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Algebraic Extension of A∗
n Operator

Ilmi Hoxha and Naim L. Braha∗

abstract: T ∈ L(H1 ⊕H2) is said to be an algebraic extension of a A∗

n
operator if

T =

(

T1 T2

O T3

)

is an operator matrix on H1 ⊕H2, where T1 is a A∗

n
operator and T3 is a algebraic.

In this paper, we study basic and spectral properties of an algebraic extension of a A
∗

n
operator. We show

that every algebraic extension of a A
∗

n
operator has SVEP, is polaroid and satisfies Weyl’s theorem.
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1. Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces with inner
product 〈·, ·〉. We denote by L(H,K) the set of all bounded operators from H into K. To simplify, we
put L(H) := L(H,H). For T ∈ L(H), we denote by ker(T ) the null space and by T (H) the range of T .
The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator,
then T ∗ is its adjoint, and ‖T ‖ = ‖T ∗‖. We shall denote the set of all complex numbers by C, the set of
all non−negative integers by N and the complex conjugate of a complex number µ by µ. The closure of a
set M will be denoted by M and we shall henceforth shorten T −µI to T −µ. An operator T ∈ L(H), is

a positive operator, T ≥ O, if 〈Tx, x〉 ≥ 0 for all x ∈ H. We write r(T ) = limn→∞ ‖T n‖
1
n for the spectral

radius. It is well known that r(T ) ≤ ‖T ‖, for every T ∈ L(H). The operator T is called a normaloid
operator if r(T ) = ‖T ‖.

Let Hol(σ(T )) be the space of all analytic functions in an open neighborhood of σ(T ). We say that
T ∈ L(H) has the single valued extension property at λ0 ∈ C, (SVEP for short), if for every open
neighborhood U of λ0 the only analytic function f : U → C which satisfies equation (T − λ)f(λ) = 0
for all λ ∈ U , is the constant function f ≡ 0. An operator T ∈ L(H) has SVEP at every point of the
resolvent ρ(T ) = C\σ(T ), so T has SVEP if T has SVEP at every λ ∈ σ(T ). Every operator T has SVEP
at an isolated point of the spectrum.

T ∈ L(H) is said to be analytic if there exists a non-constant analytic function f on a neighborhood
of σ(T ) such that f(T ) = O. We say that T ∈ L(H) is algebraic if there is a non-constant polynomial p
such that p(T ) = O.

An operator T is algebraic if and only if σ(T ) is a finite set consisting of the poles of the resolvent
of T (i.e., if and only if σ(T ) is finite set and T is polaroid), [4, Theorem 3.83]. If T is an algebraic
operator, then T has SVEP.

If an operator T ∈ L(H) is analytic, then f(T ) = O for some non-constant analytic function f on
a neighborhood D of σ(T ). Since f cannot have infinitely many zeros in D, we write f(z) = G(z)p(z),
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where G is an analytic function which does not vanish on D and p is a non-constant polynomial with
zeros in D. By Riesz functional calculus, G(T ) is invertible and then p(T ) = O, which means that T is
algebraic, [5, Lemma 3.2].

An operator T ∈ L(H) is said to be isoloid if every isolated point of σ(T ) is an eigenvalue of T , while
an operator T ∈ L(H) is said to be polaroid if every isolated point of σ(T ) is a pole of the resolvent of
T . In general, if T is polaroid, then T is isoloid. However, the converse is not true.

For an operator T ∈ L(H), as usual, |T | = (T ∗T )
1
2 .

Definition 1.1. An operator T ∈ L(H), is said to belong to k−quasi class A
∗
n operator if

T ∗k
(

|T n+1|
2

n+1 − |T ∗|2
)

T k ≥ O,

for non-negative integers n and k.

If k = 0 then 0-quasi class A∗
n operators coincides with class A∗

n operators:

|T n+1|
2

n+1 − |T ∗|2 ≥ O.

If n = 1 and k = 1 then 1−quasi class A∗
1 operators coincides with Q(A∗) operators:

T ∗(|T 2| − |T ∗|2)T ≥ O.

Lemma 1.2. [7, Hansen Inequality] If A,B ∈ L(H), satisfying A ≥ O and ‖B‖ ≤ 1, then

(B∗AB)δ ≥ B∗AδB for all δ ∈ (0, 1].

2. Algebraic extension of a A
∗
n operator

Definition 2.1. For a positive integer n, T is f -quasi class A
∗
n operators, if

f(T )∗
(

|T n+1|
2

n+1 − |T ∗|2
)

f(T ) ≥ O,

for some non-constant analytic function f on some neighborhood of σ(T ).

If f is some non-constant polynomial p, then T is p-quasi class A∗
n operator. If p(z) = zk, then T is

k−quasi class A∗
n operator.

Definition 2.2. T ∈ L(H1 ⊕H2) is said to be an algebraic extension of a A
∗
n operator if

T =

(

T1 T2

O T3

)

is an operator matrix on H1 ⊕H2, where T1 is a A
∗
n operator and T3 is a algebraic.

Theorem 2.3. Let T ∈ L(H) be an f -quasi class A
∗
n operator and M be an invariant subspace for T .

Then the restriction T |M is a p-quasi class A
∗
n operator.

Proof. Let T ∈ L(H) be an f -quasi class A∗
n operator. There exists non-constant analytic functions f on

a neighborhood of σ(T ) such that

f(T )∗
(

|T n+1|
2

n+1 − |T ∗|2
)

f(T ) ≥ O.

Since M is a T -invariant subspace, we can write

T =

(

T1 T2

O T3

)

on H = M ⊕M⊥,

where T1 = T |M .
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Since (T ∗(n+1)T n+1)
1

n+1 ≥ O, from [6] we can set

|T n+1|
2

n+1 = (T ∗(n+1)T n+1)
1

n+1 =

(

B C
C∗ D

)

,

where B ≥ O, D ≥ O and C = B
1
2SD

1
2 for some contraction S : M⊥ → M. Then

|T n+1|2 =

(

B C
C∗ D

)n+1

=

(

Bn+1 + Z ∗
∗ ∗

)

,

where Z ≥ O.
Since

|T n+1|2 =

(

T
∗(n+1)
1 T n+1

1 ∗
∗∗ ∗ ∗ ∗

)

(2.1)

then T
∗(n+1)
1 T n+1

1 = Bn+1 + Z ≥ Bn+1. Therefore,

|T n+1
1 |

2
n+1 = (T

∗(n+1)
1 T n+1

1 )
1

n+1 ≥ B. (2.2)

Also, since |T ∗|2 = TT ∗ =

(

T1T
∗
1 + T2T

∗
2 ∗

∗ ∗

)

we have

O ≤ f(T )∗
(

|T n+1|
2

n+1 − |T ∗|2
)

f(T ) = f(T )∗
(

B − T1T
∗
1 − T2T

∗
2 ∗

∗ ∗

)

f(T ) =

G(T )∗
(

p(T1)
∗(B − T1T

∗
1 − T2T

∗
2 )p(T1) ∗

∗ ∗

)

G(T ),

by Riesz functional calculus.
Since G(T ) is invertible, from [6] we have

p(T1)
∗(B − T1T

∗
1 )p(T1) ≥ O.

Then, from relations (2.2) we have

p(T1)
∗(|T n+1

1 |
2

n+1 − T1T
∗
1 )p(T1) ≥ p(T1)

∗(B − T1T
∗
1 )p(T1) ≥ O.

So T1 is a p-quasi class A∗
n operator. �

Theorem 2.4. If T is a f -quasi class A
∗
n operator and f(T ) does not have a dense range, then

T =

(

T1 T2

O T3

)

on H = f(T )(H)⊕ ker((f(T )∗),

(T
∗(n+1)
1 T n+1

1 )
1

n+1 − T1T
∗
1 ≥ T2T

∗
2 , T3 is algebraic and σ(T ) = σ(T1) ∪ σ(T3).

Proof. Let Q be the orthogonal projection onto f(T )(H). Since T is f -quasi class A∗
n then

Q(|T n+1|
2

n+1 − |T ∗|2)Q ≥ O.

Hence, by Hansen inequality we have

(T
∗(n+1)
1 T n+1

1 )
1

n+1

= (QT ∗(n+1)T n+1Q)
1

n+1 ≥ Q(T ∗(n+1)T n+1)
1

n+1Q

≥ Q|T ∗|2Q = T1T
∗
1 + T2T

∗
2 .

On the other hand, for any x = (x1, x2) ∈ H we have

〈f(T3)x2, x2〉 = 〈f(T )(I −Q)x, (I −Q)x〉 = 〈(I −Q)x, f(T )∗x〉 = 0,

therefore, T3 is an algebraic operator.
Since σ(T3) is a finite set, σ(T1) ∩ σ(T3) is also finite, which implies σ(T1) ∩ σ(T3) has no interior

points. By [10, Corollary 8], σ(T ) = σ(T1) ∪ σ(T3). �
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Proposition 2.5. Let T be f -quasi class A
∗
n operator. If T |

f(T )(H) is a normal operator, then f(T )(H)

reduces T.

Proof. We may assume T is a f -quasi class A∗
n operator and f(T )(H) is not dense. Then

T =

(

T1 T2

O T3

)

on H = f(T )(H)⊕ ker((f(T )∗),

where T1 = T |
f(T )(H) is a normal operator. Let Q be the orthogonal projection onto f(T )(H). Since T

is f -quasi class A∗
n then

Q
(

|T n+1|
2

n+1 − |T ∗|2
)

Q ≥ O.

By Hansen inequality, relations (2.1) and the normality of T1 we have

(

T1T
∗
1 T2T

∗
2

O O

)

= Q|T ∗|2Q ≤ Q|T n+1|
2

n+1Q ≤
(

Q|T n+1|2Q
)

1
n+1

=

(

|T n+1
1 |2 O
O O

)
2

n+1

=

(

T1T
∗
1 O

O O

)

So T2 = O and f(T )(H) is reduced of T.
�

Theorem 2.6. If T ∈ L(H,K) is an algebraic extension class A
∗
n operator, then T has SVEP.

Proof. Suppose that T ∈ L(H,K) is algebraic extension class A∗
n. Then T =

(

T1 T2

O T3

)

where T1 is class

A
∗
n operator and T3 is algebraic.
Assume (T − z)f(z) = 0 and put f(z) = f1(z)⊕ f2(z) on H ⊕K. Then

(

T1 − z T2

O T3 − z

)(

f1(z)
f2(z)

)

=

(

(T1 − z)f1(z) + T2f2(z)
(T3 − z)f2(z)

)

= 0.

Since T3 is algebraic then T3 has SVEP, so f2(z) = 0. We have (T1 − z)f1(z) = 0 and since T1 is
class A∗

n then T1 have SVEP, [9, Corollary 3.9]. Therefore f1(z) = 0 and f(z) = 0. Consequently, T has
SVEP. �

For T ∈ L(H), the smallest nonnegative integer p such that ker(T p) = ker(T p+1) is called the ascent
of T and is denoted by p(T ). If no such integer exists, we set p(T ) = ∞. We say that T ∈ L(H) is of
finite ascent (finitely ascensive) if p(T ) < ∞. For T ∈ L(H), the smallest nonnegative integer q, such
that T q(H) = T q+1(H), is called the descent of T and is denoted by q(T ). If no such integer exists, we
set q(T ) = ∞. We say that T ∈ L(H) is of finite descent if q(T − λ) < ∞, for all λ ∈ C. Moreover,
0 < p(T − λ) = q(T − λ) < ∞ precisely when λ is a pole of the resolvent of T ; see [8, Proposition 50.2].

Lemma 2.7. If T ∈ L(H,K) is an algebraic extension class A
∗
n operator, then T is polaroid.

Proof. Let be λ ∈ isoσ(T ). Then λ ∈ σ(T1) ∪ σ(T3), so λ ∈ σ(T1) or λ ∈ σ(T3).
If λ ∈ σ(T3), then λ ∈ isoσ(T3). Since T3 is polaroid, then λ is pole of resolvente T3, consequently

0 < p(T3 − λ) = q(T3 − λ) < ∞. (2.3)

If λ ∈ σ(T1) and λ 6∈ σ(T3), then λ ∈ isoσ(T1). From [9, Lemma 2.8], T is polaroid and

0 < p(T1 − λ) = q(T1 − λ) < ∞. (2.4)

From inequalities p(T − λ) ≤ p(T1 − λ) + p(T3 − λ), q(T − λ) ≤ q(T1 − λ) + q(T3 − λ) and relations
(2.3) and (2.4) we have 0 < p(T − λ) = q(T − λ) < ∞. Consequently λ is a pole of the resolvente of T .

�
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Corollary 2.8. If T ∈ L(H,K) is an algebraic extension class A
∗
n operator, then T is isoloid.

Proof. From above Lemma. �

3. Weyl’s theorem

We write α(T ) = dimker(T ), β(T ) = dim (H/T (H)) . An operator T ∈ L(H) is called an upper semi-
Fredholm, if it has a closed range and α(T ) < ∞, while T is called a lower semi-Fredholm if β(T ) < ∞.
However, T is called a semi-Fredholm operator if T is either an upper or a lower semi−Fredholm, and
T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If T ∈ L(H) is
semi-Fredholm, then the index is defined by

ind(T ) = α(T )− β(T ).

An operator T ∈ L(H) is said to be upper semi-Weyl operator if it is upper semi−Fredholm and
ind(T ) ≤ 0, while T ∈ L(H) is said to be lower semi-Weyl operator if it is lower semi-Fredholm and
ind(T ) ≥ 0. An operator is said to be Weyl operator if it is Fredholm of index zero. The Weyl spectrum
and the essential approximate spectrum are defined by

σw(T ) = {λ ∈ C : T − λ is not Weyl}

and
σuw(T ) = {λ ∈ C : T − λ is not upper semi-Weyl}.

An operator T ∈ L(H) is said to be upper semi-Browder operator, if it is upper semi−Fredholm and
p(T ) < ∞. An operator T ∈ L(H) is said to be lower semi-Browder operator, if it is lower semi-Fredholm
and q(T ) < ∞. An operator T ∈ L(H) is said to be Browder operator, if it is Fredholm of finite ascent
and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

σb(T ) = {λ ∈ C : T − λ is not Browder}

and
σub(T ) = {λ ∈ C : T − λ is not upper semi-Browder}.

For T ∈ L(H) we will denote p00(T ) the set of all poles of finite rank of T . We have σ(T ) \ σb(T ) =
p00(T ) and we say that T satisfies Browder’s theorem if

σw(T ) = σb(T ) or σ(T ) \ σw(T ) = p00(T ).

For T ∈ L(H) we write π00(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λ) < ∞} for the isolated eigenvalues of
finite multiplicity. We say that T satisfies Weyl’s theorem, if

σ(T ) \ σw(T ) = π00(T ).

Let πa
00(T ) = {λ ∈ isoσa(T ) : 0 < α(T−λ) < ∞} be the set of all eigenvalues of T of finite multiplicity,

which are isolated in the approximate point spectrum. We say that T satisfies a-Weyl’s theorem, if

σa(T ) \ σuw(T ) = πa
00(T ).

We will denote pa00(T ) the set of all left poles of finite rank of T . We have

σa(T ) \ σub(T ) = pa00(T )

and we say that T satisfies a-Browder’s theorem, if

σuw(T ) = σub(T ) or σa(T ) \ σuw(T ) = pa00(T ).

Lemma 3.1. If T is algebraic extension k-quasi class A
∗
n, then σw(f(T )) = f(σw(T )) for all f ∈

Hol(σ(T )).



6 Ilmi Hoxha and Naim L. Braha

Proof. The inclusion f(σw(T )) ⊆ σw(f(T )) holds for any operator. Since T is an algebraic extension
k-quasi class A∗

n, operator, T has SVEP, then from [1, Theorem 4.19] holds σw(f(T )) ⊆ f(σw(T )). �

Theorem 3.2. If T is an algebraic extension k-quasi class A
∗
n, then Weyl’s theorem holds for f(T ) for

every f ∈ Hol(σ(T )).

Proof. Suppose T is an algebraic extension k-quasi class A
∗
n. From Lemma 2.7 we have T is polaroid.

Since T is an algebraic extension k-quasi class A∗
n, therefore T has SVEP by Theorem 2.6. Then, from

[2, Theorem 3.3], T satisfies Weyl’s theorem.
Since T is isoloid from [11] we have

f(σ(T ) \ π00(T )) = σ(f(T )) \ π00(f(T )).

Then, by Lemma 3.1 we have

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(σw(T )) = σw(f(T )),

which implies that Weyl’s theorem holds for f(T ). �

4. Property (ω)

In this section we will show under which conditions, that algebraic extension k-quasi class A∗
n operator

T, satisfies property (ω).

Definition 4.1. [3] A bounded linear operator T ∈ L(H) is said to satisfy property (ω), if

σa(T ) \ σuw(T ) = π00(T ).

Examples of operators satisfying Weyl’s theorem but not property (ω) may be found in [3]. Property
(ω) is independent from a-Weyl’s theorem: in [3] there are examples of operators T ∈ L(H) satisfying
property (ω) but not a-Weyl’s theorem and vice versa.

Example 5.2 given in [12], shows that a-Weyl’s theorem and Weyl’s theorem does not imply property
(ω).

Lemma 4.2. [3] Let us suppose that T ∈ L(H), then

1. If T ∗ has the SVEP, then σuw(T ) = σb(T ).

2. If T has SVEP, then σuw(T
∗) = σb(T ).

Techniques of the proof of the following Theorem are similar to that of Theorem 5.4, given in [12].

Theorem 4.3. Let T ∈ L(H).

1. If T ∗ is an algebraic extension k-quasi class A
∗
n, then property (ω) holds for T.

2. If T is an algebraic extension k-quasi class A
∗
n, then property (ω) holds for T ∗.

Proof. (i) Since T ∗ is an algebraic extension k-quasi class A∗
n operator, then T ∗ has the SVEP and T is

a polaroid operator by Theorem 2.7 because T is polaroid if and only if T ∗ is polaroid. Consequently
σ(T ) = σa(T ).

Consider two cases:
Case I: If isoσ(T ) = ∅, then π00(T ) = ∅. We show that σa(T ) \ σuw(T ) -is empty. By Lemma 4.2

we have σa(T ) \ σuw(T ) = σ(T ) \ σb(T ) and the last set is empty, since σ(T ) has no isolated points.
Therefore, T satisfies property (ω).

Case II: If isoσ(T ) 6= ∅. Suppose that λ ∈ π00(T ). Then λ is isolated in σ(T ) and hence, by the
polaroid condition, λ is a pole of the resolvent of T, i.e. p(T − λ) = q(T − λ) < ∞. By assumption



Algebraic Extension of A
∗

n
Operator 7

α(T −λ) < ∞, so by [4, Theorem 3.4] β(T −λ) < ∞, and hence T −λ is a Browder operator. Therefore,
by Lemma 4.2,

λ ∈ σ(T ) \ σb(T ) = σa(T ) \ σuw(T ).

Conversely, if λ ∈ σa(T ) \ σuw(T ) = σ(T ) \ σb(T ) then λ is an isolated point of σ(T ). Clearly,
0 < α(T − λ) < ∞, so λ ∈ π00(T ) and hence T satisfies property (ω).

(ii) First note that since T has SVEP then

σa(T
∗) = {λ ∈ C : T − λ is not onto } = σ(T ) = σ(T ∗).

Suppose first that isoσ(T ) = isoσ(T ∗) = ∅. Then π00(T
∗) = ∅. By Lemma 4.2 we have σa(T

∗) \
σuw(T ) = σ(T ) \ σb(T ) = ∅, so T ∗ satisfies property (ω).

Suppose that isoσ(T ) 6= ∅ and let λ ∈ π00(T
∗). Then λ is isolated in σ(T ) = σ(T ∗), hence a pole

of the resolvent of T ∗, since T ∗ is a polaroid operator by Theorem 2.7. By assumption α(T ∗ − λ) < ∞
and since the ascent and the descent of T ∗ − λ are both finite it then follows by [4, Theorem 3.4] that
α(T ∗−λ) = β(T ∗−λ) < ∞, so T ∗−λ is a Browder operator and hence also T −λ is a Browder operator.
Therefore, λ ∈ σ(T ) \ σb(T ) and by Lemma 4.2 it then follows that λ ∈ σa(T

∗) \ σuw(T
∗). Conversely, if

λ ∈ σa(T
∗)\σuw(T

∗) = σ(T )\σb(T ), then λ is an isolated point of the spectrum of σ(T ) = σ(T ∗). Hence
T − λ is a Browder operator, or equivalently T ∗ − λ is a Browder operator. Since α(T ∗ −λ) = β(T ∗ −λ)
we then have α(T ∗ −λ) > 0 (otherwise λ /∈ σ(T ∗)). Clearly, α(T ∗−λ) < ∞, since by assumption T ∗−λ
is a semi-upper Weyl operator, so that λ ∈ π00(T

∗). Thus T ∗ satisfies property (ω). �
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