Algebraic Extension of \mathcal{A}_{n}^{*} Operator

Ilmi Hoxha and Naim L. Braha*

ABSTRACT: $T \in L\left(H_{1} \oplus H_{2}\right)$ is said to be an algebraic extension of a \mathcal{A}_{n}^{*} operator if

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
O & T_{3}
\end{array}\right)
$$

is an operator matrix on $H_{1} \oplus H_{2}$, where T_{1} is a \mathcal{A}_{n}^{*} operator and T_{3} is a algebraic.
In this paper, we study basic and spectral properties of an algebraic extension of a \mathcal{A}_{n}^{*} operator. We show that every algebraic extension of a \mathcal{A}_{n}^{*} operator has SVEP, is polaroid and satisfies Weyl's theorem.
Key Words: Algebraic extension \mathcal{A}_{n}^{*} operator, SVEP, polaroid, Weyl's theorem.

Contents

1 Introduction

2 Algebraic extension of a \mathcal{A}_{n}^{*} operator
3 Weyl's theorem 5
4 Property (ω)

1. Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces with inner product $\langle\cdot, \cdot\rangle$. We denote by $L(H, K)$ the set of all bounded operators from H into K. To simplify, we put $L(H):=L(H, H)$. For $T \in L(H)$, we denote by $\operatorname{ker}(T)$ the null space and by $T(H)$ the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^{*} is its adjoint, and $\|T\|=\left\|T^{*}\right\|$. We shall denote the set of all complex numbers by \mathbb{C}, the set of all non-negative integers by \mathbb{N} and the complex conjugate of a complex number μ by $\bar{\mu}$. The closure of a set M will be denoted by \bar{M} and we shall henceforth shorten $T-\mu I$ to $T-\mu$. An operator $T \in L(H)$, is a positive operator, $T \geq O$, if $\langle T x, x\rangle \geq 0$ for all $x \in H$. We write $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$ for the spectral radius. It is well known that $r(T) \leq\|T\|$, for every $T \in L(H)$. The operator T is called a normaloid operator if $r(T)=\|T\|$.

Let $\operatorname{Hol}(\sigma(T))$ be the space of all analytic functions in an open neighborhood of $\sigma(T)$. We say that $T \in L(H)$ has the single valued extension property at $\lambda_{0} \in \mathbb{C}$, (SVEP for short), if for every open neighborhood U of λ_{0} the only analytic function $f: U \rightarrow \mathbb{C}$ which satisfies equation $(T-\lambda) f(\lambda)=0$ for all $\lambda \in U$, is the constant function $f \equiv 0$. An operator $T \in L(H)$ has SVEP at every point of the resolvent $\rho(T)=\mathbb{C} \backslash \sigma(T)$, so T has SVEP if T has SVEP at every $\lambda \in \sigma(T)$. Every operator T has SVEP at an isolated point of the spectrum.
$T \in L(H)$ is said to be analytic if there exists a non-constant analytic function f on a neighborhood of $\sigma(T)$ such that $f(T)=O$. We say that $T \in L(H)$ is algebraic if there is a non-constant polynomial p such that $p(T)=O$.

An operator T is algebraic if and only if $\sigma(T)$ is a finite set consisting of the poles of the resolvent of T (i.e., if and only if $\sigma(T)$ is finite set and T is polaroid), [4, Theorem 3.83]. If T is an algebraic operator, then T has SVEP.

If an operator $T \in L(H)$ is analytic, then $f(T)=O$ for some non-constant analytic function f on a neighborhood D of $\sigma(T)$. Since f cannot have infinitely many zeros in D, we write $f(z)=G(z) p(z)$,

[^0]where G is an analytic function which does not vanish on D and p is a non-constant polynomial with zeros in D. By Riesz functional calculus, $G(T)$ is invertible and then $p(T)=O$, which means that T is algebraic, [5, Lemma 3.2].

An operator $T \in L(H)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T, while an operator $T \in L(H)$ is said to be polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of T. In general, if T is polaroid, then T is isoloid. However, the converse is not true.

For an operator $T \in L(H)$, as usual, $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$.
Definition 1.1. An operator $T \in L(H)$, is said to belong to k-quasi class \mathcal{A}_{n}^{*} operator if

$$
T^{* k}\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) T^{k} \geq O
$$

for non-negative integers n and k.
If $k=0$ then 0 -quasi class \mathcal{A}_{n}^{*} operators coincides with class \mathcal{A}_{n}^{*} operators:

$$
\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2} \geq O
$$

If $n=1$ and $k=1$ then 1 -quasi class \mathcal{A}_{1}^{*} operators coincides with $\mathcal{Q}\left(\mathcal{A}^{*}\right)$ operators:

$$
T^{*}\left(\left|T^{2}\right|-\left|T^{*}\right|^{2}\right) T \geq O
$$

Lemma 1.2. [7, Hansen Inequality] If $A, B \in L(H)$, satisfying $A \geq O$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\delta} \geq B^{*} A^{\delta} B \text { for all } \delta \in(0,1]
$$

2. Algebraic extension of a \mathcal{A}_{n}^{*} operator

Definition 2.1. For a positive integer n, T is f-quasi class \mathcal{A}_{n}^{*} operators, if

$$
f(T)^{*}\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) f(T) \geq O
$$

for some non-constant analytic function f on some neighborhood of $\sigma(T)$.
If f is some non-constant polynomial p, then T is p-quasi class \mathcal{A}_{n}^{*} operator. If $p(z)=z^{k}$, then T is k-quasi class \mathcal{A}_{n}^{*} operator.

Definition 2.2. $T \in L\left(H_{1} \oplus H_{2}\right)$ is said to be an algebraic extension of a \mathcal{A}_{n}^{*} operator if

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
O & T_{3}
\end{array}\right)
$$

is an operator matrix on $H_{1} \oplus H_{2}$, where T_{1} is a \mathcal{A}_{n}^{*} operator and T_{3} is a algebraic.
Theorem 2.3. Let $T \in L(H)$ be an f-quasi class \mathcal{A}_{n}^{*} operator and M be an invariant subspace for T. Then the restriction $\left.T\right|_{M}$ is a p-quasi class \mathcal{A}_{n}^{*} operator.

Proof. Let $T \in L(H)$ be an f-quasi class \mathcal{A}_{n}^{*} operator. There exists non-constant analytic functions f on a neighborhood of $\sigma(T)$ such that

$$
f(T)^{*}\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) f(T) \geq O
$$

Since M is a T-invariant subspace, we can write

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
O & T_{3}
\end{array}\right) \text { on } H=M \oplus M^{\perp}
$$

where $T_{1}=\left.T\right|_{M}$.

Since $\left(T^{*(n+1)} T^{n+1}\right)^{\frac{1}{n+1}} \geq O$, from [6] we can set

$$
\left|T^{n+1}\right|^{\frac{2}{n+1}}=\left(T^{*(n+1)} T^{n+1}\right)^{\frac{1}{n+1}}=\left(\begin{array}{cc}
B & C \\
C^{*} & D
\end{array}\right)
$$

where $B \geq O, D \geq O$ and $C=B^{\frac{1}{2}} S D^{\frac{1}{2}}$ for some contraction $S: M^{\perp} \rightarrow M$. Then

$$
\left|T^{n+1}\right|^{2}=\left(\begin{array}{cc}
B & C \\
C^{*} & D
\end{array}\right)^{n+1}=\left(\begin{array}{cc}
B^{n+1}+Z & * \\
* & *
\end{array}\right)
$$

where $Z \geq O$.
Since

$$
\left|T^{n+1}\right|^{2}=\left(\begin{array}{cc}
T_{1}^{*(n+1)} T_{1}^{n+1} & * \tag{2.1}\\
* * & * * *
\end{array}\right)
$$

then $T_{1}^{*(n+1)} T_{1}^{n+1}=B^{n+1}+Z \geq B^{n+1}$. Therefore,

$$
\begin{equation*}
\left|T_{1}^{n+1}\right|^{\frac{2}{n+1}}=\left(T_{1}^{*(n+1)} T_{1}^{n+1}\right)^{\frac{1}{n+1}} \geq B \tag{2.2}
\end{equation*}
$$

Also, since $\left|T^{*}\right|^{2}=T T^{*}=\left(\begin{array}{cc}T_{1} T_{1}^{*}+T_{2} T_{2}^{*} & * \\ * & *\end{array}\right)$ we have

$$
\begin{gathered}
O \leq f(T)^{*}\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) f(T)=f(T)^{*}\left(\begin{array}{cc}
B-T_{1} T_{1}^{*}-T_{2} T_{2}^{*} & * \\
* & *
\end{array}\right) f(T)= \\
G(T)^{*}\left(\begin{array}{cc}
p\left(T_{1}\right)^{*}\left(B-T_{1} T_{1}^{*}-T_{2} T_{2}^{*}\right) p\left(T_{1}\right) & * \\
* & *
\end{array}\right) G(T)
\end{gathered}
$$

by Riesz functional calculus.
Since $G(T)$ is invertible, from [6] we have

$$
p\left(T_{1}\right)^{*}\left(B-T_{1} T_{1}^{*}\right) p\left(T_{1}\right) \geq O
$$

Then, from relations (2.2) we have

$$
p\left(T_{1}\right)^{*}\left(\left|T_{1}^{n+1}\right|^{\frac{2}{n+1}}-T_{1} T_{1}^{*}\right) p\left(T_{1}\right) \geq p\left(T_{1}\right)^{*}\left(B-T_{1} T_{1}^{*}\right) p\left(T_{1}\right) \geq O
$$

So T_{1} is a p-quasi class \mathcal{A}_{n}^{*} operator.
Theorem 2.4. If T is a f-quasi class \mathcal{A}_{n}^{*} operator and $f(T)$ does not have a dense range, then

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
O & T_{3}
\end{array}\right) \quad \text { on } H=\overline{f(T)(H)} \oplus \operatorname{ker}\left(\left(f(T)^{*}\right)\right.
$$

$\left(T_{1}^{*(n+1)} T_{1}^{n+1}\right)^{\frac{1}{n+1}}-T_{1} T_{1}^{*} \geq T_{2} T_{2}^{*}, T_{3}$ is algebraic and $\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$.
Proof. Let Q be the orthogonal projection onto $\overline{f(T)(H)}$. Since T is f-quasi class \mathcal{A}_{n}^{*} then

$$
Q\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) Q \geq O
$$

Hence, by Hansen inequality we have

$$
\begin{aligned}
\left(T_{1}^{*(n+1)} T_{1}^{n+1}\right)^{\frac{1}{n+1}} & \\
& =\left(Q T^{*(n+1)} T^{n+1} Q\right)^{\frac{1}{n+1}} \geq Q\left(T^{*(n+1)} T^{n+1}\right)^{\frac{1}{n+1}} Q \\
& \geq Q\left|T^{*}\right|^{2} Q=T_{1} T_{1}^{*}+T_{2} T_{2}^{*}
\end{aligned}
$$

On the other hand, for any $x=\left(x_{1}, x_{2}\right) \in H$ we have

$$
\left\langle f\left(T_{3}\right) x_{2}, x_{2}\right\rangle=\langle f(T)(I-Q) x,(I-Q) x\rangle=\left\langle(I-Q) x, f(T)^{*} x\right\rangle=0
$$

therefore, T_{3} is an algebraic operator.
Since $\sigma\left(T_{3}\right)$ is a finite set, $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ is also finite, which implies $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ has no interior points. By [10, Corollary 8], $\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$.

Proposition 2.5. Let T be f-quasi class \mathcal{A}_{n}^{*} operator. If $\left.T\right|_{\overline{f(T)(H)}}$ is a normal operator, then $\overline{f(T)(H)}$ reduces T.
Proof. We may assume T is a f-quasi class \mathcal{A}_{n}^{*} operator and $\overline{f(T)(H)}$ is not dense. Then

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
O & T_{3}
\end{array}\right) \text { on } H=\overline{f(T)(H)} \oplus \operatorname{ker}\left(\left(f(T)^{*}\right),\right.
$$

where $T_{1}=\left.T\right|_{f(T)(H)}$ is a normal operator. Let Q be the orthogonal projection onto $\overline{f(T)(H)}$. Since T is f-quasi class \mathcal{A}_{n}^{*} then

$$
Q\left(\left|T^{n+1}\right|^{\frac{2}{n+1}}-\left|T^{*}\right|^{2}\right) Q \geq O
$$

By Hansen inequality, relations (2.1) and the normality of T_{1} we have

$$
\begin{aligned}
\left(\begin{array}{cc}
T_{1} T_{1}^{*} & T_{2} T_{2}^{*} \\
O & O
\end{array}\right) & \\
& =Q\left|T^{*}\right|^{2} Q \leq Q\left|T^{n+1}\right| \frac{2}{n+1} Q \leq\left(Q\left|T^{n+1}\right|^{2} Q\right)^{\frac{1}{n+1}} \\
& =\left(\begin{array}{cc}
\left|T_{1}^{n+1}\right|^{2} & O \\
O & O
\end{array}\right)^{\frac{2}{n+1}}=\left(\begin{array}{cc}
T_{1} T_{1}^{*} & O \\
O & O
\end{array}\right)
\end{aligned}
$$

So $T_{2}=O$ and $\overline{f(T)(H)}$ is reduced of T.

Theorem 2.6. If $T \in L(H, K)$ is an algebraic extension class \mathcal{A}_{n}^{*} operator, then T has SVEP.
Proof. Suppose that $T \in L(H, K)$ is algebraic extension class \mathcal{A}_{n}^{*}. Then $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ O & T_{3}\end{array}\right)$ where T_{1} is class \mathcal{A}_{n}^{*} operator and T_{3} is algebraic.

Assume $(T-z) f(z)=0$ and put $f(z)=f_{1}(z) \oplus f_{2}(z)$ on $H \oplus K$. Then

$$
\left(\begin{array}{cc}
T_{1}-z & T_{2} \\
O & T_{3}-z
\end{array}\right)\binom{f_{1}(z)}{f_{2}(z)}=\binom{\left(T_{1}-z\right) f_{1}(z)+T_{2} f_{2}(z)}{\left(T_{3}-z\right) f_{2}(z)}=0 .
$$

Since T_{3} is algebraic then T_{3} has SVEP, so $f_{2}(z)=0$. We have $\left(T_{1}-z\right) f_{1}(z)=0$ and since T_{1} is class \mathcal{A}_{n}^{*} then T_{1} have SVEP, [9, Corollary 3.9]. Therefore $f_{1}(z)=0$ and $f(z)=0$. Consequently, T has SVEP.

For $T \in L(H)$, the smallest nonnegative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$ is called the ascent of T and is denoted by $p(T)$. If no such integer exists, we set $p(T)=\infty$. We say that $T \in L(H)$ is of finite ascent (finitely ascensive) if $p(T)<\infty$. For $T \in L(H)$, the smallest nonnegative integer q, such that $T^{q}(H)=T^{q+1}(H)$, is called the descent of T and is denoted by $q(T)$. If no such integer exists, we set $q(T)=\infty$. We say that $T \in L(H)$ is of finite descent if $q(T-\lambda)<\infty$, for all $\lambda \in \mathbb{C}$. Moreover, $0<p(T-\lambda)=q(T-\lambda)<\infty$ precisely when λ is a pole of the resolvent of T; see [8, Proposition 50.2].
Lemma 2.7. If $T \in L(H, K)$ is an algebraic extension class \mathcal{A}_{n}^{*} operator, then T is polaroid.
Proof. Let be $\lambda \in \operatorname{iso} \sigma(T)$. Then $\lambda \in \sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$, so $\lambda \in \sigma\left(T_{1}\right)$ or $\lambda \in \sigma\left(T_{3}\right)$.
If $\lambda \in \sigma\left(T_{3}\right)$, then $\lambda \in \operatorname{iso} \sigma\left(T_{3}\right)$. Since T_{3} is polaroid, then λ is pole of resolvente T_{3}, consequently

$$
\begin{equation*}
0<p\left(T_{3}-\lambda\right)=q\left(T_{3}-\lambda\right)<\infty . \tag{2.3}
\end{equation*}
$$

If $\lambda \in \sigma\left(T_{1}\right)$ and $\lambda \notin \sigma\left(T_{3}\right)$, then $\lambda \in \operatorname{iso} \sigma\left(T_{1}\right)$. From [9, Lemma 2.8], T is polaroid and

$$
\begin{equation*}
0<p\left(T_{1}-\lambda\right)=q\left(T_{1}-\lambda\right)<\infty . \tag{2.4}
\end{equation*}
$$

From inequalities $p(T-\lambda) \leq p\left(T_{1}-\lambda\right)+p\left(T_{3}-\lambda\right), q(T-\lambda) \leq q\left(T_{1}-\lambda\right)+q\left(T_{3}-\lambda\right)$ and relations (2.3) and (2.4) we have $0<p(T-\lambda)=q(T-\lambda)<\infty$. Consequently λ is a pole of the resolvente of T.

Corollary 2.8. If $T \in L(H, K)$ is an algebraic extension class \mathcal{A}_{n}^{*} operator, then T is isoloid.
Proof. From above Lemma.

3. Weyl's theorem

We write $\alpha(T)=\operatorname{dimker}(T), \beta(T)=\operatorname{dim}(H / T(H))$. An operator $T \in L(H)$ is called an upper semiFredholm, if it has a closed range and $\alpha(T)<\infty$, while T is called a lower semi-Fredholm if $\beta(T)<\infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$
\operatorname{ind}(T)=\alpha(T)-\beta(T)
$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $\operatorname{ind}(T) \leq 0$, while $T \in L(H)$ is said to be lower semi-Weyl operator if it is lower semi-Fredholm and $\operatorname{ind}(T) \geq 0$. An operator is said to be Weyl operator if it is Fredholm of index zero. The Weyl spectrum and the essential approximate spectrum are defined by

$$
\sigma_{w}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\}
$$

and

$$
\sigma_{u w}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not upper semi-Weyl }\}
$$

An operator $T \in L(H)$ is said to be upper semi-Browder operator, if it is upper semi-Fredholm and $p(T)<\infty$. An operator $T \in L(H)$ is said to be lower semi-Browder operator, if it is lower semi-Fredholm and $q(T)<\infty$. An operator $T \in L(H)$ is said to be Browder operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

$$
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\}
$$

and

$$
\sigma_{u b}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not upper semi-Browder }\}
$$

For $T \in L(H)$ we will denote $p_{00}(T)$ the set of all poles of finite rank of T. We have $\sigma(T) \backslash \sigma_{b}(T)=$ $p_{00}(T)$ and we say that T satisfies Browder's theorem if

$$
\sigma_{w}(T)=\sigma_{b}(T) \text { or } \sigma(T) \backslash \sigma_{w}(T)=p_{00}(T)
$$

For $T \in L(H)$ we write $\pi_{00}(T)=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda)<\infty\}$ for the isolated eigenvalues of finite multiplicity. We say that T satisfies Weyl's theorem, if

$$
\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}(T)
$$

Let $\pi_{00}^{a}(T)=\left\{\lambda \in i s o \sigma_{a}(T): 0<\alpha(T-\lambda)<\infty\right\}$ be the set of all eigenvalues of T of finite multiplicity, which are isolated in the approximate point spectrum. We say that T satisfies a-Weyl's theorem, if

$$
\sigma_{a}(T) \backslash \sigma_{u w}(T)=\pi_{00}^{a}(T)
$$

We will denote $p_{00}^{a}(T)$ the set of all left poles of finite rank of T. We have

$$
\sigma_{a}(T) \backslash \sigma_{u b}(T)=p_{00}^{a}(T)
$$

and we say that T satisfies a-Browder's theorem, if

$$
\sigma_{u w}(T)=\sigma_{u b}(T) \text { or } \sigma_{a}(T) \backslash \sigma_{u w}(T)=p_{00}^{a}(T)
$$

Lemma 3.1. If T is algebraic extension k-quasi class \mathcal{A}_{n}^{*}, then $\sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right)$ for all $f \in$ $\operatorname{Hol}(\sigma(T))$.

Proof. The inclusion $f\left(\sigma_{w}(T)\right) \subseteq \sigma_{w}(f(T))$ holds for any operator. Since T is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}, operator, T has SVEP, then from [1, Theorem 4.19] holds $\sigma_{w}(f(T)) \subseteq f\left(\sigma_{w}(T)\right)$.

Theorem 3.2. If T is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}, then Weyl's theorem holds for $f(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Suppose T is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}. From Lemma 2.7 we have T is polaroid. Since T is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}, therefore T has SVEP by Theorem 2.6. Then, from [2, Theorem 3.3], T satisfies Weyl's theorem.

Since T is isoloid from [11] we have

$$
f\left(\sigma(T) \backslash \pi_{00}(T)\right)=\sigma(f(T)) \backslash \pi_{00}(f(T))
$$

Then, by Lemma 3.1 we have

$$
\sigma(f(T)) \backslash \pi_{00}(f(T))=f\left(\sigma(T) \backslash \pi_{00}(T)\right)=f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))
$$

which implies that Weyl's theorem holds for $f(T)$.

4. Property (ω)

In this section we will show under which conditions, that algebraic extension k-quasi class \mathcal{A}_{n}^{*} operator T, satisfies property (ω).

Definition 4.1. [3] A bounded linear operator $T \in L(H)$ is said to satisfy property (ω), if

$$
\sigma_{a}(T) \backslash \sigma_{u w}(T)=\pi_{00}(T)
$$

Examples of operators satisfying Weyl's theorem but not property (ω) may be found in [3]. Property (ω) is independent from a-Weyl's theorem: in [3] there are examples of operators $T \in L(H)$ satisfying property (ω) but not a-Weyl's theorem and vice versa.

Example 5.2 given in [12], shows that a-Weyl's theorem and Weyl's theorem does not imply property (ω).

Lemma 4.2. [3] Let us suppose that $T \in L(H)$, then

1. If T^{*} has the SVEP, then $\sigma_{u w}(T)=\sigma_{b}(T)$.
2. If T has SVEP, then $\sigma_{u w}\left(T^{*}\right)=\sigma_{b}(T)$.

Techniques of the proof of the following Theorem are similar to that of Theorem 5.4, given in [12].
Theorem 4.3. Let $T \in L(H)$.

1. If T^{*} is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}, then property (ω) holds for T.
2. If T is an algebraic extension k-quasi class \mathcal{A}_{n}^{*}, then property (ω) holds for T^{*}.

Proof. (i) Since T^{*} is an algebraic extension k-quasi class \mathcal{A}_{n}^{*} operator, then T^{*} has the SVEP and T is a polaroid operator by Theorem 2.7 because T is polaroid if and only if T^{*} is polaroid. Consequently $\sigma(T)=\sigma_{a}(T)$.

Consider two cases:
Case I: If iso $\sigma(T)=\emptyset$, then $\pi_{00}(T)=\emptyset$. We show that $\sigma_{a}(T) \backslash \sigma_{u w}(T)$-is empty. By Lemma 4.2 we have $\sigma_{a}(T) \backslash \sigma_{u w}(T)=\sigma(T) \backslash \sigma_{b}(T)$ and the last set is empty, since $\sigma(T)$ has no isolated points. Therefore, T satisfies property (ω).

Case II: If iso $\sigma(T) \neq \emptyset$. Suppose that $\lambda \in \pi_{00}(T)$. Then λ is isolated in $\sigma(T)$ and hence, by the polaroid condition, λ is a pole of the resolvent of T, i.e. $p(T-\lambda)=q(T-\lambda)<\infty$. By assumption
$\alpha(T-\lambda)<\infty$, so by [4, Theorem 3.4] $\beta(T-\lambda)<\infty$, and hence $T-\lambda$ is a Browder operator. Therefore, by Lemma 4.2,

$$
\lambda \in \sigma(T) \backslash \sigma_{b}(T)=\sigma_{a}(T) \backslash \sigma_{u w}(T)
$$

Conversely, if $\lambda \in \sigma_{a}(T) \backslash \sigma_{u w}(T)=\sigma(T) \backslash \sigma_{b}(T)$ then λ is an isolated point of $\sigma(T)$. Clearly, $0<\alpha(T-\lambda)<\infty$, so $\lambda \in \pi_{00}(T)$ and hence T satisfies property (ω).
(ii) First note that since T has SVEP then

$$
\sigma_{a}\left(T^{*}\right)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not onto }\}=\sigma(T)=\sigma\left(T^{*}\right)
$$

Suppose first that $\operatorname{iso} \sigma(T)=\operatorname{iso} \sigma\left(T^{*}\right)=\emptyset$. Then $\pi_{00}\left(T^{*}\right)=\emptyset$. By Lemma 4.2 we have $\sigma_{a}\left(T^{*}\right) \backslash$ $\sigma_{u w}(T)=\sigma(T) \backslash \sigma_{b}(T)=\emptyset$, so T^{*} satisfies property (ω).

Suppose that $\operatorname{iso} \sigma(T) \neq \emptyset$ and let $\lambda \in \pi_{00}\left(T^{*}\right)$. Then λ is isolated in $\sigma(T)=\sigma\left(T^{*}\right)$, hence a pole of the resolvent of T^{*}, since T^{*} is a polaroid operator by Theorem 2.7. By assumption $\alpha\left(T^{*}-\lambda\right)<\infty$ and since the ascent and the descent of $T^{*}-\bar{\lambda}$ are both finite it then follows by [4, Theorem 3.4] that $\alpha\left(T^{*}-\bar{\lambda}\right)=\beta\left(T^{*}-\bar{\lambda}\right)<\infty$, so $T^{*}-\bar{\lambda}$ is a Browder operator and hence also $T-\lambda$ is a Browder operator. Therefore, $\lambda \in \sigma(T) \backslash \sigma_{b}(T)$ and by Lemma 4.2 it then follows that $\lambda \in \sigma_{a}\left(T^{*}\right) \backslash \sigma_{u w}\left(T^{*}\right)$. Conversely, if $\lambda \in \sigma_{a}\left(T^{*}\right) \backslash \sigma_{u w}\left(T^{*}\right)=\sigma(T) \backslash \sigma_{b}(T)$, then λ is an isolated point of the spectrum of $\sigma(T)=\sigma\left(T^{*}\right)$. Hence $T-\lambda$ is a Browder operator, or equivalently $T^{*}-\bar{\lambda}$ is a Browder operator. Since $\alpha\left(T^{*}-\bar{\lambda}\right)=\beta\left(T^{*}-\bar{\lambda}\right)$ we then have $\alpha\left(T^{*}-\bar{\lambda}\right)>0$ (otherwise $\lambda \notin \sigma\left(T^{*}\right)$). Clearly, $\alpha\left(T^{*}-\bar{\lambda}\right)<\infty$, since by assumption $T^{*}-\bar{\lambda}$ is a semi-upper Weyl operator, so that $\lambda \in \pi_{00}\left(T^{*}\right)$. Thus T^{*} satisfies property (ω).

References

1. Aiena, P., Semi-Fredholm operators, perturbations theory and localized SVEP, Merida, Venezuela (2007).
2. Aiena, P.; Aponte, E.; Bazan, E., Weyl type theorems for left and right polaroid operators, Integral Equations Oper. Theory 66, 1-20, (2010).
3. Aiena, P.; Peña, P., Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1), 566-579, (2006).
4. Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, (2004).
5. Cao, X. H., Analytically Class \mathcal{A} operators and Weyl's theorem, J. Math. Anal. Appl. 320, 795-803, (2006).
6. Foias, C.; Frazho, A.E., The Commutant Lifting Approach to Interpolation Problem, Basel, Birkhäuser Verlag, (1990).
7. Hansen, F., An operator inequality, Math. Ann. 246, 249-250, (1980).
8. Heuser, H., Functional Analysis, Marcel Dekker, New York, (1982).
9. Hoxha, I.; Braha, N. L., On k-Quasi Class \mathcal{A}_{n}^{*} Operators, Bulletin of Mathematical Analysis and Applications, Volume 6 Issue 1, Pages 23-33, (2014).
10. Han, J. K.; Lee, H. Y.; Lee, W. Y., Invertible completions of 2×2 upper triangular operator matrices Proceedings of the American Mathematical Society, vol. 128, no. 1, pp. 119-123, (2000).
11. Lee, W. Y.; Lee, S. H., A spectral mapping theorem for the Weyl spectral, Glasgow Math. J. 38, no. 1, 61-64, (1996).
12. Rashid, M. H. M., Property (ω) and quasi class (A, k) operators, Rev. Un. Mat. Argentina, Vol. 52, Nu 1, 133-142, (2011).

Ilmi Hoxha,

Faculty of Education
University of Gjakova "Fehmi Agani",
Avenue "Ismail Qemali" nn Gjakovë, 50000, Kosova.
E-mail address: ilmihoxha011@gmail.com
and
Naim L. Braha,
Department of Mathematics and Computer Sciences, University of Prishtina, Avenue "George Bush" nn Prishtinë, 10000, Kosova.
E-mail address: nbraha@yahoo.com

[^0]: * Corresponding author.

 2010 Mathematics Subject Classification: 47B20, 47A10.
 Submitted June 18, 2018. Published November 07, 2018

