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Solving Fractional Differential Equations by the Ultraspherical Integration Method
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abstract: In this paper, we present a numerical method to solve a linear fractional differential equa-
tions. This new investigation is based on ultraspherical integration matrix to approximate the highest order
derivatives to the lower order derivatives. By this approximation the problem is reduced to a constrained
optimization problem which can be solved by using the penalty quadratic interpolation method. Numerical
examples are included to confirm the efficiency and accuracy of the proposed method.
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1. Introduction

In recent decades, fractional equations have gained much attention due to exact description of physical
phenomena such as damping laws, electromagnetic acoustics, viscoelasticity, electro analytical chemistry
neuron modeling, diffusion processing and material science( see for example [8,10]). Also many attempts
have been made to find analytical and numerical solutions for the fractional problems.
These attempts include introducing finite difference [5,20], collocation-shooting [6], spline and B-spline
collocation [18], Adomian decomposition [11], variational iteration [17], operational matrix [22] and
many other methods.
Some authors present spectral or pseudospectral integration methods proven successful in the numerical
solutions of many problems (see for example [2,3,4,12]).
In this work, we introduce a new formula of spectral integration matrix depends on using ultraspherical
polynomials at some equally spaced points. The results indicate that the spectral accuracy is achieved
and the effect of round off errors is limited.

2010 Mathematics Subject Classification: 35B40, 35L70.

Submitted December 25, 2018. Published June 26, 2019

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.45992


2 A. Khani and S. Panahi

By the ultraspherical integration matrix we approximate the highest order fractional derivatives to the
lower order fractional derivatives. By this work, the problem is reduced to a constrained optimization
problem which can be solved by using the penalty quadratic interpolation method [13].
Consider a linear fractional differential equation in the from:

Dαy(x) + f(x)y(x) = g(x), n− 1 < α < n, n ∈ N, 0 ≤ x ≤ 1 (1.1)

with initial conditions:

y(k)(0) = bk, k = 0, 1, . . . , n− 1, (1.2)

where f, g : [0, 1] → R are given continuous function, and bk are given constants.
The rest of the paper is organized as follows:
Basic concepts of fractional calculus problems are discussed in section 2. In section 3, we introduce ultra-
spherical polynomials and some of their properties. In section 4, ultraspherical spectral approximation
for a given function and ultraspherical spectral integration matrix are presented. In section 5, description
of the method and convergence are discussed. And finally in section 6, numerical results for confirmation
of proposed method are presented.

2. Preliminaries

In this section, we recall some basic concepts and properties of the fractional calculus which are used
throughout the paper.

Definition 2.1. [21] A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there exist a
real number p > µ, such that f(x) = xpf1(x), where f1(x) ∈ C[0, 1). If β ≤ µ, then Cµ ⊂ Cβ.

Definition 2.2. [21] A function f(x), x > 0 is said to be in the space Cm
µ ,m ∈ N ∪ {0}, if f (m) ∈ Cµ.

Definition 2.3. [9] The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function
f ∈ Cµ, µ ≥ −1, is defined as:

Iαf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt α > 0, x > 0, (2.1)

I0f(x) = f(x). (2.2)

Definition 2.4. [21] Let f ∈ Cn
−1, n ∈ N ∪ {0}. Then the Caputo fractional derivative of order α is

defined as:

cDα
0 f(x) = In−αf (n)(x) =

1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)1−(n−α)
dt, n− 1 < α < n, n ∈ N. (2.3)

It can be shown that [6,8,9]:

1. Iαa I
β
a f = I

(α+β)
a f α, β > 0, f ∈ CM ,M > 0.

2. Iαa x
β =

Γ(β + 1)

Γ(α+ β + 1)
xα+β, α > 0, β > −1, x > 0

3. Iαa (
cDα

0 f(x)) = f(x) −
n−1
∑

k=0

fk(0+)
xk

k!
, x > 0

4. cDα
0 I

αf(x) = f(x), x > 0, n− 1 < α ≤ n.

5. cDα
0C = 0, C is constant.

6. If β < [α], then cDα
0 x

β = 0, x > 0.

7. If β > [α], then cDα
0 x

β =
Γ(β + 1)

Γ(β − α+ 1)
xβ−α, x > 0.

In this paper, we used the Caputo fractional derivative, because it allows traditional initial and
boundary conditions to be included in the formulation of the problem.
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3. Ultraspherical polynomials and some of the properties

The ultraspherical (Gegenbauer) polynomials with the real parameter
(

λ > −1

2
, λ 6= 0

)

, are a sequence of polynomials C
(λ)
j (x), j = 0, 1, 2, . . ., in the finite domain x ∈ [−1, 1],

each respectively of degree j satisfying the orthogonality relation:

∫ 1

−1

(1− x2)λ−
1

2C
(λ)
j (x)C

(λ)
k (x)dx =

{

0 j 6= k

ψ
(λ)
j j = k

(3.1)

where the normalization constant ψ
(λ)
j , is defined as [23]:

ψ
(λ)
j = 21−2λπ

Γ(j + 2λ)

(j + λ)
{

Γ(λ)
}2

Γ(j + 1)
, λ 6= 0. (3.2)

Here, the ultraspherical polynomials are standardized such that C
(λ)
j (1) = 1, for j = 0, 1, . . ., has the de-

sirable properties that C
(0)
j (x) is identical with the Chebyshev polynomial of the first kind Tj(x), C

(1/2)
j (x)

is the Legender polynomial Pj(x) and C
(1)
j (x) is equal to

(

1

j + 1

)

Uj(x), where Uj(x) is the Chebyshve

polynomial of the second kind.

The polynomials C
(λ)
j (x) may be generated by Rodrigue’s formula given as [6]

C
(λ)
j (x) =

[ 12 j]
∑

r=0

(−1)r
Γ(j − r + λ)

Γ(λ)(r!)(j − 2r)!
(2x)j−2r . (3.3)

In applications, recurrence formulaes which link pairs of coefficients are often more useful than explicit
formulae for the coefficients. Therefore, a general expression for an ultraspherical polynomial can be
considered as:

C
(λ)
j (x) =

[ 12 j]
∑

r=0

G(j)
r (λ)xj−2r , (3.4)

where

G(j)
r (λ) = (−1)r

2j−2rΓ(j − r + λ)

Γ(λ)(r!)(j − 2r)!
. (3.5)

A relationship between the coefficients G
(j)
r+1(λ) and G

(j)
r (λ) is given by:

G
(j)
r+1(λ) = − (j − 2r − 1)(j − 2r − 2)

4(r + 1)(λ+ j − r − 1)
G(j)

r (λ), (3.6)

where

G
(0)
0 (λ) = 1, G

(j)
0 (λ) = 2j

Γ(j + λ)

Γ(λ)j!
,

and so C
(λ)
0 (x) = 1, C

(λ)
1 (x) = 2λx.

Theorem 3.1. [16] The integral of ultraspherical polynomials is expressed in terms of ultraspherical
polynomials as follows:

I(xi) =

∫ xi

−1

C
(λ)
j (x)dx =

[ 12 j]
∑

r=0

1

j − 2r + 1
G(j)

r (λ)
(

xj−2r+1
i − (−1)j−2r+1

)

. (3.7)

Proof. see [6]. �
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4. Ultraspherlcal spectral approximations

In the remaining parts of this paper, we assume that f(x) is a smooth continuous function and

S =

{

xi =
i

N
, i = 0, . . . , N

}

.

Theorem 4.1. [15] Let f(x) be approximated by ultraspherical finite expansion, namely,

f(x) ≃
N
∑

j=0

ajC
(λ)
j (x).

Then

aj = (ψ
(λ)
j )−1

∫ 1

−1

(1− x2)λ−
1

2C
(λ)
j (x)f(x), (4.1)

where

ψ
(λ)
j = 21−2λπ

Γ(j + 2λ)

(j + λ)[Γ(λ)]2Γ(j + 1)
, λ 6= 0.

Proof. See [7]. �

Theorem 4.2. Let
φ(x)

(t− x)1−α
(t 6= x) be approximated by ultraspherical polynomials as in (4.1):

aj ≃
N
∑

k=0

2θk
N

(ψ
(λ)
j )−1(1− x2k)

λ− 1

2C
(λ)
j (xk)

φ(xk)

(t− xk)1−α
, (4.2)

where θ0 = θN = 1
2 , θk = 1 for k = 1, 2, . . . , N − 1.

Proof. By using the Trapezoidal rule

∫ b

a

f(x)dx = h

N
∑

j=0

′′f(xj)−
(b− a)h2

12
f ′′(ξ), h =

b− a

N
,

we obtain from (5.1):

aj =
2

N
(ψ

(λ)
j )−1

N
∑

k=0

′′(1− x2k)
λ− 1

2C
(λ)
j (xk)

φ(xk)

(t− xk)1−α

−2

3N2
(ψ

(λ)
j )−1H

(2)
j (ξ)

with

Hj(x) = (1− x2)λ−
1

2C
(λ)
j (x)

φ(x)

(t− x)1−α
.

Hence

aj ≃
2

N
(ψ

(λ)
j )−1

N
∑

k=0

′′(1− x2k)
λ− 1

2Cλ
j (xk)

φ(xk)

(t− xk)1−α
.

With θ0 = θN = 1
2 , θk = 1 for k = 1, 2, . . . , N − 1,

and

φ(x)

(t− x)1−α
≃

N
∑

j=0

N
∑

k=0

2θk(ψ
(λ)
j )−1

N
(1− x2k)

λ− 1

2C
(λ)
j (xk)

φ(xk)

(t− xk)1−α
Cλ

j (x), t, xk ∈ S.

�
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4.1. Ultraspherical integration matrix

In this section, we approximate integral of a function f ∈ C[−1, 1] by interpolating the function with
ultraspherical polynomial at the points given in S.

Theorem 4.3. Let
φ(x)

(t− x)1−α
(t ∈ S, t 6= x) be approximated by ultraspherical polynomial. Then there

exists a matrix Q = [qij ], i, j = 0 . . .N, satisfying

∫ xi

−1

φ(x)

(xi − x)1−α
dx ≃

N
∑

k=0
i6=k

qik(λ)
φ(xk)

(xi − xk)1−α
, (4.3)

where

qik(λ) =
N
∑

j=0

[ 12 j]
∑

r=0

2θkG
j
r(λ)(ψ

(λ)
j )−1

N(j − 2r + 1)
(1− x2k)

λ− 1

2C
(λ)
j (xk)

(

xj−2r+1
i − (−1)j−2r+1

)

, (4.4)

for xi, xk ∈ S, with θ0 = θN = 1
2 , θk = 1 for k = 1, 2, . . . , N − 1.

Proof. From theorem 3, we have

φ(x)

(xi − x)1−α
≃

N
∑

j=0

N
∑

k=0
i6=k

2θk
(

ψj(λ)
)−1

N
(1− x2k)

λ− 1

2C
(λ)
j (xk)

φ(xk)

(xi − xk)1−α
C

(λ)
j (x), (4.5)

therefor
∫ xi

−1

φ(x)

(xi − x)1−α
dx =

N
∑

j=0

N
∑

k=0
k 6=i

2θk
(

ψj(λ)
)−1

N
(1 − x2k)

λ− 1

2C
(λ)
j (xk)

[

φ(xk)

(xi − xk)1−α

∫ xi

−1

C
(λ)
j (x)dx

]

=

N
∑

k=0
k 6=i





N
∑

j=0

2θk(ψ
(λ)
j )−1

N
(1 − x2k)

λ− 1

2C
(λ)
j (xk)

∫ xi

−1

C
(λ)
j (x)dx





φ(xk)

(xi − xk)1−α
,

substituting from (3.7) yields

∫ xi

−1

φ(x)

(xi − xk)1−α
=

N
∑

k=0
i6=k

qik(λ)
φ(xk)

(xi − xk)1−α
,

with

qik(λ) =

N
∑

j=0

[ 12 j]
∑

r=0

2θkG
j
r(λ)(ψ

(λ)
j )−1

N(j − 2r + 1)
(1− x2k)

λ− 1

2C
(λ)
j (xk)

(

xj−2r+1
i − (−1)j−2r+1

)

,

for xi, xk ∈ S, with θ0 = θN = 1
2 , θk = 1 for k = 1, 2, . . . , N − 1, which completes the proof. �
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5. Shifted ultraspherical polynomials

The shifted ultraspherical polynomials are defined on [0, 1] by

C̃(λ)
n (x) = C(λ)

n (2x− 1).

All results of ultraspherical polynomials can be easily obtained for their shifted. The orthogonality

relation for C̃
(λ)
n (x) with respect to the weight function (x− x2)λ−1/2 is given by

∫ 1

0

(x− x2)λ−
1

2 C̃
(λ)
j (x)C̃

(λ)
k (x)dx =

{

0 j 6= k

4−λψ
(λ)
j j = k,

where ψ
(λ)
j is given in (3.2)(see [4])

. As a direct consequence of Theorem 4, we have the following corollary.

1. Let f(x) ∈ L2[0, 1], then

f(x) ≃
N
∑

j=0

ajC̃
(λ)
j (x), (5.1)

where
aj = 4λ(ψ

(λ)
j )−1

∫ 1

0 (x − x2)λ−
1

2 C̃
(λ)
j (x)f(x).

2. Let f(x) be approximated by shifted ultraspherical polynomials, then there exists a matrix Q̃ =
[q̃ij ], i, j = 0 . . .N, satisfying

∫ xi

0

f(x)dx ≃
N
∑

k=0
t6=k

q̃ik(λ)f(xk), (5.2)

where

q̃ik(λ) =

N
∑

j=0

[ 12 j]
∑

r=0

4λ2θkG̃
j
r(λ)(ψ

(λ)
j )−1

N(j − 2r + 1)
(xk − x2k)

λ− 1

2 C̃
(λ)
j (xk)

(

(2xi − 1)j−2r+1 − (−1)j−2r+1
)

, (5.3)

for xi, xk ∈ S, with θ0 = θN = 1
2 , θk = 1 for k = 1, 2, . . . , N − 1.

6. Description of the method

In this section, we shall present the ultraspherical spectral integration method for solving the problems
(1.1)− (1.2). For this, purpose we give ultraspherical integration matrix for the highest order fractional
derivative in the problem (1.1), i.e

ϕ(x) = cDα
0 y(x), n− 1 < α ≤ n. (6.1)

An application of the integral operator Iα to both sides of (5.1) and using the initial conditions (1.2) and
part3 of (2.4), yield (for a = 0)

y(x) =

n−1
∑

k=0

bk
xk

k!
+

1

Γ(α)

∫ x

0

ϕ(t)

(x− t)1−α
dt.

Hence, for x ∈ S and use the theorem 4, we get

y(xi) ≃
n−1
∑

k=0

bk
xki
k!

+
1

Γ(α)

N
∑

k=0
i6=k

ϕ(xk)qik
(xi − xk)1−α

. (6.2)
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Substituting (6.1) and (6.2) into (1.1), it can be written as:

ϕ(xi) ≃ F (xi)







n−1
∑

k=0

bk
xki
k!

+
1

Γ(α)

N
∑

k=0
i6=k

ϕ(xk)qik(λ)

(xi − xk)1−α






, 0 ≤ i ≤ N,

or

ϕi − F (xi)







n−1
∑

k=0

bk
xki
k!

+
1

Γ(α)

N
∑

k=0
i6=k

ϕ(xk)qik(λ)

(xi − xk)1−α






≃ 0.

This can be written as NLP problem:

Fk = (ϕ0, ϕ1, ..., ϕn, λ) = 0, k = 0, ....N.

By using partial quadratic interpolation method [13], we can solve the above unconstrained optimization
problem.

7. Partial Quadratic Interpolation Method(PQI)

The essential steps to apply the partial quadratic interpolation method [13] can be summarized as
follows:
1)Choose some starting point x0 ∈ Rmand ν = 1.
2)Approximate the function F (x)about in the quadratic form

F (X) = a+ [Bm(xr)]Tr [x− xr] +
1

2
[x− xr]Tr[Am(xr)][x− xr ]

where Amand Bm represent the gradient vector and the Hessian matrix of the function F (x) respectively.
To compute particular values for a,Am, Bm we choose a set of interpolation points as follows:
i) m points [xri+], i = 1, ...,m

[xri+] = (xr1, x
r
2, ..., x

r
i−1, x

r
i + li, x

r
i+1, ..., x

r
m)

ii)m points [xri−], i = 1, ...,m

[xri−] = (xr1, x
r
2, ..., x

r
i−1, x

r
i − li, x

r
i+1, ..., x

r
m)

iii)m(m−1)
2 point [xrij ], i = 1, ...,m− 1, j − i+ 1, ...,m where

[xrij ] = (xr1, x
r
2, ..., x

r
i−1, x

r
i + li, x

r
i+1, ..., x

r
j + lj, ..., x

r
m)

Using these interpolation points it can be shown that a = F (xr)and the elements bi, aj ,of Am, Bm

respectively are given by

bi =
F (li+)− F (xi−1)

2li
, aii =

F (xrij)− 2F (xr) + F (xri−)

l2i
, aij =

F (xrij)− F (xri+)− F (xrj+) + F (xr)

lilj

The li are a set of constants which determine the accuracy of the inerpolation.
3)Extract the symmetric positive definite matrix [Aq] from the symmetric matrix [Am] using Choliski
method, q 6 m by cancelling certain rows and columns. Essentially we write Am = [Sm][Sm]Tr. From
this we have

s211 = a11

If a11 6 0 then we eliminate the first row and column in each of [Am], [Sm]and[Sm]Tr and perform the
calculation on the [Am−1], [Sm−1]and[Sm−1]

Tr. If a11 > 0 then we have

s211 =
√
a11, s1j =

a1j
s11

,j = 2, ...,m.
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Let us now suppose that we have operated on the first j−1 columns of [S], i.e. We have either calculated
the elementes or eliminated them. The operation on the jth column gives

s2jj = ajj −
∑

i∈k1,i6j

s2ij .

where k1 is the set of indices of rows and columns not eliminated. If sjj 6 0 we eliminate the jth columns
and rows [Aq] and [Sq] where [Aq] and [Sq] are the current reduced matrices derived to date from [Aq]
and [Sq], q 6 m. Otherwise we take

sjj =

√

ajj −
∑

i∈k1,i6j

s2ij , sij =
[aij −

∑

i∈k1,i6j s
2
ij ]

sjj

This process is repeated for each column until we finally obtain the reduced matrix [Aq] given by

[Aq] = [Sq][Sq]
Tr

4)Solve the system of the linear equations

[Aq][∆xi] = [Bq]

where Bq is the reduced form of gradiant vector corresponding to Aq.
5)Compute a new point xν+1 from

xν+1
i =

{

xν+1
i + β△ xi, forxi ∈ Rq

xνi , forxi ∈ Rq

where β is a parameter which takes values 1, 12 ,
1
4 , ... and we use the first value of β which satisfies

F (xν+1) < F (xν). If β becomes too small without satisfying this condition, the calculation can be
restarted with a finer approximation of the matrices [Am] and [Bm], i.e. smaler values li.

8. Modified PQI Method

In PQI method we set t = 1, 12 ,
1
4 , ... and we take the first value of t which satisfies the condition

f(xr+1) < f(xr), xr ∈ Rn

However, the value of t taken by this way may not be the optimal value of t. Since there is a great
possibility that the optimal value t∗ lies between these values, i.e. bwtweent = 1, 12 ,

1
4 , ... to get the

optimal step size t∗ we suggest the following modification:
Let us approximate f(t) = f(xr + tδxr) by a polynomial of second degree p2(t) over the interval [0, 1] as
following:

f(t) = p2(t) =
[

1 t
h ( t

h )
2
]

[L2]





f0
f1
f2





where h is the interval of the interpolation, f2i = f(ur + iδur), i = 0, 12 , 1 and L2 is a Lagrange matrix
where

L2 =
1

2





2 0 0
−3 4 −1
1 −2 1





from this and p2(t) we have

p2(t) =
[

1 t
h ( t

h )
2
]





2 0 0
−3 4 −1
1 −2 1









f0
f1
f2




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then,

p
′

2(t) =
1

h
(−2

3
f0 + 2f1 −

1

2
f2) +

2t∗

h2
(
1

2
f0 − 4f1 + f2) = 0

and taking h = 1
2 we obtain

t∗ =
3f0 − 4f1 + f2
4(f0 − 2f1 + f2)

9. Error estimation and convergence

Theorem 9.1. [15] Let f(x) ∈ C∞[−1, 1] be approximated by

f(x) ∼=
N
∑

k=0

akC
(λ)
k (x), (9.1)

then for each x in [−1, 1], there exists a number ξ(x) ∈ [−1, 1], such that

R
[λ]
N (x, ξ) = f(x) − PN (x) =

fN+1(ξ)

(N + 1)!K
(λ)
N+1

Cλ
N+1(x) (9.2)

and
∥

∥R
(λ)
N (x, ξ)

∥

∥ ≤ max
1≤δ≤1

1

(N + 1)!K
(λ)
N+1

∥

∥fN+1(ξ)
∥

∥,

where

Kλ
N = 2N

Γ(N + λ)Γ(2λ+ 1)

Γ(N + 2λ)Γ(λ)
.

Proof. See [7]. �

Theorem 9.2. Let
ϕ(x)

(t− x)1−α
(t ∈ S, t 6= x) be approximated by (9.1), then there exists a number ξ in

[−1, 1] such that

∫ xi

−1

ϕ(x)

(xi − x)1−α
dx =

N
∑

k=0
i6=k

ϕ(xk)qik(λ)

(xi − xk)1−α
+ E

(λ)
N (xi, ξ), (9.3)

where xi, xk ∈ S, 0 ≤ i ≤ N ,

E
(λ)
N (xi, ξ) =

f (N+1)(ξ)

(N + 1)!K
(λ)
N+1

∫ xi

−1

C
[λ]
N+1(x)dx (9.4)

− 2

3N2

N
∑

j=0

[ψ
(λ)
j ]−1H

(2)
j (ξ)

∫ xi

−1

C
(λ)
j (x)dx. (9.5)

By f(x) =
ϕ(x)

(xi − x)1−α
, the (5.6) is convergence.

Proof. Let
ϕ(x)

(t− x)1−α
be approximated on S by ultraspherical polynomials, then by (5.1), (5.1), (5.3)

and the trapezoidal rule, we have

ϕ(x)

(xi − x)1−α
≃

N
∑

j=0

2

N

[

ψ
(λ)
j

]−1 N
∑

k=0

′′(1 − x2k)
λ− 1

2C
(λ)
j (xk)

ϕ(xk)

(xi − xk)1−α
C

(λ)
j (x)

− 2

3N2
(ψj(λ))

−1H
(2)
j (ξ)

)r
C

(λ)
j (x) +

f (N+1)(ξ)

(N + 1)!K
(λ)
N+1

C
(λ)
N+1(x).
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then integration of both sides gives

∫ xi

−1

ϕ(x)

(xi − x)1−α
dx =

N
∑

j=0

2

N

[

ψ
(λ)
j

]−1 N
∑

k=0

′′(1− x2k)
λ− 1

2C
(λ)
j (xk)

ϕ(xk)

(xi − xk)1−α

∫ xi

−1

C
(λ)
j (x)dx − 2

3N2

N
∑

j=0

(

ψ
(λ)
j

)−1
H

(2)
j (ξ)

∫ xi

−1

C
(λ)
j (x)dx

+
f (N+1)(ξ)

(N + 1)!K
[λ]
N+1

∫ xi

−1

C
(λ)
N+1(x)dx

=

N
∑

k=0
i6=k

qik(λ)
ϕ(xk)

(xi − xk)1−α
+ E

(λ)
N (xi, ξ),

where E
(λ)
N (xi, ξ) is defined by (5.7) and

f (N+1)(x) =

(

ϕ(x)

(t− x)1−α

)(N)

= ϕN (t− x)α−1 +Nϕ(N−1)(−1)(α− 1)(t− x)α−2 + . . .

+ϕ(−1)Nα(α− 1) . . . (α−N)(t− x)α−(N+1)

=

N
∑

k=0

ϕk(−1)kα(α − 1) . . . (α− k) · (t− x)α−(k+1)

Since, the first term in (5.7) is bounded, it is enough for showing the convergence of (5.6), to show that

the second term is bounded. For this purpose, we first show that ‖ C(λ)
j ‖= ψ

(λ)
j < 1. From

ψ
(λ)
j = 21−2λπ

Γ(j + 2λ)

(j + λ)[Γ(λ)]2Γ(j + 1)
, λ 6= 0.

and

2

∫ π/2

0

cos(2x−1)(t) sin(2y−1)(t)dt =
Γ(x)Γ(y)

Γ(x + y)
, Γ(j + 1) = jΓ(j),

we have:

ψ
(λ)
j ≤ π21−2λ

π2j(j + λ)
< 1. (9.6)

Since x ∈ [−1, 1]

Hj(x) = (1− x2)λ−
1

2C
(λ)
j (x)

φ(x)

(t − x)1−α

is a twice continuously differentiable function, then there exists a real number M such that ‖ H(2)
j (x) ‖≤

M . Finally,

‖ 2

3N2
(ψ

(λ)
j )

−1
Hj(x)

(2)

∫ xi

−1

Cλ
j (x)dx ‖≤ 2

3N2
(ψ

(λ)
j )

−1
‖ Hj(x)

(2) ‖ 2ψ
(λ)
j ≤ 4M

3N2
,

and so E
(λ)
N (xi, ξ) is bounded. �
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10. Numerical examples

In this section, we give computational results of some examples, to support our theoretical results.
let us consider an initial value problem for one of the simplest fractional order differential equations
appearing in applied problems:

cDα
xy(x) +Ay(x) = f(x), 0 < x (10.1)

with initial conditions:

y(k)(0) = 0, k = 0, 1, . . . , n− 1, (10.2)

where A is a positive constant and n − 1 < α < n . For 0 < α ≤ 2 this equation is called the
relaxation-oscillation equation.

Example 10.1. As the first example, we consider the following initial value problem:

cD
(α)
0 y(x) + y(x) = x4 +

24x4−α

Γ(5− α)
, 0 ≤ x ≤ 1 (10.3)

with the initial condition y(0) = 0 and the exact solution y(x) = x4. Let α = 1
8

and ϕ(x) = cD
1

8

0 y(x) . By using the shifted ultraspherical polynomials and system (4.7), (4.8) and corollary
1, 2 we have the form,

ϕi +
1

Γ
(

1
8

)

N
∑

k=0
i6=k

ϕk q̃ik(λ)

(xi − xk)
7

8

− x4i −
24x

3

8

i

Γ
(

39
8

) = 0,

where q̃ik(λ) is defined by (4.9), for xi ∈ S, i = 0, 1, ..., N .

This can be written as NLP problem:

Fk = (ϕ0, ϕ1, ..., ϕn, λ) = 0, k = 0, ....N.

By using quadratic interpolation method, we can solve the above unconstrained optimization problem.
The results are computed at different numbers of α on the [0, 1]. They show the efficiency and spectral
accuracy of ultraspherical integration method. In table [1], we compare the approximate solutions of
Eq (6.1) obtained by the ultraspherical integration method with the exact solution for the N = 5,
α = 1

16 , α = 1
8 , α = 1

2and λ = 0.55.

Table 1: Absolute error of example 10.1

xi α = 1
16 α = 1

8 α = 1
2

x0 0.0000 0.0000 0.0000
x1 0.0001 0.0002 0.0007
x2 0.00019 0.00020 0.00074
x3 0.00023 0.00033 0.000305
x4 0.0029 0.0034 0.00835
x5 0.00717 0.0084 0.087

Example 10.2. Our second example covers the linear equations:

cD
(α)
0 y(x) + y(x) = x8 +

Γ(9)x8−α

Γ(9− α)
, 0 ≤ x ≤ 1, 0 < x ≤ 1,
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with the initial conditions y(0) = 0 and the exact solution y(x) = x8.

For α = 0.8, Let cD
(0.8)
0 y = ϕ(x) by fractional integration we have,

y(x) =
1

Γ(0.8)

∫ x

0

ϕ(t)

(x− t)0.2
dt (10.4)

y(xi) ≃
1

Γ(2/3)

N
∑

k=0

ϕ(xk)q̃ik
(xi − xk)1/2

. (10.5)

By using the shifted ultraspherical polynomials and the relations (4.7), (4.8) and corollary 1, 2 we have the
system :

ϕi +
1

Γ
(

8
10

)

N
∑

k=0
i6=k

ϕk q̃ik(λ)

(xi − xk)1−
2

10

− x8i −
Γ(9)x7.2i

Γ (8.2)
= 0

where q̃ik(λ) is defined by (4.9).

This can be written as NLP problem:

Fk = (ϕ0, ϕ1, ..., ϕn, λ) = 0, k = 0, ....N.

By using quadratic interpolation method, we can solve the above unconstrained optimization problem.
The results are computed at different numbers of α on the [0, 1]. They show the efficiency and spectral
accuracy of ultraspherical integration method. In table [2], we compare the approximate solutions of
Eq (6.2) obtained by the ultraspherical integration method with the exact solution for the α = 0.8, α =
0.5, α = 0.1 and λ = 0.75, N = 5.

Table 2: Absolute error of example 10.2

xi α = 0.8 α = 0.5 α = 0.1

x0 0.0000 0.0000 0.0000
x1 0.0000 0.0000 0.0000
x2 0.0000 0.0000 0.0001
x3 0.0009 0.0003 0.0009
x4 0.0073 0.0030 0.0052
x5 0.036 0.015 0.021

Example 10.3. Consider the following linear initial value problem

cD
(α)
0 y(x) + y(x) = 1, (10.6)

with initial condition:

y(0) = 0. (10.7)

The exact solution is Eα(x) =
∑∞

k=0
xαk

Γ(1+αk) , where Eα(x) is a one-parameter function of the Mittag-

Leffler type.

Let

ϕ(x) = cDα
0 y(x), (10.8)

by the fractional integration we have y(x) =
1

Γ(α)

∫ x

0

ϕ(t)

(x− t)1−α
dt, for the xi ∈ S;

y(xi) =
1

Γ(α)

∫ xi

0

ϕ(t)

(xi − t)1−α
dt, (10.9)
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by substituting and shifted ultraspherical polynomials and relations of (4.6), (4.7) and using corollary 1, 2
we have

ϕi +
1

Γ (α)

N
∑

k=0
i6=k

ϕk q̃ik(λ)

(xi − xk)1−α
− 1 = 0,

where q̃ik(λ) is defined by (4.9). This can be written as NLP problem:

Fk = (ϕ0, ϕ1, ..., ϕn, λ) = 0 k = 0, ....N.

By using quadratic interpolation method, we can solve the above unconstrained optimization problem.
The results are computed at different numbers of α on the [0, 1] . They show the efficiency and spectral
accuracy of ultraspherical integration method. Table [3] display absolute error function with various
values of α and N = 5, N = 10, N = 15, and λ = 0.55.

Table 3: Absolute error of example 10.3

α N = 5 N = 10 N = 15

α = 0.25 0.00041 0.00011 0.000029
α = 0.5 0.00153 0.00012 0.0000105
α = 0.75 0.0073 0.000724 0.000124

11. Conclusion

In this paper we presented a numerical approach for solving the fractional differential equations. The
ultraspherical functions were employed. The obtained results showed that this approach can solve the
problem effectively.
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