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Algebraic Extension of A; Operator

Ilmi Hoxha and Naim L. Braha*

ABSTRACT: T € L(H & H>) is said to be an algebraic extension of a A}, operator if
(T T3
= (o T3)
is an operator matrix on Hy @ Hs2, where T is a A}, operator and T3 is a algebraic.

In this paper, we study basic and spectral properties of an algebraic extension of a A}, operator. We show
that every algebraic extension of a A}, operator has SVEP, is polaroid and satisfies Weyl’s theorem.
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1. Introduction

Throughout this paper, let H and K be infinite dimensional complex Hilbert spaces with inner
product (-,-). We denote by L(H, K) the set of all bounded operators from H into K. To simplify, we
put L(H) := L(H,H). For T € L(H), we denote by ker(T") the null space and by T'(H) the range of T'.
The null operator and the identity on H will be denoted by O and I, respectively. If T is an operator,
then T is its adjoint, and ||T'|| = ||7*||. We shall denote the set of all complex numbers by C, the set of
all non—negative integers by N and the complex conjugate of a complex number y by 7. The closure of a
set M will be denoted by M and we shall henceforth shorten 7' — puI to T — p. An operator T' € L(H), is
a positive operator, T > O, if (Tz,z) > 0 for all z € H. We write 7(T) = lim,, o |T"= for the spectral
radius. It is well known that r(T") < ||T||, for every T € L(H). The operator T is called a normaloid
operator if r(T) = ||T|.

Let Hol(o(T)) be the space of all analytic functions in an open neighborhood of ¢(T"). We say that
T € L(H) has the single valued extension property at A\g € C, (SVEP for short), if for every open
neighborhood U of A¢ the only analytic function f : U — C which satisfies equation (T — \)f(A\) = 0
for all A € U, is the constant function f = 0. An operator T € L(H) has SVEP at every point of the
resolvent p(T') = C\ o(T'), so T has SVEP if T' has SVEP at every A € o(T). Every operator T has SVEP
at an isolated point of the spectrum.

T € L(H) is said to be analytic if there exists a non-constant analytic function f on a neighborhood
of o(T') such that f(T) = O. We say that T' € L(H) is algebraic if there is a non-constant polynomial p
such that p(T) = O.

An operator T is algebraic if and only if ¢(T) is a finite set consisting of the poles of the resolvent
of T (i.e., if and only if o(T) is finite set and T is polaroid), [4, Theorem 3.83]. If T is an algebraic
operator, then T has SVEP.

If an operator T' € L(H) is analytic, then f(T) = O for some non-constant analytic function f on
a neighborhood D of ¢(T). Since f cannot have infinitely many zeros in D, we write f(z) = G(2)p(2),
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where G is an analytic function which does not vanish on D and p is a non-constant polynomial with
zeros in D. By Riesz functional calculus, G(T') is invertible and then p(T") = O, which means that T is
algebraic, [5, Lemma 3.2].

An operator T' € L(H) is said to be isoloid if every isolated point of o(T') is an eigenvalue of T', while
an operator T' € L(H) is said to be polaroid if every isolated point of o(T) is a pole of the resolvent of
T. In general, if T is polaroid, then T is isoloid. However, the converse is not true.

For an operator T € L(H), as usual, |T| = (T*T)z.

Definition 1.1. An operator T € L(H), is said to belong to k—quasi class A}, operator if
Tk (|Tn+1|ni+1 -~ |T*|2) T > 0,
for non-negative integers n and k.
If k = 0 then 0-quasi class A}, operators coincides with class A} operators:
T — T > 0.
If n =1 and k = 1 then 1—quasi class A} operators coincides with Q(A*) operators:
(7% — [T P)T = .
Lemma 1.2. [7, Hansen Inequality] If A, B € L(H), satisfying A > O and ||B|| < 1, then
(B*AB)° > B*A°B for all 6 € (0,1].

2. Algebraic extension of a A} operator

Definition 2.1. For a positive integer n, T is f-quasi class A}, operators, if
F@y (|7 = |7 £(T) = 0,

for some non-constant analytic function f on some neighborhood of o(T).

If f is some non-constant polynomial p, then T is p-quasi class A* operator. If p(z) = z*, then T is
k—quasi class A} operator.

Definition 2.2. T € L(H; ® H») is said to be an algebraic extension of a A}, operator if
[TV T
r= (0 T3)
is an operator matrix on Hy ® Hy, where T is a A}, operator and T3 is a algebraic.

Theorem 2.3. Let T € L(H) be an f-quasi class A}, operator and M be an invariant subspace for T.
Then the restriction T'|py is a p-quasi class Al operator.

Proof. Let T € L(H) be an f-quasi class A operator. There exists non-constant analytic functions f on
a neighborhood of o(T') such that

J@) (JT = = (T £(T) 2 0.

Since M is a T-invariant subspace, we can write

_(Ty Ty B 1
T—(O T3) on H=M& M-,

where T1 = T'|pr.
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Since (T*FDT+1)531 > O, from [6] we can set
n+1 % _ *(n+1)pn+1 % _ B c
rstfst = oy — (D),
where B> 0O, D> O and C = B3 SD3= for some contraction S : M+ — M. Then

g (BOYT (B2
c* D * %/

*(n+1)pn
|Tn+1|2 _ (Tl( )Tl +1 % >

*3k X % X%

where Z > O.
Since

then T "+l = B+l 4 7 > B+l Therefore,

[Ty = (T e 2 B

T\Ty + ToTy
*

Also, since |T*|? = TT* = ( :) we have

B —T\T; —TyTy
*

0 < fry ([T — 1R i) = sy )=

G(T)* (p(T1)*(B - le;f = 12T3)p(Th)

by Riesz functional calculus.
Since G(T') is invertible, from [6] we have

p(Th)"(B = ThT7)p(Th) = O.

)

Then, from relations (2.2) we have
p(T)*(|TP 7 — TT)p(Th) > p(Th)* (B — ThT)p(Ty) > O.

So Ty is a p-quasi class A} operator.

Theorem 2.4. If T is a f-quasi class A%, operator and f(T) does not have a dense range, then

(g 7) ontt =TOE & ken((f(1)°),

(T TN T TE > ToTy, T ds algebraic and o(T) = o(Ty) U o(Ts).
Proof. Let @ be the orthogonal projection onto W Since T'is f-quasi class A} then
QUT™ |7 — |1 )Q > 0.
Hence, by Hansen inequality we have
e
_ (QT*(n+1)Tn+1Q)ﬁ > Q(T*(n+1)Tn+1)ﬁQ
QIT*?Q = Th T} + TuT5.

V

On the other hand, for any x = (x1,22) € H we have

(f(T3)z2, 22) = (F(T)(I = Q)x, (I = Q)z) = ((I = Q)x, f(T)"x) =0,

therefore, T3 is an algebraic operator.

Since o(T3) is a finite set, o(T1) N o(T3) is also finite, which implies o(77) N o(T3) has no interior

points. By [10, Corollary 8], o(T') = o(T1) U o(T3).

O
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Proposition 2.5. Let T be f-quasi class A% operator. If T|W is a normal operator, then f(T)(H)
reduces T.

Proof. We may assume T is a f-quasi class A% operator and f(T')(H) is not dense. Then

= (G ) o = FOH @ kex((£(17).

where T} = T|W is a normal operator. Let @ be the orthogonal projection onto f(T)(H). Since T

is f-quasi class A} then
Q ([Tt — ) @ = 0.
By Hansen inequality, relations (2.1) and the normality of 77 we have
T 1Ty
(0] 0]
2
_ (mE oyt _(mTr 0
B 0 O L0 O

So To = O and f(T)(H) is reduced of T.

Theorem 2.6. If T € L(H, K) is an algebraic extension class A, operator, then T has SVEP.

T, Ty

Proof. Suppose that T' € L(H, K) is algebraic extension class A%. Then T' = <O T
3

) where T} is class

A7 operator and T3 is algebraic.
Assume (T — 2)f(z) =0 and put f(z) = f1(2) ® fa(z) on H & K. Then

(o™ n2.) (23) = (" @ 5567) o

Since T3 is algebraic then T3 has SVEP, so fa(z) = 0. We have (T — 2)f1(2) = 0 and since T is
class A} then Ty have SVEP, [9, Corollary 3.9]. Therefore f1(z) =0 and f(z) = 0. Consequently, 7" has
SVEP. (]

For T € L(H), the smallest nonnegative integer p such that ker(T?) = ker(T?*!) is called the ascent
of T and is denoted by p(T'). If no such integer exists, we set p(T) = co. We say that T € L(H) is of
finite ascent (finitely ascensive) if p(T') < oco. For T' € L(H), the smallest nonnegative integer ¢, such
that T9(H) = T971(H), is called the descent of T and is denoted by ¢(T). If no such integer exists, we
set ¢(T) = oo. We say that T € L(H) is of finite descent if ¢(T — \) < oo, for all A € C. Moreover,
0<p(T—X\) =q(T —)\) < oo precisely when A is a pole of the resolvent of T'; see [8, Proposition 50.2].

Lemma 2.7. If T € L(H, K) is an algebraic extension class A, operator, then T is polaroid.

Proof. Let be A € isoo(T). Then A € o(Ty) U c(T3), so A € o(Th) or \ € o(T3).
If A € 0(T3), then X € isoo(T3). Since T3 is polaroid, then X is pole of resolvente T3, consequently

0< p(Tg — A) = q(Tg — )\) < Q. (23)
If A€ o(Ty) and A & o(13), then A € isoo(Th). From [9, Lemma 2.8], T is polaroid and
0< p(T1 — A) = q(Tl — )\) < Q. (24)

From inequalities p(T — \) < p(T1 — A) + p(T5 — ), (T — X) < q(T1 — A\) + q(T5 — \) and relations
(2.3) and (2.4) we have 0 < p(T' — \) = ¢(T — X\) < co. Consequently A is a pole of the resolvente of T.
t
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Corollary 2.8. If T € L(H, K) is an algebraic extension class A}, operator, then T is isoloid.

Proof. From above Lemma. O

3. Weyl’s theorem

We write a(T") = dimker(T), 8(T") = dim (H/T(H)) . An operator T' € L(H) is called an upper semi-
Fredholm, if it has a closed range and «(T) < oo, while T is called a lower semi-Fredholm if 3(T) < oo.
However, T is called a semi-Fredholm operator if T is either an upper or a lower semi—Fredholm, and
T is said to be a Fredholm operator if it is both an upper and a lower semi-Fredholm. If T' € L(H) is
semi-Fredholm, then the index is defined by

ind(T) = a(T) — B(T).

An operator T € L(H) is said to be upper semi-Weyl operator if it is upper semi—Fredholm and
ind(T) < 0, while T' € L(H) is said to be lower semi-Weyl operator if it is lower semi-Fredholm and
ind(7T") > 0. An operator is said to be Weyl operator if it is Fredholm of index zero. The Weyl spectrum
and the essential approximate spectrum are defined by

ow(T)={X € C:T — X is not Weyl}

and
ouww(T) ={A € C:T — X is not upper semi-Weyl}.

An operator T' € L(H) is said to be upper semi-Browder operator, if it is upper semi—Fredholm and
p(T) < oco. An operator T' € L(H) is said to be lower semi-Browder operator, if it is lower semi-Fredholm
and ¢(T") < co. An operator T' € L(H) is said to be Browder operator, if it is Fredholm of finite ascent
and descent. The Browder spectrum and the upper semi-Browder spectrum are defined by

o(T) ={\ € C:T — X is not Browder}

and
ouw(T) ={X € C:T — X is not upper semi-Browder}.

For T € L(H) we will denote poo(T) the set of all poles of finite rank of T. We have o(T") \ 0(T) =
poo(T) and we say that T satisfies Browder’s theorem if

0u(T) = 04(T) or o(T) \ 0(T) = poo(T).

For T € L(H) we write moo(T) = {\ € isoo(T) : 0 < a(T — A) < oo} for the isolated eigenvalues of
finite multiplicity. We say that T satisfies Weyl’s theorem, if

o(T)\ 0w(T) = moo(T).

Let 78, (T) = {\ € is004(T) : 0 < a(T'— ) < oo} be the set of all eigenvalues of T of finite multiplicity,
which are isolated in the approximate point spectrum. We say that T satisfies a-Weyl’s theorem, if

0a(T)\ ouw(T) = w5 (T).
We will denote pfj,(T) the set of all left poles of finite rank of 7. We have
7a(T)\ 0w (T) = po(T)
and we say that T satisfies a-Browder’s theorem, if
Ouw(T) = 0w (T) or 04(T) \ ouw(T) = pGo(T).

Lemma 3.1. If T is algebraic extension k-quasi class A%, then o, (f(T)) = f(ow(T)) for all f €
Hol(a(T)).
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Proof. The inclusion f(0,(T)) C 0, (f(T)) holds for any operator. Since T is an algebraic extension
k-quasi class AZ, operator, T has SVEP, then from [1, Theorem 4.19] holds o.,(f(T)) C f(ow(T)). O

Theorem 3.2. If T is an algebraic extension k-quasi class A¥, then Weyl’s theorem holds for f(T) for
every [ € Hol(o(T)).

Proof. Suppose T' is an algebraic extension k-quasi class A} . From Lemma 2.7 we have T' is polaroid.
Since T is an algebraic extension k-quasi class A, therefore T" has SVEP by Theorem 2.6. Then, from
[2, Theorem 3.3], T satisfies Weyl’s theorem.

Since T is isoloid from [11] we have

f(e(T)\moo(T)) = o (f(T)) \ woo (f(T))-

Then, by Lemma 3.1 we have

o(f(T) \moo(f(T)) = f(o(T) \ moo(T)) = fow(T)) = ow(f(T)),

which implies that Weyl’s theorem holds for f(T). O

4. Property (w)

In this section we will show under which conditions, that algebraic extension k-quasi class A} operator
T, satisfies property (w).

Definition 4.1. [3] A bounded linear operator T € L(H) is said to satisfy property (w), if
0a(T)\ 0y (T) = moo(T).

Examples of operators satisfying Weyl’s theorem but not property (w) may be found in [3]. Property
(w) is independent from a-Weyl’s theorem: in [3] there are examples of operators T' € L(H) satisfying
property (w) but not a-Weyl’s theorem and vice versa.

Example 5.2 given in [12], shows that a-Weyl’s theorem and Weyl’s theorem does not imply property

(w).
Lemma 4.2. [3] Let us suppose that T € L(H), then

1. If T* has the SVEP, then 04.,(T) = ou(T).

2. If T has SVEP, then ¢, (T*) = ou(T).

Techniques of the proof of the following Theorem are similar to that of Theorem 5.4, given in [12].
Theorem 4.3. Let T € L(H).

1. If T* is an algebraic extension k-quasi class A%, then property (w) holds for T.

2. If T is an algebraic extension k-quasi class A}, then property (w) holds for T*.

Proof. (i) Since T™ is an algebraic extension k-quasi class A} operator, then 7" has the SVEP and T is
a polaroid operator by Theorem 2.7 because T is polaroid if and only if 7™ is polaroid. Consequently
o(T) = 04(T).

Consider two cases:

Case I: If isoo(T) = 0, then 7o(T) = (. We show that o(T) \ cuw(T) -is empty. By Lemma 4.2
we have 0,(T) \ 0uw(T) = o(T) \ 04(T) and the last set is empty, since o(7") has no isolated points.
Therefore, T satisfies property (w).

Case II: If isoo(T) # (. Suppose that A € mpo(T). Then M is isolated in ¢(T) and hence, by the
polaroid condition, A is a pole of the resolvent of T, i.e. p(T — \) = ¢(T — \) < co. By assumption
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a(T —\) < 00, so by [4, Theorem 3.4] (T — \) < oo, and hence T — X is a Browder operator. Therefore,
by Lemma 4.2,
A€ a(T)\op(T) =04(T)\ ouw(T).

Conversely, if A\ € 04(T) \ 0uw(T) = o(T) \ 0p(T) then A is an isolated point of o(7T). Clearly,
0<a(T —X) <oo,80 A €mpo(T) and hence T satisfies property (w).

(ii) First note that since T' has SVEP then
0o,(T*)={AeC:T—Xisnot onto } =o(T) =o(T%).

Suppose first that isoo(T) = isoo(T*) = (). Then myo(T*) = (. By Lemma 4.2 we have o,(T*) \
ouww(T) = o (T)\ p(T) = 0, so T* satisfies property (w).

Suppose that isoo(T) # 0 and let A € moo(T*). Then X is isolated in o(T) = o(T*), hence a pole
of the resolvent of T, since T* is a polaroid operator by Theorem 2.7. By assumption o(7T* — \) < oo
and since the ascent and the descent of T* — X are both finite it then follows by [4, Theorem 3.4] that
a(T*—N\) = B(T*—N) < 00, so T* — X is a Browder operator and hence also T'— \ is a Browder operator.
Therefore, A € o(T) \ 04(T") and by Lemma 4.2 it then follows that A € 0,(T™*) \ 04w (T*). Conversely, if
A€ 0o (T*)\oww(T*) = o(T)\ op(T), then A is an isolated point of the spectrum of o(T') = o(T™*). Hence

T — ) is a Browder operator, or equivalently 7* — X is a Browder operator. Since a(T* — \) = B(T* — \)

we then have a(T* — A) > 0 (otherwise A ¢ o(T™*)). Clearly, a(T* — \) < oo, since by assumption 7% — A
is a semi-upper Weyl operator, so that A € moo (7). Thus T* satisfies property (w). O
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