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One Solution For Nonlocal Fourth Order Equations

Ghasem A. Afrouzi, David Barilla, Giuseppe Caristi and Shahin Moradi

abstract: A critical point result for differentiable functionals is exploited in order to prove that a suitable
class of fourth-order boundary value problem of Kirchhoff-type possesses at least one weak solution under an
asymptotical behaviour of the nonlinear datum at zero. Some examples to illustrate the results are given.
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1. Introduction

In this article, we are concerned with the fourth-order Kirchhoff-type elliptic problem

{
∆
(∣∣∆u

∣∣p−2
∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣pdx

)]p−1
∆pu+ ρ

∣∣u
∣∣p−2

u = f(x, u), in Ω,

u = ∆u = 0, on ∂Ω
(P f )

where p > max
{
1, N2

}
, Ω ⊂ R

N (N ≥ 1) is a bounded smooth domain, ρ > 0, M : [0, +∞[→ R is a
continuous function and f : Ω× R → R is an L1-Carathéodory function.

Partial differential equations (PDEs) have been used in many fields such as physics, biology, engi-
neering, economics, and finance to model and analyse dynamic systems. Recently, partial differential
equations (PDEs) have become important in socioeconomics, as descriptive tools in the qualitative and
quantitative sense. Very often PDE modeling of socioeconomic processes is based on principles carried
over from the physical and chemical sciences.

The problem (P f ) is related to the stationary analogue of the Kirchhoff equation,

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

∣∣∂u
∂x

∣∣2dx
)∂2u

∂x2
= 0 (1.1)

where ρ is the mass density, ρ0 is the initial tension, h is the area of the crosssection, E is the Young
modulus of the material and L is the length of the string, proposed by Kirchhoff [27] as an extension of
the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes
into account the length changes of the string produced by transverse vibrations. Nonlinear Kirchhoff
model can also be used for describing the dynamics of an axially moving string. In recent years, axially
moving string-like continua such as wires, belts, chains, band-saws have been subjects of the study of
researchers (see [41]).

Latter (1.1) was developed to form

utt −M
(∫

Ω

∣∣∇u
∣∣2dx

)
∆u = f(x, u) (1.2)
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where M(s) = as + b, a, b > 0. After that, many authors studied the nonlocal elliptic boundary value
problem

−M
(∫

Ω

∣∣∇u
∣∣2dx

)
∆u = f(x, u). (1.3)

Problems like (1.3) can be used for modeling several physical and biological systems where u describes
a process which depends on the average of itself, such as the population density, see [2]. There are a
number of papers concerned with Kirchhoff-type boundary value problem, for instance see [10,13,19,
21,32,33,37,40,45,46]. For example, Ricceri in an interesting paper [40] established the existence of at
least three weak solutions to a class of Kirchhoff-type doubly eigenvalue boundary value problem. In
[19] employing a three critical pint theorem due to Ricceri, the existence of at least three weak solutions
for Kirchhoff-type problems involving two parameters was discussed. The existence and multiplicity of
stationary problems of Kirchhoff type were also studied in some recent papers, via variational methods
like the symmetric mountain pass theorem in [11] and via a three critical point theorem in [5]. Moreover,
in [3,4] some evolutionary higher order Kirchhoff problems, mainly focusing on the qualitative properties
of the solutions were treated.

Fourth-order boundary value problems which describe the deformations of an elastic beam in an
equilibrium state whose both ends are simply supported have been extensively studied in the literature.
For classical results obtained on elastic beam equations we refer to [6,12,14,15,38,44], in particular [44] is
one of the pioneering works on extensible beams), while [12] settles the existence and multiplicity question
for (P f ) in the physical situation p = 2, ρ = 0 and M of the form M(s) = as+ b. Recently, the existence
of solutions to fourth-order boundary value problems have been studied in many papers and we refer the
reader to the papers [8,9,20,22,26,28,29,30,31,36] and the references therein. For example, Candito and
Livrea in [9] by using critical point theory, established the existence of infinitely many weak solutions
for a class of elliptic Navier boundary value problems depending on two parameters and involving the
p-biharmonic operator. Liu et al. in [30] employing variational methods, studied the existence and
multiplicity of nontrivial solutions for fourth-order elliptic equations. In [20,26] based on variational
methods and critical point theory, the existence of multiple solutions for (p1, . . . , pn)-biharmonic systems
was discussed. Molica Bisci and Repovs̆ in [36] exploiting variational methods, investigated the existence
of multiple weak solutions for a class of elliptic Navier boundary problems involving the p-biharmonic
operator, and presented a concrete example of an application.

The problem (P f ) models the bending equilibrium of simply supported extensible beams on non-
linear foundations. The function f represents the force that the foundation exerts on the beam and
M
(∫

Ω

∣∣∇u
∣∣pdx

)
models the effects of the small changes in the length of the beam. Recently, many

researchers have paid their attention to fourth-order Kirchhoff-type problems, we refer the reader to
[16,34,42,43] and the references therein. In [42], using the mountain pass theorem, Wang and An estab-
lished the existence and multiplicity of solutions for the following fourth-order nonlocal elliptic problem

{
∆2u−M

(∫
Ω

∣∣∇u
∣∣2dx

)
∆u = λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω.

In particular, in [16] using variational methods and critical point theory, multiplicity results of nontrivial
and nonnegative solutions for the parametric version of the problem (P f ) were established.

The objective of the present paper is to establish the existence of at least one weak solution for
the problem (P f ). Precisely, in Theorem 3.1 using a smooth version of Theorem 2.1 of [7] which is a
more precise version of Ricceri’s Variational Principle [39] which we recall in the section we establish
the existence of at least one weak solution for the problem (P f ) requiring an algebraic condition on the
nonlinear term f . We present Example 3.2 in which the hypotheses of Theorem 3.1 are fulfilled. Also
in Theorem 3.3 a parametric version of the result of Theorem 3.1 is successively discussed in which, for
small values of the parameter and requiring an additional asymptotical behaviour of the potential at zero
if f(x, 0) = 0 for every x ∈ Ω, the existence of one nontrivial weak solution is established; see Proposition
3.10. As a consequence of Theorem 3.3, we obtain Corollary 3.4 for the autonomous case. We also present
Example 3.5 in which the hypotheses of Corollary 3.4 are fulfilled. Moreover, we deduce the existence of
solutions for small positive values of the parameter λ such that the corresponding solutions have smaller
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and smaller energies as the parameter goes to zero; see Remark 3.11. We present the concrete Example
3.12 as an application of Theorem 3.3, Proposition 3.10 and Remark 3.11.

2. Preliminaries

We shall prove our main results applying the following smooth version of Theorem 2.1 of [7] which is
a more precise version of Ricceri’s Variational Principle [39, Theorem 2.1].

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X −→ R be two Gâteaux differentiable
functionals such that Φ is sequentially weakly lower semicontinuous, strongly continuous and coercive in X

and Ψ is sequentially weakly upper semicontinuous in X. Let Iλ be the functional defined as Iλ := Φ−λΨ,
λ ∈ R, and for every r > infX Φ, let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r)Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈ (0, 1
ϕ(r) ), the restriction of the functional Iλ to Φ−1(−∞, r)

admits a global minimum, which is a critical point (precisely a local minimum) of Iλ in X.

We refer the interested reader to the papers [1,17,18,23,24,25,35] in which Theorem 2.1 has been
successfully employed to the existence of at least one non-trivial solution for boundary value problems.

Here and in the sequel, X will denote the space W 2,p(Ω)
⋂

W
1,p
0 (Ω) endowed with the norm

‖u‖ :=

(∫

Ω

(
∣∣∆u(x)

∣∣p +
∣∣∇u(x)

∣∣p +
∣∣u(x)

∣∣p)dx
) 1

p

.

Put

k = sup
u∈X\{0}

maxx∈Ω

∣∣u(x)
∣∣

‖u‖
. (2.1)

For p > max{1, N2 }, since the embedding X →֒ C0(Ω) is compact, one has k < +∞.

Remark 2.2. We recall that a function f : Ω× R → R is said to be L1-Carathéodory if
(a) x 7→ f(x, t) is measurable for every t ∈ R,

(b) t 7→ f(x, t) is continuous for a.e. x ∈ Ω,
(c) for every s > 0 there exists a function ls ∈ L1(Ω) such that

sup
|t|≤s

∣∣f(x, t)
∣∣ ≤ ls(x)

for almost every x ∈ Ω.

Let f : Ω × R → R be an L1-Carathéodory function and M : [0, +∞[→ R be a continuous function
such that there are two positive constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all t ≥ 0.

Set

F (x, t) :=

∫ t

0

f(x, ξ)dξ, for all (x, t) ∈ Ω× R,

M̃(t) :=

∫ t

0

[M(s)]
p−1

ds for all t ≥ 0,

M− := min
{
1,mp−1

0 , ρ
}

and
M+ := max

{
1,mp−1

1 , ρ
}
.

We say that a function u ∈ X is a (weak) solution of the problem (P f ) if
∫

Ω

∣∣∆u(x)
∣∣p−2

∆u(x)∆v(x)dx
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+

[
M

(∫

Ω

∣∣∇u(x)
∣∣pdx

)]p−1 ∫

Ω

∣∣∇u(x)
∣∣p−2

∇u(x)∇v(x)dx

+ρ

∫

Ω

∣∣u(x)
∣∣p−2

u(x)v(x)dx −

∫

Ω

f(x, u(x))v(x)dx = 0

for every v ∈ X .

3. Main results

In the sequel meas(Ω) denotes the Lebesgue measure of the set Ω.
We formulate our main result as follows.

Theorem 3.1. Assume that

sup
γ>0

γp

∫
Ω sup|t|≤γ F (x, t)dx

>
pkp

M−
. (DF )

Then, the problem (P f ) possesses at least one weak solution in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the functionals Φ, Ψ : X → R for
each u ∈ X , as follows

Φ(u) =
1

p

∫

Ω

∣∣∆u(x)
∣∣pdx+

1

p
M̃

[∫

Ω

∣∣∇u(x)
∣∣pdx

]
+

ρ

p

∫

Ω

∣∣u(x)
∣∣pdx (3.1)

and

Ψ(u) =

∫

Ω

F (x, u(x))dx, (3.2)

and we put I(u) = Φ(u)− Ψ(u) for every u ∈ X . Let us prove that the functionals Φ and Ψ satisfy the
required conditions. It is well known that Ψ is a differentiable functional whose differential at the point
u ∈ X is

Ψ′(u)(v) =

∫

Ω

f(x, u(x))v(x)dx

for every v ∈ X as well as is sequentially weakly upper semicontinuous. Moreover, Φ is continuously
differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =

∫

Ω

∣∣∆u(x)
∣∣p−2

∆u(x)∆v(x)dx

+

[
M

(∫

Ω

∣∣∇u(x)
∣∣pdx

)]p−1 ∫

Ω

∣∣∇u(x)
∣∣p−2

∇u(x)∇v(x)dx

+ρ

∫

Ω

∣∣u(x)
∣∣p−2

u(x)v(x)dx

for every v ∈ X . Moreover, since m0 ≤ K(s) ≤ m1 for all s ∈ [0,+∞[, from (3.1), we have

M−

p
‖u‖p ≤ Φ(u) ≤

M+

p
‖u‖p (3.3)

for all u ∈ X , it follows lim‖u‖→+∞ Φ(u) = +∞, namely Φ is coercive. Furthermore, Φ is sequentially
weakly lower semicontinuous. Therefore, we see that the regularity assumptions on Φ and Ψ, as requested
in Theorem 2.1 are verified. The condition (DF ) ensures that there exists γ̄ > 0 such that

γ̄p

∫
Ω sup|t|≤γ̄ F (x, t)dx

>
pkp

M−
. (3.4)
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Choosing r = M−

p
( γ̄
k
)p, in view of (3.3) and bearing (2.1) in mind, we see that

Φ−1(−∞, r) ⊆

{
u ∈ X ;

M−

p

∣∣∣u
∣∣∣
p

≤ r

}
⊆ {u ∈ X ; |u(x)| ≤ γ̄ for each x ∈ Ω} ,

and it follows that

sup
u∈Φ−1(−∞,r)

Ψ(u) = sup
u∈Φ−1(−∞,r)

∫

Ω

F (x, u(x))dx ≤

∫

Ω

sup
|t|≤γ̄

F (x, t)dx.

By simple calculations and from the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) = 0, one
has

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)

r − Φ(u)
≤

supv∈Φ−1(−∞,r)Ψ(v)

r

≤
pkp

M−

∫
Ω
sup|t|≤γ̄ F (x, t)dx

γ̄p
.

At this point, observe that

ϕ(r) ≤
pkp

M−

∫
Ω
sup|t|≤γ̄ F (x, t)dx

γ̄p
. (3.5)

Consequently, from (3.4) and (3.5) one has ϕ(r) < 1. Hence, since 1 ∈ (0, 1
ϕ(r)), applying Theorem 2.1

the functional I possesses at least one critical point (local minima) ũ ∈ Φ−1(−∞, r), and since any weak
solution of the problem (P f ) is exactly a critical point of the functional I, we have the conclusion. �

Here we present an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2. Let p = 3 and ρ = 1. Consider the problem

{
∆
(∣∣∆u

∣∣∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣3dx

)]2
∆3u+ |u|u = f(u), in Ω,

u = ∆u = 0, on ∂Ω
(3.6)

where Ω ⊂ R
2 with meas(Ω) = 1, M(t) = 2 + cos(t) for all t ∈ [0,+∞) and

f(t) =
1

103k3
(3t2 + et)

for all t ∈ R. By the expression of f we have

F (t) =
1

103k3
(t3 + et − 1)

for every t ∈ R. Taking into account that m0 = 1 and

sup
γ>0

γ3

sup|t|≤γ F (t)
> 3k3 =

pkp

M−
,

we observe that all assumptions of Theorem 3.1 are fulfilled. Hence, Theorem 3.1 implies that the problem
(3.6) possesses at least one nontrivial weak solution in W 2,3(Ω)

⋂
W

1,3
0 (Ω).

We note that Theorem 3.1 can be exploited showing the existence of at least one solution for the
parametric version of the problem (P f ),

{
∆
(∣∣∆u

∣∣p−2
∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣pdx

)]p−1
∆pu+ ρ|u|p−2u = λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω
(3.7)

where λ is a positive parameter. Precisely, we have the following existence result.
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Theorem 3.3. For every λ small enough, i.e.

λ ∈
(
0,

M−

pkp
sup
γ>0

γp

∫
Ω
sup|t|≤γ F (x, t)dx

)
,

the problem (3.7) possesses at least one weak solution uλ ∈ X.

Proof. Fix λ as in the conclusion. We define Φ and Ψ be as given in (3.1) and (3.2), respectively, and we
put Iλ(u) = Φ(u)− λΨ(u) for every u ∈ X . Let us pick

0 < λ <
M−

pkp
sup
γ>0

γp

∫
Ω
sup|t|≤γ F (x, t)dx

.

So, there exists γ̄ > 0 such that

λ
pkp

M−
<

γ̄p

∫
Ω
sup|t|≤γ̄ F (x, t)dx

.

Choosing r = M−

p
( γ̄
k
)p, by the same notations as in the proof of Theorem 3.1, one has

ϕ(r) ≤
supv∈Φ−1(−∞,r)Ψ(v)

r
≤

pkp

M−

∫
Ω
sup|t|≤γ̄ F (x, t)dx

γ̄p
<

1

λ
.

Hence, since λ ∈ (0, 1
ϕ(r) ), Theorem 2.1 ensures that the functional Iλ admits at least one critical point

(local minima) uλ ∈ Φ−1(−∞, r) and since the critical points of the functional Iλ are the solutions of the
problem (3.7) we have the conclusion. �

Now we present the following consequence of Theorem 3.3.

Corollary 3.4. Let f : R → R be a nonnegative continuous function and denote

F (t) =

∫ t

0

f(ξ)dξ for all t ∈ R.

Assume that

lim
ξ→0+

F (ξ)

|ξ|p
= +∞.

Then, for each

λ ∈ Λ =
(
0,

M−

meas(Ω)pkp
sup
γ>0

γp

F (γ)

)
,

the problem
{

∆
(∣∣∆u

∣∣p−2
∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣pdx

)]p−1
∆pu+ ρ|u|p−2u = λf(u), in Ω,

u = ∆u = 0, on ∂Ω
(3.8)

possesses at least one nontrivial weak solution uλ ∈ X such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ →
1

p

∫

Ω

∣∣∆uλ(x)
∣∣pdx+

1

p
M̃

[∫

Ω

∣∣∇uλ(x)
∣∣pdx

]
+

ρ

p

∫

Ω

∣∣uλ(x)
∣∣pdx

−λ

∫

Ω

F (uλ(x))dx

is negative and strictly decreasing in Λ.
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We exhibit an example in which the hypotheses of Corollary 3.4 are satisfied.

Example 3.5. We consider the problem

{
∆
(∣∣∆u

∣∣3∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣5dx

)]4
∆5u+ |u|3u = λf(u), in Ω,

u = ∆u = 0, on ∂Ω
(3.9)

where Ω ⊂ R
3 with meas(Ω) = 1, M(t) = 2 + sin(t) for all t ∈ [0,+∞) and

f(t) =
1

k5
(5t4 + 4et)

for all t ∈ R. A direct calculation yields

F (t) =
1

k5
(t5 + 4et − 4)

for every t ∈ R. Taking into account that m0 = 1, all the assumptions of Corollary 3.4 are satisfied,
and it implies that the problem (3.9) for each λ ∈

(
0, 15
)
, possesses at least one nontrivial weak solution

W 2,5(Ω)
⋂
W

1,5
0 (Ω), such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ →
1

5

∫

Ω

∣∣∆uλ(x)
∣∣5dx+

1

5
M̃

[∫

Ω

∣∣∇uλ(x)
∣∣5dx

]
+

1

5

∫

Ω

∣∣uλ(x)
∣∣5dx

−
λ

k5

∫

Ω

(u5
λ(x) + 4euλ(x) − 4)dx

is negative and strictly decreasing in
(
0, 15
)
.

Now we want to give some remarks on our results.

Remark 3.6. In Theorem 3.3 we looked for the existence of at least one critical point of the functional
Iλ naturally associated with the problem (3.7). We note that, in general, Iλ can be unbounded below in
X. Indeed, for example, in the case when f(ξ) = 1 + |ξ|γ−2ξ for every ξ ∈ R with γ > p, for any fixed
u ∈ X\{0} and ι ∈ R, we obtain

Iλ(ιu) = Φ(ιu)− λ

∫

Ω

F (ιu(x))dx

≤ ιp
M+

p
‖u‖p − λι‖u‖L1(Ω) − λ

ιγ

γ
‖u‖γ

Lγ(Ω) → −∞

as ι → +∞. Hence, we can not use direct minimization to find critical points of the functional Iλ.

Remark 3.7. We want to point out that the energy functional Iλ associated with the problem (3.7) is
not coercive. Indeed, when f(t) = |t|s−1 with s ∈ (p,+∞) for every t ∈ R, for any fixed u ∈ X\{0} and
ι ∈ R, we have

Iλ(ιu) = Φ(ιu)− λ

∫

Ω

F (ιu(x))dx ≤ ιp
M+

p
‖u‖p − λ

ιs

s
‖u‖sLs(Ω) → −∞

as ι → +∞.

Remark 3.8. For fixed γ̄ > 0 let

γ̄p

∫
Ω sup|t|≤γ̄ F (x, t)dx

>
pkp

M−
.

Then the result of Theorem 3.3 holds with ‖uλ‖∞ ≤ γ̄ where uλ is the ensured weak solution in X.
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Remark 3.9. If in Theorem 3.1 the function f(x, ξ) ≥ 0 for every (x, ξ) ∈ Ω × R, then the condition
(DF ) assumes the more simple form

sup
γ>0

γp

∫
Ω F (x, γ)dx

>
pkp

M−
. (D′

F )

Moreover, if the assumption

lim sup
γ→+∞

γp

∫
Ω
F (x, γ)dx

>
pkp

M−

is verified, then the condition (D′
F ) automatically holds.

Proposition 3.10. If in Theorem 3.3, f(x, 0) 6= 0 for all x ∈ Ω, then the ensured weak solution is
obviously non-trivial. On the other hand, the nontriviality of the weak solution can be achieved also in
the case f(x, 0) = 0 for a.e. x ∈ Ω requiring the extra condition at zero, that is there are a nonempty
open set D ⊆ Ω and a set B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

essinfx∈BF (x, ξ)

|ξ|p
= +∞ (3.10)

and

lim inf
ξ→0+

essinfx∈DF (x, ξ)

|ξ|p
> −∞. (3.11)

Proof. Let 0 < λ̄ < λ∗ where

λ∗ =
M−

pkp
sup
γ>0

γp

∫
Ω sup|t|≤γ F (x, t)dx

.

Then, there exists γ̄ > 0 such that

λ̄
pkp

M−
<

γ̄p

∫
Ω sup|t|≤γ̄ F (x, t)dx

.

Take Φ and Ψ as given in the proof of Theorem 3.1. Due to Theorem 2.1, for every λ ∈ (0, λ̄) there exists

a critical point of Iλ = Φ− λΨ such that uλ ∈ Φ−1(−∞, rλ) where rλ = M−

p
( γ̄
k
)p. In particular, uλ is a

global minimum of the restriction of Iλ to Φ−1(−∞, rλ). We will prove that the function uλ cannot be
trivial. Let us show that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞. (3.12)

Owing to the assumptions (3.10) and (3.11), we can consider a sequence {ξn} ⊂ R
+ converging to zero

and two constants σ, κ (with σ > 0) such that

lim
n→+∞

ess infx∈B F (x, ξn)

|ξn|
p

= +∞

and
ess inf

x∈D
F (x, ξ) ≥ κ|ξ|p

for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a function v ∈ X such that

(k1) v(x) ∈ [0, 1] for every x ∈ Ω,
(k2) v(x) = 1 for every x ∈ G,

(k3) v(x) = 0 for every x ∈ Ω \D.

Hence, fix M > 0 and consider a real positive number η with

M <
η meas(G) + κ

∫
D\G |v(x)|pdx

M+

p
‖v‖p

.
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Then, there is n0 ∈ N such that ξn < σ and

ess inf
x∈B

F (x, ξn) ≥ η|ξn|
p

for every n > n0. Now, for every n > n0, by considering the properties of the function v (that is
0 ≤ ξnv(x) < σ for n large enough), by (3.3), one has

Ψ(ξnv)

Φ(ξnv)
=

∫
G
F (x, ξn)dx+

∫
D\G F (x, ξnv(x))dx

Φ(ξnv)

>
η meas(G) + κ

∫
D\G |v(x)|pdx

M+

p
‖v‖p

> M.

Since M could be arbitrarily large, we get

lim
n→∞

Ψ(ξnv)

Φ(ξnv)
= +∞,

from which (3.12) clearly follows. So, there exists a sequence {wn} ⊂ X strongly converging to zero such
that, for n large enough, wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we obtain

Iλ(uλ) < 0, (3.13)

so that uλ is not trivial. �

Remark 3.11. By using (3.13), we without difficulty observe that the map

(0, λ∗) ∋ λ 7→ Iλ(uλ) (3.14)

is negative. Also, one has
lim

λ→0+
‖uλ‖ = 0.

Indeed, taking into account the fact that Φ is coercive and for every λ ∈ (0, λ∗) the solution uλ ∈
Φ−1(−∞, r), one has that there exists a positive constant L such that ‖uλ‖ ≤ L for every λ ∈ (0, λ∗).
After that, it is easy to see that there exists a positive constant N such that

∣∣∣
∫

Ω

f(x, uλ(x))uλ(x)dx
∣∣∣ ≤ N‖uλ‖ ≤ NL (3.15)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for every v ∈ X and every
λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ

∫

Ω

f(x, uλ(x))uλ(x)dx (3.16)

for every λ ∈ (0, λ∗). Then, since

0 ≤ M−‖uλ‖
p ≤ Φ′(uλ)(uλ),

by considering (3.16), it follows that

0 ≤ M−‖uλ‖
p ≤ λ

∫

Ω

f(x, uλ(x))uλ(x)dx (3.17)
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for any λ ∈ (0, λ∗). Letting λ → 0+, by (3.17) together with (3.15) we get

lim
λ→0+

‖uλ‖ = 0.

Then, we have obviously the desired conclusion. At last, we have to show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). For our goal we see that for any u ∈ X, one has

Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
. (3.18)

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the functional Iλi

restricted to
Φ(−∞, r) for i = 1, 2. Also, set

mλi
=
(Φ(uλi

)

λi

−Ψ(uλi
)
)
= inf

v∈Φ−1(−∞,r)

(Φ(v)
λi

−Ψ(v)
)

for every i = 1, 2. Clearly, (3.14) together with (3.18) and the positivity of λ implies that

mλi < 0 for i = 1, 2. (3.19)

Moreover,

mλ2
≤ mλ1

, (3.20)

due to the fact that 0 < λ1 < λ2. Then, by (3.18)-(3.20) and again by the fact that 0 < λ1 < λ2, we get
that

Iλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
= Iλ1

(uλ1
),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). The arbitrariness of λ < λ∗ shows that
λ 7→ Iλ(uλ) is strictly decreasing in (0, λ∗).

In the following, we give a direct application of Theorem 3.3, Proposition 3.10 and Remark 3.11.

Example 3.12. Consider the problem





∆
(∣∣∆u

∣∣p−2
∆u
)
−
[
M
(∫

Ω

∣∣∇u
∣∣pdx

)]p−1
∆pu+ ρ|u|p−2u

= λ(α(x)|u|r−2u+ σ(x)|u|s−2u), in Ω,
u = ∆u = 0, on ∂Ω

(3.21)

where r ∈ (1, p), s ∈ (p,+∞) and α, σ : Ω → R are two continuous positive functions. Thanks to
Theorem 3.3 taking Proposition 3.10 and Remark 3.11 into account, the problem (3.21) possesses at least
one nontrivial weak solution uλ ∈ X such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ →
1

p

∫

Ω

∣∣∆uλ(x)
∣∣pdx+

1

p
M̃

[∫

Ω

∣∣∇uλ(x)
∣∣pdx

]
+

ρ

p

∫

Ω

∣∣uλ(x)
∣∣pdx

−λ
(‖α‖L1(Ω)‖uλ‖

r
Lr(Ω)

r
+

‖σ‖L1(Ω)‖uλ‖
s
Ls(Ω)

s

)

is negative and strictly decreasing in
(
0, M−

pkp supγ>0
γp

∫
Ω
sup|t|≤γ F (x,t)dx

)
.
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Remark 3.13. We observe that Theorem 3.3 is a bifurcation result in the sense that the pair (0, 0)
belongs to the closure of the set

{(uλ, λ) ∈ X × (0,+∞) : uλ is a nontrivial weak solution of (3.7)}

in X × R. Indeed, by Theorem 3.3 we have that

‖uλ‖ → 0 as λ → 0.

Hence, there exist two sequences {uj} in X and {λj} in R
+ (here uj = uλj

) such that

λj → 0+ and ‖uj‖ → 0,

as j → +∞. Moreover, we emphasis that due to the fact that the map

(0, λ∗) ∋ λ 7→ Iλ(uλ)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the solutions uλ1
and uλ2

ensured by
Theorem 3.3 are different.
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