

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2022 (40)** : 1–7. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.43345

Algebraic Extension of \mathcal{A}_n^* Operator

Ilmi Hoxha and Naim L. Braha*

ABSTRACT: $T \in L(H_1 \oplus H_2)$ is said to be an algebraic extension of a \mathcal{A}_n^* operator if

$$T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix}$$

is an operator matrix on $H_1 \oplus H_2$, where T_1 is a \mathcal{A}_n^* operator and T_3 is a algebraic.

In this paper, we study basic and spectral properties of an algebraic extension of a \mathcal{A}_n^* operator. We show that every algebraic extension of a \mathcal{A}_n^* operator has SVEP, is polaroid and satisfies Weyl's theorem.

Key Words: Algebraic extension \mathcal{A}_n^* operator, SVEP, polaroid, Weyl's theorem.

Contents

1 Introduction

2 Algebraic extension of a \mathcal{A}_n^* operator

3 Weyl's theorem

4 **Property** (ω)

1. Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$. We denote by L(H, K) the set of all bounded operators from H into K. To simplify, we put L(H) := L(H, H). For $T \in L(H)$, we denote by ker(T) the null space and by T(H) the range of T. The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator, then T^* is its adjoint, and $||T|| = ||T^*||$. We shall denote the set of all complex numbers by \mathbb{C} , the set of all non-negative integers by \mathbb{N} and the complex conjugate of a complex number μ by $\overline{\mu}$. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \mu I$ to $T - \mu$. An operator $T \in L(H)$, is a positive operator, $T \ge O$, if $\langle Tx, x \rangle \ge 0$ for all $x \in H$. We write $r(T) = \lim_{n\to\infty} ||T^n||^{\frac{1}{n}}$ for the spectral radius. It is well known that $r(T) \le ||T||$, for every $T \in L(H)$. The operator T is called a normaloid operator if r(T) = ||T||.

Let $Hol(\sigma(T))$ be the space of all analytic functions in an open neighborhood of $\sigma(T)$. We say that $T \in L(H)$ has the single valued extension property at $\lambda_0 \in \mathbb{C}$, (SVEP for short), if for every open neighborhood U of λ_0 the only analytic function $f: U \to \mathbb{C}$ which satisfies equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in U$, is the constant function $f \equiv 0$. An operator $T \in L(H)$ has SVEP at every point of the resolvent $\rho(T) = \mathbb{C} \setminus \sigma(T)$, so T has SVEP if T has SVEP at every $\lambda \in \sigma(T)$. Every operator T has SVEP at an isolated point of the spectrum.

 $T \in L(H)$ is said to be analytic if there exists a non-constant analytic function f on a neighborhood of $\sigma(T)$ such that f(T) = O. We say that $T \in L(H)$ is algebraic if there is a non-constant polynomial psuch that p(T) = O.

An operator T is algebraic if and only if $\sigma(T)$ is a finite set consisting of the poles of the resolvent of T (*i.e.*, if and only if $\sigma(T)$ is finite set and T is polaroid), [4, Theorem 3.83]. If T is an algebraic operator, then T has SVEP.

If an operator $T \in L(H)$ is analytic, then f(T) = O for some non-constant analytic function f on a neighborhood D of $\sigma(T)$. Since f cannot have infinitely many zeros in D, we write f(z) = G(z)p(z),

1

 $\mathbf{2}$

 $\mathbf{5}$

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification: 47B20, 47A10.

Submitted June 18, 2018. Published November 07, 2018

where G is an analytic function which does not vanish on D and p is a non-constant polynomial with zeros in D. By Riesz functional calculus, G(T) is invertible and then p(T) = O, which means that T is algebraic, [5, Lemma 3.2].

An operator $T \in L(H)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T, while an operator $T \in L(H)$ is said to be polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of T. In general, if T is polaroid, then T is isoloid. However, the converse is not true.

For an operator $T \in L(H)$, as usual, $|T| = (T^*T)^{\frac{1}{2}}$.

Definition 1.1. An operator $T \in L(H)$, is said to belong to k-quasi class \mathcal{A}_n^* operator if

$$T^{*k}\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)T^k \ge O,$$

for non-negative integers n and k.

If k = 0 then 0-quasi class \mathcal{A}_n^* operators coincides with class \mathcal{A}_n^* operators:

$$|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \ge O.$$

If n = 1 and k = 1 then 1-quasi class \mathcal{A}_1^* operators coincides with $\mathfrak{Q}(\mathcal{A}^*)$ operators:

$$T^*(|T^2| - |T^*|^2)T \ge O$$

Lemma 1.2. [7, Hansen Inequality] If $A, B \in L(H)$, satisfying $A \ge O$ and $||B|| \le 1$, then

$$(B^*AB)^{\delta} \ge B^*A^{\delta}B$$
 for all $\delta \in (0,1]$.

2. Algebraic extension of a \mathcal{A}_n^* operator

Definition 2.1. For a positive integer n, T is f-quasi class \mathcal{A}_n^* operators, if

$$f(T)^* \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) f(T) \ge O,$$

for some non-constant analytic function f on some neighborhood of $\sigma(T)$.

If f is some non-constant polynomial p, then T is p-quasi class \mathcal{A}_n^* operator. If $p(z) = z^k$, then T is k-quasi class \mathcal{A}_n^* operator.

Definition 2.2. $T \in L(H_1 \oplus H_2)$ is said to be an algebraic extension of a \mathcal{A}_n^* operator if

$$T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix}$$

is an operator matrix on $H_1 \oplus H_2$, where T_1 is a \mathcal{A}_n^* operator and T_3 is a algebraic.

Theorem 2.3. Let $T \in L(H)$ be an f-quasi class \mathcal{A}_n^* operator and M be an invariant subspace for T. Then the restriction $T|_M$ is a p-quasi class \mathcal{A}_n^* operator.

Proof. Let $T \in L(H)$ be an f-quasi class \mathcal{A}_n^* operator. There exists non-constant analytic functions f on a neighborhood of $\sigma(T)$ such that

$$f(T)^* \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) f(T) \ge O.$$

Since M is a T-invariant subspace, we can write

$$T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix}$$
 on $H = M \oplus M^{\perp}$

where $T_1 = T|_M$.

Since $(T^{*(n+1)}T^{n+1})^{\frac{1}{n+1}} \ge O$, from [6] we can set

$$|T^{n+1}|^{\frac{2}{n+1}} = (T^{*(n+1)}T^{n+1})^{\frac{1}{n+1}} = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix},$$

where $B \ge O$, $D \ge O$ and $C = B^{\frac{1}{2}}SD^{\frac{1}{2}}$ for some contraction $S: M^{\perp} \to M$. Then

$$|T^{n+1}|^2 = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix}^{n+1} = \begin{pmatrix} B^{n+1} + Z & * \\ * & * \end{pmatrix},$$

where $Z \ge O$.

Since

$$|T^{n+1}|^2 = \begin{pmatrix} T_1^{*(n+1)}T_1^{n+1} & *\\ & * & * & * \end{pmatrix}$$
(2.1)

then $T_1^{*(n+1)}T_1^{n+1} = B^{n+1} + Z \ge B^{n+1}$. Therefore,

$$|T_1^{n+1}|^{\frac{2}{n+1}} = (T_1^{*(n+1)}T_1^{n+1})^{\frac{1}{n+1}} \ge B.$$
(2.2)
Also, since $|T^*|^2 = TT^* = \begin{pmatrix} T_1T_1^* + T_2T_2^* & * \\ * & * \end{pmatrix}$ we have
 $O \le f(T)^* \left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2 \right) f(T) = f(T)^* \begin{pmatrix} B - T_1T_1^* - T_2T_2^* & * \\ * & * \end{pmatrix} f(T) =$
 $G(T)^* \begin{pmatrix} p(T_1)^*(B - T_1T_1^* - T_2T_2^*)p(T_1) & * \\ * & * \end{pmatrix} G(T),$

by Riesz functional calculus.

Since G(T) is invertible, from [6] we have

$$p(T_1)^*(B - T_1T_1^*)p(T_1) \ge O$$

Then, from relations (2.2) we have

$$p(T_1)^*(|T_1^{n+1}|^{\frac{2}{n+1}} - T_1T_1^*)p(T_1) \ge p(T_1)^*(B - T_1T_1^*)p(T_1) \ge O_1$$

So T_1 is a *p*-quasi class \mathcal{A}_n^* operator.

Theorem 2.4. If T is a f-quasi class \mathcal{A}_n^* operator and f(T) does not have a dense range, then

$$T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix}$$
 on $H = \overline{f(T)(H)} \oplus \ker((f(T)^*)),$

 $(T_1^{*(n+1)}T_1^{n+1})^{\frac{1}{n+1}} - T_1T_1^* \ge T_2T_2^*, T_3 \text{ is algebraic and } \sigma(T) = \sigma(T_1) \cup \sigma(T_3).$

Proof. Let Q be the orthogonal projection onto $\overline{f(T)(H)}$. Since T is f-quasi class \mathcal{A}_n^* then

$$Q(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2)Q \ge O.$$

Hence, by Hansen inequality we have

$$(T_1^{*(n+1)}T_1^{n+1})^{\frac{1}{n+1}} = (QT^{*(n+1)}T^{n+1}Q)^{\frac{1}{n+1}} \ge Q(T^{*(n+1)}T^{n+1})^{\frac{1}{n+1}}Q$$
$$\ge Q|T^*|^2Q = T_1T_1^* + T_2T_2^*.$$

On the other hand, for any $x = (x_1, x_2) \in H$ we have

$$\langle f(T_3)x_2, x_2 \rangle = \langle f(T)(I-Q)x, (I-Q)x \rangle = \langle (I-Q)x, f(T)^*x \rangle = 0,$$

therefore, T_3 is an algebraic operator.

Since $\sigma(T_3)$ is a finite set, $\sigma(T_1) \cap \sigma(T_3)$ is also finite, which implies $\sigma(T_1) \cap \sigma(T_3)$ has no interior points. By [10, Corollary 8], $\sigma(T) = \sigma(T_1) \cup \sigma(T_3)$.

Proposition 2.5. Let T be f-quasi class \mathcal{A}_n^* operator. If $T|_{\overline{f(T)(H)}}$ is a normal operator, then $\overline{f(T)(H)}$ reduces T.

Proof. We may assume T is a f-quasi class \mathcal{A}_n^* operator and $\overline{f(T)(H)}$ is not dense. Then

$$T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix} \text{ on } H = \overline{f(T)(H)} \oplus \ker((f(T)^*),$$

where $T_1 = T|_{\overline{f(T)(H)}}$ is a normal operator. Let Q be the orthogonal projection onto $\overline{f(T)(H)}$. Since T is f-quasi class \mathcal{A}_n^* then

$$Q\left(|T^{n+1}|^{\frac{2}{n+1}} - |T^*|^2\right)Q \ge O.$$

By Hansen inequality, relations (2.1) and the normality of T_1 we have

$$\begin{pmatrix} T_1 T_1^* & T_2 T_2^* \\ O & O \end{pmatrix}$$

$$= Q |T^*|^2 Q \le Q |T^{n+1}|^{\frac{2}{n+1}} Q \le \left(Q |T^{n+1}|^2 Q\right)^{\frac{1}{n+1}}$$

$$= \begin{pmatrix} |T_1^{n+1}|^2 & O \\ O & O \end{pmatrix}^{\frac{2}{n+1}} = \begin{pmatrix} T_1 T_1^* & O \\ O & O \end{pmatrix}$$

So $T_2 = O$ and $\overline{f(T)(H)}$ is reduced of T.

Theorem 2.6. If $T \in L(H, K)$ is an algebraic extension class \mathcal{A}_n^* operator, then T has SVEP.

Proof. Suppose that $T \in L(H, K)$ is algebraic extension class \mathcal{A}_n^* . Then $T = \begin{pmatrix} T_1 & T_2 \\ O & T_3 \end{pmatrix}$ where T_1 is class \mathcal{A}_n^* operator and T_3 is algebraic.

Assume (T-z)f(z) = 0 and put $f(z) = f_1(z) \oplus f_2(z)$ on $H \oplus K$. Then

$$\begin{pmatrix} T_1 - z & T_2 \\ O & T_3 - z \end{pmatrix} \begin{pmatrix} f_1(z) \\ f_2(z) \end{pmatrix} = \begin{pmatrix} (T_1 - z)f_1(z) + T_2f_2(z) \\ (T_3 - z)f_2(z) \end{pmatrix} = 0.$$

Since T_3 is algebraic then T_3 has SVEP, so $f_2(z) = 0$. We have $(T_1 - z)f_1(z) = 0$ and since T_1 is class \mathcal{A}_n^* then T_1 have SVEP, [9, Corollary 3.9]. Therefore $f_1(z) = 0$ and f(z) = 0. Consequently, T has SVEP.

For $T \in L(H)$, the smallest nonnegative integer p such that $\ker(T^p) = \ker(T^{p+1})$ is called the ascent of T and is denoted by p(T). If no such integer exists, we set $p(T) = \infty$. We say that $T \in L(H)$ is of finite ascent (finitely ascensive) if $p(T) < \infty$. For $T \in L(H)$, the smallest nonnegative integer q, such that $T^q(H) = T^{q+1}(H)$, is called the descent of T and is denoted by q(T). If no such integer exists, we set $q(T) = \infty$. We say that $T \in L(H)$ is of finite descent if $q(T - \lambda) < \infty$, for all $\lambda \in \mathbb{C}$. Moreover, $0 < p(T - \lambda) = q(T - \lambda) < \infty$ precisely when λ is a pole of the resolvent of T; see [8, Proposition 50.2].

Lemma 2.7. If $T \in L(H, K)$ is an algebraic extension class \mathcal{A}_n^* operator, then T is polaroid.

Proof. Let be $\lambda \in iso\sigma(T)$. Then $\lambda \in \sigma(T_1) \cup \sigma(T_3)$, so $\lambda \in \sigma(T_1)$ or $\lambda \in \sigma(T_3)$.

If $\lambda \in \sigma(T_3)$, then $\lambda \in iso\sigma(T_3)$. Since T_3 is polaroid, then λ is pole of resolvente T_3 , consequently

$$0 < p(T_3 - \lambda) = q(T_3 - \lambda) < \infty.$$

$$(2.3)$$

If $\lambda \in \sigma(T_1)$ and $\lambda \notin \sigma(T_3)$, then $\lambda \in iso\sigma(T_1)$. From [9, Lemma 2.8], T is polaroid and

$$0 < p(T_1 - \lambda) = q(T_1 - \lambda) < \infty.$$

$$(2.4)$$

From inequalities $p(T - \lambda) \leq p(T_1 - \lambda) + p(T_3 - \lambda)$, $q(T - \lambda) \leq q(T_1 - \lambda) + q(T_3 - \lambda)$ and relations (2.3) and (2.4) we have $0 < p(T - \lambda) = q(T - \lambda) < \infty$. Consequently λ is a pole of the resolvente of T.

Proof. From above Lemma.

3. Weyl's theorem

We write $\alpha(T) = \text{dimker}(T)$, $\beta(T) = \text{dim}(H/T(H))$. An operator $T \in L(H)$ is called an upper semi-Fredholm, if it has a closed range and $\alpha(T) < \infty$, while T is called a lower semi-Fredholm if $\beta(T) < \infty$. However, T is called a semi-Fredholm operator if T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If $T \in L(H)$ is semi-Fredholm, then the index is defined by

$$\operatorname{ind}(T) = \alpha(T) - \beta(T).$$

An operator $T \in L(H)$ is said to be upper semi-Weyl operator if it is upper semi-Fredholm and $\operatorname{ind}(T) \leq 0$, while $T \in L(H)$ is said to be lower semi-Weyl operator if it is lower semi-Fredholm and $\operatorname{ind}(T) \geq 0$. An operator is said to be Weyl operator if it is Fredholm of index zero. The Weyl spectrum and the essential approximate spectrum are defined by

$$\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\}$$

and

$$\sigma_{uw}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Weyl}\}$$

An operator $T \in L(H)$ is said to be upper semi-Browder operator, if it is upper semi-Fredholm and $p(T) < \infty$. An operator $T \in L(H)$ is said to be lower semi-Browder operator, if it is lower semi-Fredholm and $q(T) < \infty$. An operator $T \in L(H)$ is said to be Browder operator, if it is Fredholm of finite ascent and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\}\$$

and

$$\sigma_{ub}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Browder}\}.$$

For $T \in L(H)$ we will denote $p_{00}(T)$ the set of all poles of finite rank of T. We have $\sigma(T) \setminus \sigma_b(T) = p_{00}(T)$ and we say that T satisfies Browder's theorem if

$$\sigma_w(T) = \sigma_b(T)$$
 or $\sigma(T) \setminus \sigma_w(T) = p_{00}(T)$.

For $T \in L(H)$ we write $\pi_{00}(T) = \{\lambda \in iso\sigma(T) : 0 < \alpha(T-\lambda) < \infty\}$ for the isolated eigenvalues of finite multiplicity. We say that T satisfies Weyl's theorem, if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T).$$

Let $\pi_{00}^a(T) = \{\lambda \in iso\sigma_a(T) : 0 < \alpha(T-\lambda) < \infty\}$ be the set of all eigenvalues of T of finite multiplicity, which are isolated in the approximate point spectrum. We say that T satisfies a-Weyl's theorem, if

$$\sigma_a(T) \setminus \sigma_{uw}(T) = \pi^a_{00}(T)$$

We will denote $p_{00}^a(T)$ the set of all left poles of finite rank of T. We have

$$\sigma_a(T) \setminus \sigma_{ub}(T) = p_{00}^a(T)$$

and we say that T satisfies a-Browder's theorem, if

$$\sigma_{uw}(T) = \sigma_{ub}(T) \text{ or } \sigma_a(T) \setminus \sigma_{uw}(T) = p_{00}^a(T).$$

Lemma 3.1. If T is algebraic extension k-quasi class \mathcal{A}_n^* , then $\sigma_w(f(T)) = f(\sigma_w(T))$ for all $f \in Hol(\sigma(T))$.

Proof. The inclusion $f(\sigma_w(T)) \subseteq \sigma_w(f(T))$ holds for any operator. Since T is an algebraic extension k-quasi class \mathcal{A}_n^* , operator, T has SVEP, then from [1, Theorem 4.19] holds $\sigma_w(f(T)) \subseteq f(\sigma_w(T))$. \Box

Theorem 3.2. If T is an algebraic extension k-quasi class \mathcal{A}_n^* , then Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. Suppose T is an algebraic extension k-quasi class \mathcal{A}_n^* . From Lemma 2.7 we have T is polaroid. Since T is an algebraic extension k-quasi class \mathcal{A}_n^* , therefore T has SVEP by Theorem 2.6. Then, from [2, Theorem 3.3], T satisfies Weyl's theorem.

Since T is isoloid from [11] we have

$$f(\sigma(T) \setminus \pi_{00}(T)) = \sigma(f(T)) \setminus \pi_{00}(f(T))$$

Then, by Lemma 3.1 we have

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)) = f(\sigma_w(T)) = \sigma_w(f(T)),$$

which implies that Weyl's theorem holds for f(T).

4. Property (ω)

In this section we will show under which conditions, that algebraic extension k-quasi class \mathcal{A}_n^* operator T, satisfies property (ω).

Definition 4.1. [3] A bounded linear operator $T \in L(H)$ is said to satisfy property (ω) , if

$$\sigma_a(T) \setminus \sigma_{uw}(T) = \pi_{00}(T).$$

Examples of operators satisfying Weyl's theorem but not property (ω) may be found in [3]. Property (ω) is independent from a-Weyl's theorem: in [3] there are examples of operators $T \in L(H)$ satisfying property (ω) but not *a*-Weyl's theorem and vice versa.

Example 5.2 given in [12], shows that a-Weyl's theorem and Weyl's theorem does not imply property (ω) .

Lemma 4.2. [3] Let us suppose that $T \in L(H)$, then

- 1. If T^* has the SVEP, then $\sigma_{uw}(T) = \sigma_b(T)$.
- 2. If T has SVEP, then $\sigma_{uw}(T^*) = \sigma_b(T)$.

Techniques of the proof of the following Theorem are similar to that of Theorem 5.4, given in [12].

Theorem 4.3. Let $T \in L(H)$.

- 1. If T^* is an algebraic extension k-quasi class \mathcal{A}_n^* , then property (ω) holds for T.
- 2. If T is an algebraic extension k-quasi class \mathcal{A}_n^* , then property (ω) holds for T^* .

Proof. (i) Since T^* is an algebraic extension k-quasi class \mathcal{A}_n^* operator, then T^* has the SVEP and T is a polaroid operator by Theorem 2.7 because T is polaroid if and only if T^* is polaroid. Consequently $\sigma(T) = \sigma_a(T)$.

Consider two cases:

Case I: If $iso\sigma(T) = \emptyset$, then $\pi_{00}(T) = \emptyset$. We show that $\sigma_a(T) \setminus \sigma_{uw}(T)$ -is empty. By Lemma 4.2 we have $\sigma_a(T) \setminus \sigma_{uw}(T) = \sigma(T) \setminus \sigma_b(T)$ and the last set is empty, since $\sigma(T)$ has no isolated points. Therefore, T satisfies property (ω).

Case II: If $iso\sigma(T) \neq \emptyset$. Suppose that $\lambda \in \pi_{00}(T)$. Then λ is isolated in $\sigma(T)$ and hence, by the polaroid condition, λ is a pole of the resolvent of T, i.e. $p(T - \lambda) = q(T - \lambda) < \infty$. By assumption

 $\alpha(T-\lambda) < \infty$, so by [4, Theorem 3.4] $\beta(T-\lambda) < \infty$, and hence $T-\lambda$ is a Browder operator. Therefore, by Lemma 4.2,

$$\lambda \in \sigma(T) \setminus \sigma_b(T) = \sigma_a(T) \setminus \sigma_{uw}(T).$$

Conversely, if $\lambda \in \sigma_a(T) \setminus \sigma_{uw}(T) = \sigma(T) \setminus \sigma_b(T)$ then λ is an isolated point of $\sigma(T)$. Clearly, $0 < \alpha(T - \lambda) < \infty$, so $\lambda \in \pi_{00}(T)$ and hence T satisfies property (ω).

(ii) First note that since T has SVEP then

$$\sigma_a(T^*) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not onto } \} = \sigma(T) = \sigma(T^*).$$

Suppose first that $iso\sigma(T) = iso\sigma(T^*) = \emptyset$. Then $\pi_{00}(T^*) = \emptyset$. By Lemma 4.2 we have $\sigma_a(T^*) \setminus \sigma_{uw}(T) = \sigma(T) \setminus \sigma_b(T) = \emptyset$, so T^* satisfies property (ω).

Suppose that $\operatorname{iso}\sigma(T) \neq \emptyset$ and let $\lambda \in \pi_{00}(T^*)$. Then λ is isolated in $\sigma(T) = \sigma(T^*)$, hence a pole of the resolvent of T^* , since T^* is a polaroid operator by Theorem 2.7. By assumption $\alpha(T^* - \lambda) < \infty$ and since the ascent and the descent of $T^* - \overline{\lambda}$ are both finite it then follows by [4, Theorem 3.4] that $\alpha(T^* - \overline{\lambda}) = \beta(T^* - \overline{\lambda}) < \infty$, so $T^* - \overline{\lambda}$ is a Browder operator and hence also $T - \lambda$ is a Browder operator. Therefore, $\lambda \in \sigma(T) \setminus \sigma_b(T)$ and by Lemma 4.2 it then follows that $\lambda \in \sigma_a(T^*) \setminus \sigma_{uw}(T^*)$. Conversely, if $\lambda \in \sigma_a(T^*) \setminus \sigma_{uw}(T^*) = \sigma(T) \setminus \sigma_b(T)$, then λ is an isolated point of the spectrum of $\sigma(T) = \sigma(T^*)$. Hence $T - \lambda$ is a Browder operator, or equivalently $T^* - \overline{\lambda}$ is a Browder operator. Since $\alpha(T^* - \overline{\lambda}) = \beta(T^* - \overline{\lambda})$ we then have $\alpha(T^* - \overline{\lambda}) > 0$ (otherwise $\lambda \notin \sigma(T^*)$). Clearly, $\alpha(T^* - \overline{\lambda}) < \infty$, since by assumption $T^* - \overline{\lambda}$ is a semi-upper Weyl operator, so that $\lambda \in \pi_{00}(T^*)$. Thus T^* satisfies property (ω).

References

- 1. Aiena, P., Semi-Fredholm operators, perturbations theory and localized SVEP, Merida, Venezuela (2007).
- Aiena, P.; Aponte, E.; Bazan, E., Weyl type theorems for left and right polaroid operators, Integral Equations Oper. Theory 66, 1-20, (2010).
- 3. Aiena, P.; Peña, P., Variations on Weyls theorem, J. Math. Anal. Appl. 324 (1), 566-579, (2006).
- 4. Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, (2004).
- 5. Cao, X. H., Analytically Class A operators and Weyl's theorem, J. Math. Anal. Appl. 320, 795-803, (2006).
- 6. Foias, C.; Frazho, A.E., The Commutant Lifting Approach to Interpolation Problem, Basel, Birkhäuser Verlag, (1990).
- 7. Hansen, F., An operator inequality, Math. Ann. 246, 249-250, (1980).
- 8. Heuser, H., Functional Analysis, Marcel Dekker, New York, (1982).
- 9. Hoxha, I.; Braha, N. L., On k-Quasi Class \mathcal{A}_n^* Operators, Bulletin of Mathematical Analysis and Applications, Volume 6 Issue 1, Pages 23-33, (2014).
- Han, J. K.; Lee, H. Y.; Lee, W. Y., Invertible completions of 2 × 2 upper triangular operator matrices Proceedings of the American Mathematical Society, vol. 128, no. 1, pp. 119-123, (2000).
- 11. Lee, W. Y.; Lee, S. H., A spectral mapping theorem for the Weyl spectral, Glasgow Math. J. 38, no. 1, 61-64, (1996).
- Rashid, M. H. M., Property (ω) and quasi class (A, k) operators, Rev. Un. Mat. Argentina, Vol. 52, Nu 1, 133-142, (2011).

Ilmi Hoxha, Faculty of Education University of Gjakova "Fehmi Agani", Avenue "Ismail Qemali" nn Gjakovë, 50000, Kosova. E-mail address: ilmihoxha011@gmail.com

and

Naim L. Braha, Department of Mathematics and Computer Sciences, University of Prishtina, Avenue "George Bush" nn Prishtinë, 10000, Kosova. E-mail address: nbraha@yahoo.com