectively the
lower and upper packing dimensions of ν by

Dim(ν) = inf
{

Dim(E); E ⊆ R
n and ν(E) > 0

}

and
Dim(ν) = inf

{

Dim(E); E ⊆ R
n and ν(E) = 1

}

,

where Dim(E) is the packing dimension of E (see [16]). Also, if the equality Dim(ν) = Dim(ν) is satisfied,
we denote by Dim(ν) their common value.

The lower and upper Hausdorff dimensions of ν were studied by H. Fan in [19,20]. They are related
to the Hausdorff dimension of the support of ν. A similar approach, concerning the packing dimensions,
was developed by Tamashiro in [45]. There are numerous works in which estimates of the dimension of a
given measure are obtained [2,7,13,16,21,24,25,26,27,41]. When dim(ν) is small (resp. dim(ν) is large),
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it means that ν is singular (resp. regular) with respect to the Hausdorff measure. Similar definitions are
used when concerned with the upper and lower packing dimensions.
Note that, in many works (see for example [16,24,25,26]), the quantities dim(ν), dim(ν), Dim(ν) and

Dim(ν) are related to the asymptotic behavior of the function αν(x, r) =
log ν(B(x,r))

log r .

One of the main problems in multifractal analysis is to understand the multifractal spectrum, the
Rényi dimensions and their relationship with each other. During the past 20 years, there has been
enormous interest in computing the multifractal spectra of measures in the mathematical literature and
within the last 15 years the multifractal spectra of various classes of measures in Euclidean space R

n

exhibiting some degree of self-similarity have been computed rigorously (see [16,33,38] and the references
therein). In an attempt to develop a general theoretical framework for studying the multifractal structure
of arbitrary measures, Olsen [33] and Pesin [37] suggested various ways of defining an auxiliary measure
in very general settings. For more details and backgrounds on multifractal analysis and its applications,
the readers may be referred also to the following essential references [1,2,8,5,10,11,12,14,15,22,30,31,33,
34,35,36,39,42,43,46,47,48,49].

In this paper, we give a multifractal generalization of the results about Hausdorff and packing di-
mension of measures. We first estimate the multifractal Hausdorff and packing dimensions of a Borel
probability measure. We try through these results to improve the main result of M. Dai in [13, Theorem
A] about the multifractal analysis of a measure of exact multifractal dimension. We are especially based
on the multifractal formalism developed by Olsen in [33]. Then, we investigate a relationship between
the multifractal dimensions of a measure ν and its projections onto a lower dimensional linear subspace.

2. Preliminaries

We start by recalling the multifractal formalism introduced by Olsen in [33]. This formalism was
motivated by Olsen’s wish to provide a general mathematical setting for the ideas present in the physics
literature on multifractals.

Let E ⊂ R
n and δ > 0, we say that a collection of balls

(

B(xi, ri)
)

i
is a centered δ-packing of E if

∀i, 0 < ri < δ, xi ∈ E, and B(xi, ri) ∩B(xj , rj) = ∅, ∀ i 6= j.

Similarly, we say that
(

B(xi, ri)
)

i
is a centered δ-covering of E if

∀i, 0 < ri < δ, xi ∈ E, and E ⊂
⋃

i

B(xi, ri).

Let µ be a Borel probability measure on R
n. For q, t ∈ R, E ⊆ R

n and δ > 0, we define

P
q,t

µ,δ(E) = sup

{

∑

i

µ(B(xi, ri))
q(2ri)

t

}

,

where the supremum is taken over all centered δ-packings of E. The generalized packing pre-measure is
given by

P
q,t

µ (E) = inf
δ>0

P
q,t

µ,δ(E).

In a similar way, we define

H
q,t

µ,δ(E) = inf

{

∑

i

µ(B(xi, ri))
q(2ri)

t

}

,

where the infinimum is taken over all centered δ-coverings of E. The generalized Hausdorff pre-measure
is defined by

H
q,t

µ (E) = sup
δ>0

H
q,t

µ,δ(E).
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Especially, we have the conventions 0q = ∞ for q ≤ 0 and 0q = 0 for q > 0.

Olsen [33] introduced the following modifications on the generalized Hausdorff and packing measures,

H
q,t
µ (E) = sup

F⊆E
H

q,t

µ (F ) and P
q,t
µ (E) = inf

E⊆
⋃

i
Ei

∑

i

P
q,t

µ (Ei).

The functionsHq,t
µ and Pq,t

µ are metric outer measures and thus measures on the family of Borel subsets

of Rn. An important feature of the Hausdorff and packing measures is that Pq,t
µ ≤ P

q,t

µ . Moreover, there
exists an integer ξ ∈ N, such that Hq,t

µ ≤ ξPq,t
µ . The measureHq,t

µ is of course a multifractal generalization
of the centered Hausdorff measure, whereas Pq,t

µ is a multifractal generalization of the packing measure.
In fact, it is easily seen that, for t ≥ 0, one has

2−t
H

0,t
µ ≤ H

t ≤ H
0,t
µ and P

0,t
µ = P

t,

where H
t and P

t denote respectively the t-dimensional Hausdorff and t-dimensional packing measures.

The measures Hq,t
µ and Pq,t

µ and the pre-measure P
q,t

µ assign in a usual way a multifractal dimension
to each subset E of Rn. They are respectively denoted by dimq

µ(E), Dimq
µ(E) and ∆q

µ(E) (see [33]) and
satisfy

dimq
µ(E) = inf

{

t ∈ R; Hq,t
µ (E) = 0

}

= sup
{

t ∈ R; Hq,t
µ (E) = +∞

}

,

Dimq
µ(E) = inf

{

t ∈ R; Pq,t
µ (E) = 0

}

= sup
{

t ∈ R; Pq,t
µ (E) = +∞

}

,

∆q
µ(E) = inf

{

t ∈ R; P
q,t

µ (E) = 0
}

= sup
{

t ∈ R; P
q,t

µ (E) = +∞
}

.

The number dimq
µ(E) is an obvious multifractal analogue of the Hausdorff dimension dim(E) of E whereas

Dimq
µ(E) and ∆q

µ(E) are obvious multifractal analogues of the packing dimension Dim(E) and the pre-
packing dimension ∆(E) of E respectively. In fact, it follows immediately from the definitions that

dim(E) = dim0
µ(E), Dim(E) = Dim0

µ(E) and ∆(E) = ∆0
µ(E).

3. Multifractal Hausdorff and packing dimensions of measures

Now, we introduce the multifractal analogous of the Hausdorff and packing dimensions of a Borel
probability measure.

Definition 3.1. The lower and upper multifractal Hausdorff dimensions of a measure ν with respect to
a measure µ are defined by

dimq
µ(ν) = inf

{

dimq
µ(E); E ⊆ R

n and ν(E) > 0
}

and
dim

q

µ(ν) = inf
{

dimq
µ(E); E ⊆ R

n and ν(E) = 1
}

.

We denote by dimq
µ(ν) their common value, if the equality dimq

µ(ν) = dim
q

µ(ν) is satisfied.

Definition 3.2. The lower and upper multifractal packing dimensions of a measure ν with respect to a
measure µ are defined by

Dimq
µ(ν) = inf

{

Dimq
µ(E); E ⊆ R

n and ν(E) > 0
}

and
Dim

q

µ(ν) = inf
{

Dimq
µ(E); E ⊆ R

n and ν(E) = 1
}

.

When Dimq
µ(ν) = Dim

q

µ(ν), we denote by Dimq
µ(ν) their common value.
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Definition 3.3. Let µ, ν be two Borel probability measures on R
n.

1. We say that µ is absolutely continuous with respect to ν and write µ ≪ ν if, for any set A ⊂ R
n,

ν(A) = 0 ⇒ µ(A) = 0.

2. µ and ν are said to be mutually singular and we write µ⊥ ν if there exists a set A ⊂ R
n, such that

µ(A) = 0 = ν(Rn \A).

The quantities dimq
µ(ν) and dim

q

µ(ν)
(

resp. Dimq
µ(ν) and Dim

q

µ(ν)
)

allow to compare the measure ν
with the generalized Hausdorff (resp. packing) measure. More precisely, we have the following result.

Theorem 3.4. Let µ, ν be two Borel probability measures on R
n and q ∈ R. We have,

1. dimq
µ(ν) = sup

{

t ∈ R; ν ≪ Hq,t
µ

}

and dim
q

µ(ν) = inf
{

t ∈ R; ν⊥Hq,t
µ

}

.

2. Dimq
µ(ν) = sup

{

t ∈ R; ν ≪ P
q,t
µ

}

and Dim
q

µ(ν) = inf
{

t ∈ R; ν⊥P
q,t
µ

}

.

Proof. 1) Let’s prove that dimq
µ(ν) = sup

{

t ∈ R; ν ≪ Hq,t
µ

}

. Define

s = sup
{

t ∈ R; ν ≪ H
q,t
µ

}

.

For any t < s and E ⊆ R
n, such that ν(E) > 0, we have Hq,t

µ (E) > 0. It follows that dimq
µ(E) ≥ t

and then, dimq
µ(ν) ≥ t. We deduce that dimq

µ(ν) ≥ s.

On the other hand, for any t > s, there exists a set E ⊆ R
n, such that ν(E) > 0 and Hq,t

µ (E) = 0.
Consequently, dimq

µ(E) ≤ t and so, dimq
µ(ν) ≤ t. This leads to dimq

µ(ν) ≤ s.

Now, we prove that dim
q

µ(ν) = inf
{

t ∈ R; ν⊥Hq,t
µ

}

. For this, we define

s′ = inf
{

t ∈ R; ν⊥H
q,t
µ

}

.

For t > s′, there exists a set E ⊆ R
n, such that H

q,t
µ (E) = 0 = ν(Rn \E). Then, dimq

µ(E) ≤ t. Since
ν(E) = 1, then dimq

µ(ν) ≤ t and dimq
µ(ν) ≤ s′.

Now, for t < s′, take E ⊆ R
n, such that Hq,t

µ (E) > 0 and ν(E) = 1. It can immediately seen that
dimq

µ(E) ≥ t. Then, dimq
µ(ν) ≥ t. It follows that dimq

µ(ν) ≥ s′. This ends the proof of assertion (1).
2) The proof of assertion (2) is given in [27, Theorem 2]. �

Remark 3.5. When the upper multifractal Hausdorff (resp. packing) dimension of the measure is small,
it means that the measure ν is “very singular” with respect to the generalized multifractal Hausdorff (resp.
packing) measure. In the same way, when the lower multifractal (resp. packing) dimension of the measure
is large, then the measure ν is “quite regular” with respect to the generalized multifractal Hausdorff (resp.
packing) measure.

The quantities dimq
µ(ν), dim

q

µ(ν), Dimq
µ(ν) and Dim

q

µ(ν) are related to the asymptotic behavior of
the function αq

µ,ν(x, r), where

αq
µ,ν(x, r) =

log ν
(

B(x, r)
)

− q logµ
(

B(x, r)
)

log r
.

Notice that the chararcterization of the lower und upper packing dimensions by the function αq
µ,ν is

proved by J. Li in [27, Theorem 3]. In the following theorem we prove similar results for the Hausdorff
dimensions.
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Theorem 3.6. Let µ, ν be two Borel probability measures on R
n and q ∈ R. Let

αq
µ,ν(x) = lim inf

r→0
αq
µ,ν(x, r) and αq

µ,ν(x) = lim sup
r→0

αq
µ,ν(x, r).

We have,

1. dimq
µ(ν) = ess inf αq

µ,ν(x) and dim
q

µ(ν) = ess supαq
µ,ν(x).

2. Dimq
µ(ν) = ess inf αq

µ,ν(x) and Dim
q

µ(ν) = ess supαq
µ,ν(x),

where the essential bounds being related to the measure ν.

Proof. We prove that dimq
µ(ν) = ess inf αq

µ,ν(x).

Let α < ess inf αq
µ,ν(x). For ν-almost every x, there exists r0 > 0, such that 0 < r < r0 and

ν(B(x, r)) < µ(B(x, r))q rα.

Denote by

Fn =

{

x; ν(B(x, r)) < µ(B(x, r))q rα, for 0 < r <
1

n

}

.

Let F = ∪nFn. It is clear that ν(F ) = 1. Take E be a Borel subset of Rn satisfying ν(E) > 0. We have
ν(E ∩ F ) > 0 and there exists an integer n, such that ν(E ∩ Fn) > 0.

Let δ > 0 and
(

B(xi, ri)
)

i
be a centered δ-covering of E ∩ Fn. We have

∑

i

ν(B(xi, ri)) ≤ 2−α
∑

i

µ(B(xi, ri))
q(2ri)

α,

so that

2αν(E ∩ Fn) ≤ H
q,α

µ,δ(E ∩ Fn).

Letting δ → 0 gives that

2αν(E ∩ Fn) ≤ H
q,α

µ (E ∩ Fn) ≤ H
q,α
µ (E ∩ Fn).

It follows that

H
q,α
µ (E) ≥ H

q,α
µ (E ∩ Fn) > 0 ⇒ dimq

µ(E) ≥ α.

We have proved that

dimq
µ(ν) ≥ ess inf αq

µ,ν(x).

On the other hand, if ess inf αq
µ,ν(x) = α. For ε > 0, let

Eε =
{

x ∈ supp ν; αq
µ,ν(x) < α+ ε

}

.

It is clear that ν(Eε) > 0. This means that dimq
µ(ν) ≤ dimq

µ(Eε). We will prove that

dimq
µ(Eε) ≤ α+ ε, ∀ ε > 0.

Let E ⊂ Eε and x ∈ E. Then, for all δ > 0 we can find 0 < rx < δ, such that

ν(B(x, rx)) > µ(B(x, rx))
q rα+ε

x .
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Take δ > 0. The family
(

B(x, rx)
)

x∈E
is a centered δ-covering of E. Using Besicovitch’s Covering The-

orem (see [16,28]), we can construct ξ finite or countable sub-families
(

B(x1j , r1j)
)

j
,....,

(

B(xξj , rξj)
)

j
,

such that each E satisfies

E ⊆

ξ
⋃

i=1

⋃

j

B(xij , rij) and
(

B(xij , rij)
)

j
is a δ-packing of E.

We get

∑

i,j

µ(B(xij , rij))
q(2rij)

α+ε ≤ ξ2α+ε
∑

j

ν(B(xij , rij)) ≤ ξ2α+εν(Rn).

Consequently,

H
q,α+ε

µ,δ (E) ≤ ξ2α+εν(Rn) ⇒ H
q,α+ε

µ (E) ≤ ξ2α+εν(Rn).

We obtain thus

H
q,α+ε
µ (Eε) ≤ ξ2α+εν(Rn) < ∞.

Therefore,

dimq
µ(E) ≤ α+ ε and dimq

µ(ν) ≤ ess inf αq
µ,ν(x).

We prove in a similar way that dim
q

µ(ν) = ess supαq
µ,ν(x). �

Corollary 3.7. Let µ, ν be two Borel probability measures on R
n and take q, α ∈ R. We have,

1. dimq
µ(ν) ≥ α if and only if αq

µ,ν(x) ≥ α for ν-a.e. x.

2. dim
q

µ(ν) ≤ α if and only if αq
µ,ν(x) ≤ α for ν-a.e. x.

3. Dimq
µ(ν) ≥ α if and only if αq

µ,ν(x) ≥ α for ν-a.e. x.

4. Dim
q

µ(ν) ≤ α if and only if αq
µ,ν(x) ≤ α for ν-a.e. x.

Proof. Follows immediately from Theorem 3.6. �

Example 3.8.

We recall the definition of the deranged Cantor set (see [3,4,6,5]).

Let I∅ = [0, 1]. We obtain respectively the left and right sub-intervals Iε,1 and Iε,2 of Iε by deleting the
middle open sub-interval of Iε inductively for each ε ∈ {1, 2}n, where n ∈ N.

We consider the sequence

Cn =
⋃

ε∈{1,2}n

Iε.

{Cn}n∈N is a decreasing sequence of closed sets.

For each n ∈ N and each ε ∈ {1, 2}n, we put

|Iε,1|/|Iε| = cε,1 and |Iε,2|/|Iε| = cε,2,

where |I| is the diameter of I. The set C =
⋂

n≥0

Cn is called a deranged Cantor set.
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Let ν be a probability measure supported by the deranged Cantor set C and µ be the Lebesgue
measure on I∅. For ε1, ..., εn ∈ {1, 2}, we denote by Iε1,...,εn the basic set of level n. For x ∈ C, we denote
by In(x) the n-th level set containing x. We introduce the sequence of random variables Xn defined by

Xn(x) = − log3

(

ν(In(x))

ν(In−1(x))

)

.

We have
Sn(x)

n
=

X1(x) + ...+Xn(x)

n
=

log(ν(In(x))

log | In(x) |
.

By Lemma 1 in [5], we have for all x ∈ C,

lim inf
n→∞

log(ν(In(x))

log | In(x) |
= lim inf

r→0

log(ν(B(x, r))

log r

and

lim sup
n→∞

log(ν(In(x))

log | In(x) |
= lim sup

r→0

log(ν(B(x, r))

log r
.

The quantities dimq
µ(ν) and dim

q

µ(ν) are related to the asymptotic behavior of the sequence
Sn

n
. More

precisely, we have the following two relations

dimq
µ(ν) = ess inf

{

lim inf
n→∞

Sn(x)

n
− q

}

and

dim
q

µ(ν) = ess sup

{

lim inf
n→∞

Sn(x)

n
− q

}

.

In the same way, we can also prove that

Dimq
µ(ν) = ess inf

{

lim sup
n→∞

Sn(x)

n
− q

}

and

Dim
q

µ(ν) = ess sup

{

lim sup
n→∞

Sn(x)

n
− q

}

.

We say that the measure ν is (q, µ)-unidimensional if dim
q

µ(ν) = dimq
µ(ν). We also say that ν has

an exact multifractal packing dimension whenever Dim
q

µ(ν) = Dimq
µ(ν). In general, a Borel probability

measure is not (q, µ)-unidimensional and Dim
q

µ(ν) 6= Dimq
µ(ν).

In the following, we are interested to the (q, µ)-unidimensionality and ergodicity of ν and to the
calculus of its multifractal Hausdorff and packing dimensions. Our purpose in the following theorem is
to prove the main Theorem of M. Dai [13, Theorem A] under less restrictive hypotheses.

Theorem 3.9. The measure ν is (q, µ)-unidimensional with dimq
µ(ν) = α if and only if the following

two conditions are satisfied.

1. There exists a set E of Rn with dimq
µ(E) = α, such that ν(E) = 1.

2. ν(E) = 0, for every Borel set E satisfying dimq
µ(E) < α.

Proof. We can deduce from Theorems 3.4 and 3.6 that ν is (q, µ)-unidimensional if and only if we have
the following assertions.
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1. ν is absolutely continuous with respect to Hq,α−ε
µ , for all ε > 0.

2. ν and Hq,α+ε
µ are mutually singular, for all ε > 0.

Then, the proof of Theorem 3.9 becomes an easy consequence of the following lemma.

Lemma 3.10. [13] The following conditions are equivalent.

1. We have,

(a) there exists a set E of Rn with dimq
µ(E) = α, such that ν(E) = 1.

(b) ν(E) = 0, for every Borel set E satisfying dimq
µ(E) < α.

2. We have,

(a) ν ≪ Hq,α−ε
µ for all ε > 0.

(b) ν⊥Hq,α+ε
µ for all ε > 0.

�

Remark 3.11. Theorem 3.9 improves Dai’s result [13, Theorem A] (we need not to assume that µ is a
doubling measure).

The symmetrical results are true as well.

Theorem 3.12. Let µ, ν be two Borel probability measures on R
n and take α, q ∈ R. The following

conditions are equivalent.

1. Dim
q

µ(ν) = Dimq
µ(ν) = α.

2. We have,

(a) there exist a set E ⊂ R
n with Dimq

µ(E) = α, such that ν(E) = 1,

(b) if E ⊂ R
n satisfies Dimq

µ(E) < α, then ν(E) = 0.

3. We have,

(a) ν ≪ Pq,α−ǫ
µ , for all ǫ > 0.

(b) ν⊥Pq,α+ǫ
µ , for all ǫ > 0.

Proof. We can deduce from Theorems 3.4 and 3.6 that the assertions (1) and (3) are equivalent. We only
need to prove the equivalence of the assertions (2) and (3).

Assume that the measure ν satisfies the hypothesis (a) and (b) of (2). Let E ⊂ R
n and suppose that

Pq,α−ǫ
µ (E) = 0, for all ǫ > 0. Then, we have that Dimq

µ(E) ≤ α − ǫ < α. By condition (b) of (2), we
obtain ν(E) = 0. Thus,

ν ≪ P
q,α−ǫ
µ , for all ǫ > 0.

Thanks to condition (a) of (2), there exists a set E ⊂ R
n of multifractal packing dimension α, such

that ν(E) = 1 and Dimq
µ(E) = α < α+ ǫ, for all ǫ > 0. Then, Pq,α+ǫ

µ (E) = 0. Thus,

ν⊥P
q,α+ǫ
µ , for all ǫ > 0.

Now, assume that ν satisfies conditions (a) and (b) of (3). This means that ν ≪ Pq,α−ǫ
µ , for all ǫ > 0.

Taking a Borel set E with Dimq
µ(E) = β < α and ǫ = α−β

2 , we get P
q,(α+β)/2
µ (E) = 0. Then, ν(E) = 0.



Multifractal Dimensions for Projections of Measures 9

Since ν⊥Pq,α+ǫ
µ , for all ǫ > 0, there exists a set Fǫ with Pq,α+ǫ

µ (Fǫ) = 0 and ν(Fǫ) = 1. Hence,
Dimq

µ(Fǫ) ≤ α + ǫ. Choose a sequence (ǫk)k such that ǫk → 0 as k → +∞ and consider the set

F =
⋂

k≥1

Fǫk . It is clear that ν(F ) = 1 and

Dimq
µ(F ) ≤ lim inf

k→∞
Dimq

µ(Fǫk) ≤ lim inf
k→∞

(α + ǫk) = α.

If Dimq
µ(F ) = α, then the condition (a) of (2) is satisfied for E = F .

If Dimq
µ(F ) < α, then putting E = F ∪G, for some Borel set G of multifractal packing dimension α, we

obtain
ν(E) = 1 and Dimq

µ(E) = max
{

Dimq
µ(F ),Dimq

µ(G)
}

= α.

�

Proposition 3.13. Let µ be the Lebesgue measure on R
n, ν be a compactly supported Borel probability

measure on R
n and T : supp ν → supp ν a K-lipschitz function. Suppose that ν is T -invariant and ergodic

on supp ν. Then,
dim

q

µ(ν) = dimq
µ(ν) and Dim

q

µ(ν) = Dimq
µ(ν).

Proof. T is a K-lipschitz function, then T (B(x, r)) ⊆ B(T (x),Kr). Since ν is T -invariant, then we can
deduce that

ν
(

B(x, r)
)

≤ ν
(

T−1
(

T (B(x, r))
))

≤ ν
(

T−1
(

B(T (x),Kr)
))

= ν
(

B(T (x),Kr)
)

.

It follows that,

log ν
(

B(x, r)
)

− q logµ
(

B(x, r)
)

log r
=

log ν
(

B(x, r)
)

log r
− q

≥
log ν

(

B(T (x),Kr)
)

log(Kr)
×

log(Kr)

log r
− q,

which proves that
αq
µ,ν(x) ≥ αq

µ,ν(T (x)) and αq
µ,ν(x) ≥ αq

µ,ν(T (x)).

Since ν is ergodic, then the functions

αq
µ,ν(x) − αq

µ,ν(T (x))

and
αq
µ,ν(x) − αq

µ,ν(T (x))

are positive and satisfies
∫

(

αq
µ,ν(x) − αq

µ,ν(T (x))
)

dν(x) = 0 and

∫

(

αq
µ,ν(x)− αq

µ,ν(T (x))
)

dν(x) = 0.

We can conclude that,

αq
µ,ν(x) = αq

µ,ν(T (x)) and αq
µ,ν(x) = αq

µ,ν(T (x)) for ν -a.e. x

and that the functions αq
µ,ν , α

q
µ,ν are T -invariant. On the other hand, the measure ν is ergodic and

−q ≤ αq
µ,ν ≤ αq

µ,ν ≤ n− q.

It follows that αq
µ,ν

(

αq
µ,ν

)

is ν-almost every where constant, which says that

dim
q

µ(ν) = dimq
µ(ν) and Dim

q

µ(ν) = Dimq
µ(ν).

�
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Remark 3.14. In the case where αq
µ,ν(x) = αq

µ,ν(x) = α for ν-almost all x, we have dimq
µ(ν) =

Dimq
µ(ν) = α. The results developed by Heurteaux in [24,25,26] and Fan et al. in [19,20,21] are ob-

tained as a special case of the multifractal Theorems when q equals 0.

Example 3.15.

We say that the probability measure µ is a quasi-Bernoulli measure on the Cantor set C = {0, 1}N
∗

if
we can find C ≥ 1 such that

∀x, y ∈ F C−1µ(x)µ(y) ≤ µ(xy) ≤ Cµ(x)µ(y),

where F is the set of words written with the alphabet {0, 1}. Let Fn be the set of words of length n, and
take x = x1x2... ∈ C, let In(x) be the unique cylinder Fn that contains x. Let us introduce the function
τµ defined for p ∈ R, by

τµ(p) = lim
n→∞

τµ(p, n) with τµ(p, n) =
1

n log 2
log

(

∑

x∈Fn

µ(x)p

)

.

Let µ and ν be two probability measures on C such that, ν ≪ µ and µ is a quasi-Bernoulli measure.
Then, τ ′µ(1) exists and we have

lim
n→∞

logµ
(

B(x, 2−n)
)

log(2−n)
= lim

n→∞

log2 µ
(

In(x)
)

−n
= −τ ′µ(1) for µ-a.e. x ∈ C, (3.1)

and

lim
n→∞

log2 ν
(

In(x)
)

−n
= −τ ′ν(1) = −τ ′µ(1) for ν-a.e. x ∈ C. (3.2)

For more details about (3.1) and (3.2), the reader can see [23,25]. We have immediately from (3.1) and
(3.2) that the measure ν is (q, µ)-unidimensional and

dimq
µ(ν) = Dimq

µ(ν) = (q − 1)τ ′µ(1) = (q − 1)τ ′ν(1).

4. Projections results

In this section, we show that the multifractal Hausdorff and packing dimensions of a measure ν are
preserved under almost every orthogonal projection. Casually, we briefly recall some basic definitions and
facts which will be repeatedly used in subsequent developments. Let m be an integer with 0 < m < n
and Gn,m the Grassmannian manifold of all m-dimensional linear subspaces of Rn. Denote by γn,m the
invariant Haar measure on Gn,m, such that γn,m(Gn,m) = 1. For V ∈ Gn,m, define the projection map
πV : Rn −→ V as the usual orthogonal projection onto V . Then, the set {πV , V ∈ Gn,m} is compact
in the space of all linear maps from R

n to R
m and the identification of V with πV induces a compact

topology for Gn,m. Also, for a Borel probability measure µ with compact support on R
n, denoted by

suppµ, and for V ∈ Gn,m, define the projection µV of µ onto V , by

µV (A) = µ(π−1
V (A)) ∀A ⊆ V.

Since µ is compactly supported and suppµV = πV (suppµ) for all V ∈ Gn,m, then for any continuous
function f : V −→ R, we have

∫

V

fdµV =

∫

f(πV (x))dµ(x)

whenever these integrals exist. For more details, see for example [17,18,28,29,40,44]. The convolution is
defined, for 1 ≤ m < n and r > 0, by

φ
m

r : R
n −→ R

x 7−→ γn,m

{

V ∈ Gn,m; |πV (x)| ≤ r
}

.
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Moreover, define
φm
r : R

n −→ R

x 7−→ min
{

1 , rm|x|−m
}

.

We have that φm
r (x) is equivalent to φ

m

r (x) and write φm
r (x) ≍ φ

m

r (x).

For a probability measure µ and for V ∈ Gn,m, we have

µ ∗ φm
r (x) ≍ µ ∗ φ

m

r (x) =

∫

µV (B(xV , r))dV

and

µ ∗ φm
r (x) =

∫

min
{

1 , rm|x− y|−m
}

dµ(y).

So, integrating by parts and converting into spherical coordinates (see [18]), we obtain

µ ∗ φm
r (x) = mrm

∫ +∞

r

u−m−1µ(B(x, u))du.

We present the tools, as well as the intermediate results, which will be used in the proofs of our main
results. The following straightforward estimates concern the behaviour of the convolution µ ∗ φm

r (x) as
r → 0.

Lemma 4.1. [18] Let 1 ≤ m ≤ n and µ be a compactly supported Borel probability measure on R
n. For

all x ∈ R
n, we have

crm ≤ µ ∗ φm
r (x)

for all sufficiently small r, where c > 0 independent of r.

Definition 4.2. Let E ⊆ R
n and 0 < s < +∞. We say that E is s-Ahlfors regular if it is closed and if

there exists a Borel measure µ on R
n and a constant 1 ≤ CE < +∞, such that µ(E) > 0 and

C−1
E rs ≤ µ(B(x, r)) ≤ CEr

s, for all x ∈ E and 0 < r ≤ 1.

Lemma 4.3. Let 0 < m ≤ n.

1. Let µ be a compactly supported Borel probability measure on R
n. Then, for all x ∈ R

n and r > 0,

µ(B(x, r)) ≤ µ ∗ φm
r (x).

2. Suppose that µ is a compactly supported Borel probability measure on R
n with support contained in

an s-Ahlfors regular set for some 0 < s ≤ m. Then, for all ε > 0 and µ-almost all x there is c > 0
such that

c r−εµ(B(x, r)) ≥ µ ∗ φm
r (x).

for sufficiently small r.

Proof. The proof of assertion (1) is exactly the same as that given in [18]. The assertion (2) is nothing
but Lemma 5.8 of [32]. �

We use the properties of µ ∗ φn
r (x) to have a relationship between the kernels and the projected

measures.

Lemma 4.4. [18] Let 1 ≤ m ≤ n and µ be a compactly supported Borel probability measure on R
n. We

have,
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1. Let ε > 0. For all V ∈ Gn,m, for µ-almost all x and for sufficiently small r,

rεµ ∗ φm
r (x) ≤ µV (B(xV , r)).

2. Let ε > 0. For γn,m-almost all V ∈ Gn,m, for all x ∈ R
n and for sufficiently small r,

r−εµ ∗ φm
r (x) ≥ µV (B(xV , r)).

Throughout this section, we consider a compactly supported Borel probability measure µ on R
n with

support contained in an s-Ahlfors regular set for some 0 ≤ s ≤ m < n and ν be a compactly supported
Borel probability measure on R

n such that supp ν ⊆ suppµ and ν ≪ µ.

We introduce the function αq,m
µ,ν and αq,m

µ,ν , by

αq,m
µ,ν (x) = lim inf

r→0

log ν ∗ φm
r (x)− q logµ ∗ φm

r (x)

log r
,

and

αq,m
µ,ν (x) = lim sup

r→0

log ν ∗ φm
r (x)− q logµ ∗ φm

r (x)

log r
.

Proposition 4.5. Let q ∈ R. We have that for ν-almost all x

1. If q > 0, then
αq,m
µ,ν (x) = αq

µ,ν(x).

2. If q ≤ 0 and αq
µ,ν(x) ≤ m(1− q), then

αq,m
µ,ν (x) = αq

µ,ν(x).

Proof. 1. We will prove that for ν-almost all x, we have αq,m
µ,ν (x) ≤ αq

µ,ν(x). The proof of the other
inequality is similar.

By using Lemma 4.3, we have

log ν(B(x, r)) ≤ log ν ∗ φm
r (x).

Since ν is absolutely continuous with respect to µ and q > 0, we have that for ν-almost all x

−q
(

log c− ε log r + logµ(B(x, r))
)

≤ −q logµ ∗ φm
r (x).

So, for ν-almost all x,

log ν(B(x, r)) − q
(

log c− ε log r + logµ(B(x, r))
)

log r
≥

log ν ∗ φm
r (x)− q logµ ∗ φm

r (x)

log r

Finally, Letting ε → 0, we get αq
µ,ν(x) ≥ αq,m

µ,ν (x).

2. The inequality αq,m
µ,ν (x) ≤ m(1− q) follows immediately from Lemma 4.1.

By using Lemma 4.3, we have

log ν(B(x, r)) ≤ log ν ∗ φm
r (x).

Since q ≤ 0, then
−q log µ(B(x, r)) ≤ −q logµ ∗ φm

r (x).

It follows that αq,m
µ,ν (x) ≤ αq

µ,ν(x). The proof for other inequality is similar to that given for assertion
(1).

�
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The following proposition is a consequence of Lemma 4.4.

Proposition 4.6. Let q ∈ R. For γn,m-almost all V ∈ Gn,m and ν-almost all x, we have

αq
µ
V
,νV

(xV ) = αq,m
µ,ν (x)

and
αq
µ
V
,νV

(xV ) = αq,m
µ,ν (x).

The following theorem presents general relations between the multifractal Hausdorff and the multi-
fractal packing dimension of a measure ν and that of its orthogonal projections.

Theorem 4.7. Let q ∈ R.

1. For γn,m-almost all V ∈ Gn,m, we have

Dimq
µ
V
(νV ) = ess inf αq,m

µ,ν (x) and Dim
q

µ
V
(νV ) = ess supαq,m

µ,ν (x)

where the essential bounds being related to the measure ν.

2. For γn,m-almost all V ∈ Gn,m, we have

(a) for q > 0,
dimq

µ
V
(νV ) = dimq

µ(ν) and dim
q

µ
V
(νV ) = dim

q

µ(ν).

(b) for q ≤ 0 and dim
q

µ(ν) ≤ m(1− q),

dimq
µ
V
(νV ) = dimq

µ(ν) and dim
q

µ
V
(νV ) = dim

q

µ(ν).

Proof. Follows immediately from Propositions 4.5 and 4.6 and Corollary 3.7. �

Remark 4.8. Due to Proposition 5.10 in [32], the result is optimal. If in addition, q = 0, then the
results of Falconer and O’Neil hold (see [18]).
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