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Fractional Hartley Transform on G-Boehmian Space

Rajakumar Roopkumar and Chinnaraman Ganesan

ABSTRACT: Using a special type of fractional convolution, a G-Boehmian space B, containing integrable
functions on R is constructed. The fractional Hartley transform (FRHT) is defined as a linear, continuous
injection from B, into the space of all continuous functions on R. This extension simultaneously generalizes
the fractional Hartley transform on L! (R) as well as Hartley transform on an integrable Boehmian space.
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1. Introduction

Hartley introduced a Fourier-like transform in 1942, which is called Hartley transform (see [7,11]).
Like the fractional Fourier transform (FRFT) [21], many integral transforms have been generalized to the
corresponding fractional integral transforms. In particular, fractional Fourier cosine transform (FRFCT),
fractional Fourier sine transform (FRFST) and fractional Hartley transform (FRHT) were defined and used
extensively in signal processing [4,24].

In [14], Mikusinski, J. and Mikusinski, P., introduced Boehmian space, which in general, consists of
convolution quotients of sequences of functions. In [15], an abstract Boehmian space B is constructed
by using a complex topological vector space G, S C G, x: G x S — G and a collection A of sequences
satisfying certain axioms. As many of these Boehmian spaces contain the respective domains of various
classical integral transforms, the research on Boehmian space includes extension of integral transforms to
larger domains. For example, we refer [1,2,3,6,29,5,9,10,12,22,23,25,26,27]. Meanwhile, various versions
of Boehmian spaces are introduced with new assumptions or slightly weaker assumptions than that are
used in the general construction of a Boehmian space given in [15], by many authors [8,13,17,18,19].
Most recently, the G-Boehmian space is introduced in [9] as a generalization of the Boehmian space and
the Hartley transform is extended to a suitable G-Boehmian space. In the present article, we introduce
a special type of fractional convolution to construct a G-Boehmian space B, containing the space of
integrable functions on R. The fractional Hartley transform (FRHT) is extended consistently as a linear,
continuous injection from B, in to the space C(R), of all complex-valued continuous functions on reals.

This paper is organized as follows. In Section 2, we recall fractional Hartley transform, the general
construction of a G-Boehmian space and some of their properties. In Section 3, we shall prove all the
preliminary results required for the construction of the G-Boehmian space B,. In Section 4, we provide
the extended FRHT on this G-Boehmian space and investigate its properties.
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2. Preliminaries

We now recall from [24], the definition of FRHT of f € #!(R) and some of its properties. FRHT of an
arbitrary integrable function f was defined by

2 . 2 2

Ho ()] () = ca\/j / F(@)ei= @) Cas (baau)da, Vu € R, (2.1)
T

R
where o2
cot av 1 er
Cas (+) = cos(+) +sin(+),aq = ,bo = ——, and ¢, = .
s (+) = cos(+) +sin(+), a 5 g ande —

The FRFT and FRHT are obtained from one another through the following identities:
1+ 1—14

Ho(f) = —TFalf) + 5 TFal-f)
Fo(f) = %a(f)—;%a(_f)—i%a(f)_;ca(_f)’

where F,(f) is the fractional Fourier transform of f, which is defined by

Falf)(u) =

Moz

If fe ZYR)and Ho(f) € LH(R) then Ho[Ho(f)] = f.
Using these identities along with the properties of FRFT, we have Ho (f) € Co(R) and ||Ho(f)|leo <

C;Y / f(x)eiaa(:EQJrqu?uwseca)dm’ Yu € R.
™

leal
V2r
We shall devote the next part of this section to the general construction of a G-Boehmian space B given

in [9]. According to [9], a G-Boehmian space is a quotient space defined as follows: Let B = B(T', S, %, A),
where I' is a topological vector space over C, S CT', x: I' x S — I satisfies the following conditions:

||fll1. Thus the FRHT is a continuous injective mapping from .#*(R) into Cp(R).

Ar: (g1+g2)*s=g1 x5+ ga*s,Vg1,92 €T and Vs € S.

As: (cg)xs=c(g*s),Vee C,VgeT and Vs € S.

As: gx(sxt)=(gxs)*t=(g*t)*s,VgeT and Vs,t € S.

Ay f g, > gasn—ooin ' and s € S, then g, *xs — g*sasn — oo in I
and let A be a collection of sequences from S such that

(A1) If (sp), (tn) € A, then (s, *t,) € A.

(Ag) If g €T and (s,) € A, then g* s, = gasn — oo in I

Let A = {((gn), (sn))/gn € T, (sn) € A and gy, * Sy, = gm * Sn, ¥m,n € N}. An equivalence relation
~ on A is defined as follows:

((gn), (sn)) ~ ((An), (tn)) if gn * tm = By x 5n, Vm,m € N

Denoting the equivalence class [z—“} containing ((gn), (sn)), we define the G-Boehmian space B as

the set of all equivalence classes {f—:} induced by the equivalence relation ~ on A. It is clear that B is a

vector space with respect to the addition and scalar multiplication defined as follows.

e o B e B v R
— |+ || =, Cc|—|=|—].
Sn tn Sn*tn Sn Sn

Every member g € I' can be uniquely identified as a member of B by [g:ﬁ} , where (s,,) € A is arbitrary

gn*t
¢"L
on B namely J-convergence and A-convergence which are defined as follows.

and the operation x is also extended to B x S by [55_"] *t = [ } . There are two notions of convergence
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Definition 2.1. [9, d-convergence] We say that X, % X asm — oo in B, if there exist gmn,gn €I,
m,n € N and (s,) € A such that X, = [gZTn] , X = [g_:ﬂ and for each n € N, gy — gn as m — 00 in
r.

Definition 2.2. [9, A-convergence] We say that X, A X asm — oo in B, if there exist g, € I' and
(sn) € A such that X,, — X = {%} and gm — 0 asm — oo in I

The major difference between a Boehmian space and a G-Boehmian space is that * should be com-
mutative on S for a Boehmian space, which is not required for a G-Boehmian space.

3. Fractional Convolutions and Fractional Hartley Transform

In this section, we introduce a new type of fractional convolution #,, using which, we establish all
the results required for constructing the fractional Hartley transformable G-Boehmian space B,,.

Definition 3.1. For f,g € Z1(R), we define the convolution #, as follows:

2may ZC 4 y)eZiaaa:y 4 f({I? o y)672mawy]dy7 Vz € R.

(f#a9)(x \/—

We first point out that #, is not commutative on .#*(R). Indeed, we can give a pair of functions
similar to that given in [10, Example 3.7].

Lemma 3.2. If f,9 € Z(R), then |f#agl < |caly/211llgllx and hence f#ag € 2 (R).

Proof. By using Fubini’s theorem, we obtain

1 f#aglh el |

dx

gg(y)e%aa@ﬁ [f(z +y)e* ™ + f(z —y)e” > "V]dy

9(9)6”“‘“’2 [f(z + y)e?i®e™¥ + f(x — y)e2%Y]|dy dx
|f|f x+y) 2ia6,1Y -|—f(517 _ ) 72iaawy|dxdy

\/2_ [R{Ifx+y|dw+f|fx— |dx]dy

< 'f—é‘—lﬁzﬂgy L{If (z Idz+g|f z |dz] dy

< lealy/21£11lg1l
and hence f#.9 € L1 (R). -

IN
:

T P

IN
&

IN
§

Lemma 3.3. If f,g,h € LY (R), then (f#a9)#ah = f#a(9#ah).

Proof. For a fixed a € R, let k, = % For z € R, we obtain that

fH#algttal@) = F5 H{(g#ah)(y)em‘*f [f(z +y)e ™ + fx —y)e™2%"Y]dy
= f {fh 2maz (y+z) 2iaayz +g( ) Qi%‘yz]dz} eQiaayQ
R

[f(z +y)e* =™ + f(z —y)e”?%"Y]dy
= ko [ h(z)e?iees {f fla+y)gly + 2)e2iae W tay+yz) gy
R R

+ [ F@+y)gy — z)eion +ay=y2) gy
R

+ [ fla —y)gly + z)e2iae—ryty=) gy
R

J+fl@—y)gly— z)eQi“a(yQWyz)dy} dz (by Fubini’s theorem)
R
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= ko fh(z)e%“az2 {f[f(x +u — 2)g(u)eiacl(u=2)"tou=2)+(u=-2)2] gy,
+Ff($ +u+ 2)g(u)e?iae [(utz)? e (utz)—(utz)z] gy,
+H}f($ + 2 — u)g(u)eiaal(u=2)" —r(u=z)+(u=2)z gy,

J (

+ff(x R u)g U) 2iaq [(z4u)? —z(z+u)—(ut2)z] du}dz

= ko‘fh(z)e%“az2

—N

JIf(o+ u = 2)g(u)eonls®ustsu—silgy
R R
+ [ f@+ 2+ u)g(u)edion i ustautezlgy
R
+ f f(x 4oz — u)g(u)€21aa[u2—uz—ru+rz] du

R
+ [ fle—2z— w)g(u)e2ianlv’ tuz—zu—az) du}dz
R

_ Ca fh(z)e%““z { Ca fg(U)eQia““Qf(x 4o u)eziaa(r+z)udu
R R
f

(3; + 2 — u)e_Qia(x (r+z)udu:| eiaawz

. 2 .
+ |: Ca g(u)eQzaau f(x —a u)eZzaa(a:fz)udu
V2 g

)ezma“2f(3; L u)eQiaa(a:z)udu] eQiaaa:z} dz
= i S HERI T [(Fag)(w o+ 2)eM0 — (Hag)w — 2)em 0] ds
= [(f#ag9)#ah](2).

Since x € R is arbitrary, the proof follows.

Lemma 3.4. If f,g.h € L' (R), then (f#ag)#ah = (f#ah)#ag.

Proof. From the proof of Lemma 3.3, we have

[(f#a9)#oh](x) = %é‘h(z)e%aaz {|:\/ﬂfg Qla(’qu(x—FZ+U)62iaa(r+2)udu
+\/C§7ﬁ{{‘g(u)€21aau f(x+z_u)e—2iaa(r+z)udu:| eQiaarz

+ |: Ca fg(u)eﬂaauzf(x a4 u)eQiaa(r—z)udu

4 Ca fg(u)eﬂaauzf(x R u)e—Qiaa(r—z)udu] e—Qiaazz} dz
R

= \;57 fg(u)e%aauz { [\;57 / h(z)e2iae=" f(z + u + z)e2iae(@tw)z g,
R R

+-Ca fh(z)€2ma22f(x +u— Z)e—Qiaa(z+u)de:| e2iaarz
R

+ [ o [ h(z)eQi“aZQf(x —u 4 z)eXiea@—wz
R

)621'aa22f(x —u— Z)e—Qiaa(z—u)zdz] e—Qiaarz} du

(applying Fubini’s theorem)
= S Lo ()@ )t () = w)e

= [(f#a )#ag]( )-

Since z € R is arbitrary, the proof follows.
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Lemma 3.5. If f, — f as n — oo in LY(R) and if g € L1 (R), then fo#tag — f#ag as n — 00 in
Z1(R).

Proof. From the proof of Lemma 3.2, we have the estimate

[(fn = f)F#aglh < Ical\/g [ fn = fllxllglls- (3.1)

Since f, — f as n — oo in Z1(R), the right hand side of (3.1) tends to zero as n — oo. Hence the
lemma follows. O

Lemma 3.6. If f € Z'(R) and if £(y) = [ |f(z + y)ema(?ﬁizwy) — f(x)|dz, Vy € R, then lir%f(y) =0.
R y=

Proof. Since C.(R) is dense in .Z*(R), we find g € C.(R) such that || f — g||1 < e. Using the continuity
of the mapping y — g, from R in to Z!(R), (see [28, Theorem 9.5]), we choose 0 < § < € such that

llgs — gll1 < € whenever |s| < 4, (3.2)

where g,(z) = g(z —y), Vo € R. Let K be the compact support of g and C' = sup |z|. Applying
rzeK

mean-value theorem, for the function y +— eiaa(y*£22y) op ly| < 9, for each fixed x € K, we have
e WE2m) 1] < Jy||2y + 2] < 2(5+ C) Jyl.

For |y| < 9, we get that

) = [IfwEy)eie=t 2 — f(@)|de
R
= [|f(z=+ y)eiaa(ygiwa) —glz+ y)eiaa(yQiwa) gzt y)eiaa(yQiwa)
R

—g(zxy) +9(£y) - g(z) +g(z) - f(z)ldr
%If(x +y) — gz £y)|de + [|g(z £ y)| e’ =) —1|da

+Q¢xiw—ngM+gE@w—ﬂmwx
= 2| f =gl + lgzy — gllr + [ lg(@ £ y)| |l "F200) — 1]da
< Betlglo [IW2(G+C)dr
< 3t glln2 (6 + C)m(K)e.

IA

where m(K) is the Lebesgue measure of the compact set K. This completes the proof of the lemma. O

Definition 3.7. The collection of all sequences (8,,) from LY (R), satisfying the conditions
A ca\/gfemat2 dn(t)dt =1 Vn € N;
R

As: [16,(8)]dt < M, ¥n €N, for some M > 0;
R

Ags : supp 6, — 0 as n — oo, where supp 6, is the support of 0, ;
1s denoted by A“.

Lemma 3.8. If (§,), (¢,,) € A then (0n,#a1,,) € A,
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Proof. Let (6,), (¥,,) € A*. By using Fubini’s theorem, we get that

[ e bt )y = = [ €0 [, ()20t B, (g + u)eian 48, (y — w)e 2 dudy
R R R
— \;;7 J ¢n(u)82m““2 J eitay’ [0 (y + u)eiae¥t 4§, (y — u)e 21@Yu]dydu
R

R
= = [, (w)eiae® [ iaal+u*+2vu)5 (4 4 ) dy

+ [ el Wit =2yu)5 (4 ) dydu
R

= Ja [l [T, (y + u)dy
R R
+ [ elae(=w’§ (y — w)dydu
R

= \2/%f¢n(u)eiaau2 fei“a52§n(s)ds du
R

-1 ~1 ~1
- 3 (D D= D
Next, by Lemma 3.2 and property (As) of A% we get that

2 2
10n#atnll1 < |Ca|\/;||6n||1”¢n”1 < |Ca|\/;P1 Py, ¥n €N,

where P; > 0 and P>, > 0 are such that

R
—1
= 2 (cayf2) [ a(u)e= du, (by condition A of A%)
R

/|§n(t)|(t) dt < P; and /|¢n(t)|(t) dt < Py, Vn € N.
R R

For a given € > 0, we choose N € N such that supp d,,supp v,, C (—§, 5) for all n > N. Using the fact
that

supp (6n#atb,,) C [supp 6, + supp ¥,,] U [ supp 8, — supp ¥,,],

we get that supp (6,#a%,) C (=5, 5)+(—5,5) = (—¢€,¢€), foralln > N. Hence it follows that (5, #41,,) €
A, O

Theorem 3.9. Let f € LY(R) and let (p,) € A%, then f#ap, — [ as n — oo in L(R).
Proof. Let € > 0 be given. By the property (As) of (¢,,), there exists M > 0 with [ |¢,,(¢)|dt < M,V n e
R

N. Using Lemma 3.6, choose § > 0 such that

17 £ et - podo < § (33)
R

whenever |y| < §. By the property (As) of (¢,,), there exists N € N with supp ¢,, C [-4,6], Vn > N.
For z € R, we have
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(Faen)@) = @) = i [ oal)e™ o+ y)eeeoy 4 flo = y)ee2]dy = f(a)
S [n(y)e? eV [ (x + y)etioaty 4 f(a - y)em2oerv)dy
R
a2 f(x)eiaay%n(y)dy
= f Pn(y)ei @y’ [f(z + y)elt= W' +220) 4 f(z — y)ein (v’ ~2ou)]dy
—2@[ f@)e v o, (y)dy

s , o,
= % _fg )iV [+ y)eie W +2)  f(a)
+f (@ —y)ete =2 — f(2)]dy.

This implies that for each n > N,

If#apn = fll = [I(f#ap,)(@) = f(2)|dz
R
< G f (o) 15+ p)eine ™20 f(a) o
+f|fx_ zaa(y 723:y)_ ( )|dxdy
< m f lonW)I{5 + §}dy, by using equation (3.3)
< M\;Li*‘ by using the property (As) of (¢,,).
Since € > 0 is arbitrary, it now follows that f#.¢, — f asn — oo in Z1(R). O

Lemma 3.10. If f, — f asn — oo in L (R) and (p,)) € A%, then fo#tap, — f asn — oo in L1(R).

Proof. For any n € N, using Lemma 3.2, we have

| fa#tavn — i = fa#avn — f#apn + fHavn — flh

< N = H#aenlls + 1 f#apn — flh

2
< lcal\/;llfn—flll lonlls + 1/ #avn — fll1,
< Mlcal\/gllfn—fllmLllf#a%—flll-

Since f,, — f as n — oo in Z1(R) and by Theorem 3.9, the right hand side of the last inequality tends
to zero as n — oco. Hence the lemma follows. O

Thus the G-Boehmian space B, = B(Z1(R), £ (R), #4, A%) has been constructed.

4. Fractional Hartley Transform on a G-Boehmian space

In order to extend the FRHT to the Boehmian space B,,, we have to first obtain a suitable convolution
theorem for fractional Hartley transform. For this purpose, we introduce the function G, on .Z1(R),

defined as -
[CalNI(E) = ca\/g / f(x)em‘*””2 cos(byat) dx, Vt € R. (4.1)

As the limits of the integration varies over the entire real line, this function €, differs from the usual
fractional Fourier cosine transform.
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Theorem 4.1 (Convolution theorem). If f,g € Z1(R), then Ho(f#ag) = H

Proof. Let t € R be arbitrary and k., =

a2 [ (#a0)(2)

= 2kq fe“‘a(gﬂ +u®) Cas (bazu fg

theorem, we obtain that

[Ha(fH#a9)](u) =

-

]R

)
)em“(r v)* ]dxdy
(y)ema(y u? ) [ Cas (

% be define as in the proof of Lemma 3.3. By using Fubini’s

Jeiae @ +u*) Cas (byau)de

2iao¢y2 [f(fL' + y)e%aawy

y)e~ 2““W”y]61lg/cizlc
= 2k, [ g(y)eiae’tu? )f Cas (

(bawu)[f (@ + y)eloe (o)

ba(z = y)u) f(2)e'*>="dz
R

+f Cas (ba(z +y)u) f(2)e"=" dzdy

R

= 2k, fg(y) iaa (v*+u%) [ Cas (
R

—y)u)

+ Cab (ba (= + y)u)lf (2)ei =" dzdy

= dka [ g(y)
R

€iaa W %) [eos(by ztt) cos(bayu)

=

+ sin(bq zu) cos(boyu)] f(2)e a2’ g dy

- 4kagg(y)e
= 4kaf 9(y)

= CO(

&‘

2
7r

iaa (y°+u?) | Cas (byzu) cos(bayu) f(2)ei dzdy
R
giaay’ cos(bayu) f Cas (bazu)f(z)ema(Z2+“2)dzdy

o ()](w) f g(y)ei®¥” cos(bayu)dy

= [Ha(Hl(u) - [Caly )]( )

Thus we have H,, (f#a9) =

Theorem 4.2. If f,g € L (R), then Co(f#a9) = Cal(f) - Culg).

Proof. Proof of this theorem is much similar to that of the previous theorem and hence we prefer to omit

the details.

Lemma 4.3. If (¢,,)

O

€ A% then Cu(p,,) — 1 as n — oo uniformly on each compact subset of R.

Proof. Let € > 0 and a compact subset K of R be given. Choose M; > 0, My > 0 and N € N such

that [
n > N, we have

lo, ()| dt < My, ¥n € N, K C [—Mas, Ms] and supp ¢,, C

[—¢,¢] for all n > N. For u € K and

|[Ca ()] () — 1] <|Ca|\/§/ |00 (5)] ] cos(baus) — 1| ds
R
:|ca|\/§/ lo,,(8)] | cos(baus) — 1| ds, Vn > N
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< [ Va1l s sinz| ds
—€
(where 0 < z < |bqus| exists, by mean-value theorem)

wMM/M@W

—€

<|bo|MaMie.
This completes the proof. O

Definition 4.4. For 8 = {f”} € By, we define the extended fractional Hartley transform of B by

©n
BN = lm B0, (€ B).
The above limit exists and is independent of the representative ((f,), (¢,,)) of 5. Indeed, for ¢t € R,
choose k such that [Cq(¢})](t) # 0. Then, applying Theorem 4.1, we obtain that

[Ha(fnttape)lt) _ [Halfe#arn)lt) _ [Ha(fi)l()

Pl =" ol Ealeol) Ealel @O
Therefore, using Lemma 4.3, we get [H,(fn)](t) — PUwl®) " ag 1 — oo uniformly on each compact

[Calep)](t)”
subset of R. If ((fn),(¢,)) ~ ((gn), (10,,)), then fo#ath,, = gm#atp, for all m,n € N. Again using
Theorem 4.1, we get

| PG _ Pl _
A HaFl®) = 6 o010 ~ Calun]l) — nim alonl®):

If f € Z'(R) and § = [f#;—@} then
[ (B)](t) = lim [Ha(f#apn)|(t) = [Ha (D) lim [Calp,)](t) = [Ha(f)I(?),

n—00

as [Ca(p,)](t) — 1 as n — oo uniformly on each compact subset of R. This shows that the extended
fractional Hartley transform is consistent with the FRHT on .Z1(R).

Theorem 4.5. If 5 € B, then the extended fractional Hartley transform 3 (B) € C(R).

Proof. As () is the uniform limit of {H,(f,)} on each compact subset of R and each H,(f,) is a
continuous function on R, 5#(8) is a continuous function on R. O
Theorem 4.6. The extended fractional Hartley transform # : B, — C(R) is linear.

Proof. Proof is straightforward from the convolution theorem and the linearity of 3, on .Z*(R). O

Theorem 4.7. The extended fractional Hartley transform 7 : B, — C(R) is one-to-one.
Proof. Let 8 = {{;—ﬂ € B, be such that [22(0)](s) = 0, Vs € R. For t € R, choose k € N with
[Ca(pi)](#) # 0. Then

0= [Calpp)](®) - [Z(B)I(t) = [Calpp)](®) - Tim [Ha(fa)](t) = [Halfr)](D)-
Using [Ha (fm)](1)[Calei)](t) = [Ha(fr)](#)[Calp,m)](t), it follows that Hy(fm) = 0, ¥m € N. Since
FRHT is injective, we get f,, = 0 in Z1(R), for every m € N. Thus 3 = 0, proving the result. O

Theorem 4.8. The extended fractional Hartley transform 7 : B, — C(R) is continuous with respect
to -convergence and A-convergence.

Proof. As the proof of this result is routine, we prefer not to give the details. O
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