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Construction of a Normalized Basis of a Univariate Quadratic C1 Spline Space and

Application to the Quasi-interpolation ∗

A. Rahouti, A. Serghini and A. Tijini

abstract: In this paper, we use the finite element method to construct a new normalized basis of a
univariate quadratic C1 spline space. We give a new representation of Hermite interpolant of any piecewise
polynomial of class at least C1 in terms of its polar form. We use this representation for constructing several
superconvergent and super-superconvergent discrete quasi-interpolants which have an optimal approximation
order. This approach is simple and provides an interesting approximation. Numerical results are given to
illustrate the theoretical ones.
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1. Introduction

In the classical Hermite interpolation, for each one of the knots x0 < . . . < xn we are given a set

of interpolation values f
(j)
i , j = 0, . . . , k then we need to find a polynomial function S of degree 2k + 1

in every interval [xi, xi+1], such that S(xi) = f
(j)
i , i = 0, . . . , n, j = 0, . . . , k. Many authors have been

working in this direction like Schoenberg [31], Lee [16] and Mummy [19], who has derived an explicit
formula for the control points in terms of the interpolation data. He has used the de Boor-Fix dual
functionals as an effective tool for solving this problem. In [33], Seidel gave another simple and elegant
proof of Mummy’s result using polar forms. Another interesting paper in this area of work is Schumaker’s,
he gave a general treatment of the use of quadratic splines for solving a similiar Hermite interpolation
problem. The author showed exactly when it was necessary to add knots to a subinterval and where they
can be placed.

∗ The project is partially supported by URAC05.
2010 Mathematics Subject Classification: 65D07, 41A15.

Submitted June 13, 2018. Published November 02, 2018

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.43267


2 A. Rahouti, A. Serghini and A. Tijini

Let τ := (a = x0 < x1 < · · · < xn = b) be a partition of a bounded interval I := [a, b]. For the sake
of the paper we assume that we know the values and the derivatives of a function f. Our problem of
interpolation is to find a piecewise polynomial function S of class C1 and degree two such that

S(xi) = f(xi), S
′

(xi) = f
′

(xi), i = 0, . . . , n.

To solve this problem we need to add a new knot in each subinterval [xi, xi+1], i = 0, . . . , n − 1, and
imposing the C1 smoothness at this knot. The associated spline space is P1

2(I, τ1), where τ1 is a refinement
of τ which is of dimension 2(n + 1). The Hermite spline interpolants’ construction by adding some
additional knots to the initial partition and increasing the polynomial pieces’ number is not new. This
method has been recently studied in the literature (see [17,32]) also by Lamnii et al [11]. The added
knots can be chosen to preserve certain geometric shape such as monotonicity and convexity.

Various methods have been developed for building a positive and stable basis of B-splines, (see [15,35],
for instance). Originally Dierckx [9] presented in the bivariate case, an algorithm for calculating a suitable
normalized B-spline reprentation for Powell-Sabin spline. Similar B-spline representation for bivariate
Powell-Sabin splines with higher smoothness have been considered in [37] and for bivariate Clough-
Tocher splines in [36]. These B-splines have been used in [18,25] for constructing some interesting
quasi-interpolants with optimal approximation order. Such a representation is given in trivariate setting
by Sbibih et al [24] for C1 quadratique B-splines over a Worsey-Piper split of a tetrahedral partition. In
the recent years, Speleers [38] presented a method for constructing a normalized basis for the multivariate
quadratic spline space defined over a generalized Powell-Sabin refinement of a triangulation in R

s (s ≥ 1).
He has indicated that the univariate version is related to the well-known classical B-splines of degree two.
In addition these results, our main objectif is to construct a compact normalized basis of univariate
quadratic C1 spline space on the real interval refined by τ1. Thanks to the new constracted normalized
B-splines we were able to find the classical quadratic B-splines of class C1 without using any recurrence
formula or divided differences. The main motivation is that we establish a new B-spline representation
of Hermite interpolant Hf of any function f of class C1 in P

1
2(I, τ1). Particularly we obtain the Marsden

Identity.

A quasi-interpolant for a given function f is obtained as a linear combination of some elements of a
suitable set of basis functions. In order to achieve stability and local control, these functions are required
to be positive and to have small local supports. The coefficients of the linear combination are the values
of linear functionals, depending on f and (or) its derivatives or integrals. Many works concerning the
construction of quasi-interpolant are developed in the literature (see [1,2,3,8,4,5,14,13,21,22,23]). The
main gain of these operators is that they have a direct construction without solving any system of
equations and with the minimum possible computation time.

In numerical analysis, the superconvergence is a phenomenon where the order of convergence of the
approximant error at certain special points is higher than the order of convergence of the approximant
error over the definition’s domain (see [6,26,27,28,29]). Then by considering a local linear polynomial
operator in the neighborhood of the support of the B-splines that reproduces the space of polynomials
of degree at most m ≥ 2, we propose a method to bluid superconvergent discrete quasi-interpolants of a
function f. It satisfies an interesting property that these quasi-interpolants are globally of order 3 and
of order m + 1 at the knots of the initial partition τ . This property is not only true for approximating
function values but also for approximating first derivative.

To improve the numerical results given by our operator, we introduce a new concept, called the super-
superconvergence, when the local polynomial approximant is even. Thanks to this phenomenon, the
quadratic spline quasi interpolant provides an improvement of the approximation order at the knots, it
is of order m+ 2 instead of m+ 1.

The paper is organized as follows. In Section 2, we first define the finite element used in the construc-
tion of the normalized B-splines. In Section 3, we introduce a B-spline representation of the Hermite
interpolant of any piecewise polynomial on the refinement τ1 of class at least C

1 in terms of its polar form.
In Section 4, we show how to construct superconvergent discrete quasi-interpolants. In Section 5, we give
an estimate of the errors between the function f and the superconvergent discrete quasi-interpolants and
between their first derivatives at the knots of τ . In Section 6, we introduce a new technique allowing us
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to establish the super-superconvergence phenomenon. We illustrate the theoretical results obtained in
Sections 5 and 6 by some numerical tests.

2. Construction of the normalized basis

The main objective of this section is to describe a method allowing us to construct Hermite B-splines.
The family of B-splines that we propose presents useful properties in the approximation. Let us denote
by τ := (a = x0 < x1 < · · · < xn = b) a partition of a bounded interval I := [a, b]. In order to simplify
our work, we choose a uniform subdivision with xi = a+ 2ih where h := b−a

2n and suppose that we know
the values of a function f and its first derivatives at the knots xi, i = 0, . . . , n.

2.1. Finite element of class C1 and degree 2

In this subsection, we define the finite element in each subinterval [xi, xi+1], through the function
and its first derivative values at knots xi and xi+1. So, we have four data in these knots, which make
it impossible to write a quadratic spline because it requires just three data. To remedy this problem,
we consider a new refinement τ1 of τ obtained by adding an arbitrary knot xi,1 in the interval ]xi, xi+1[
and by imposing the C1 smoothness at this new point, the construction of the finite element can now be
completed.

Let φi,k, i = 0, . . . , k be the Bernstein polynomials of degree k defined by

φi,k(t) := Ci
kt

i(1− t)k−i, t ∈ [0, 1]

For i = 0, . . . , n− 1, let τ i,1 := (xi < xi,1 < xi+1), be a subdivision of [xi, xi+1] into two subintervals
[xi, xi,1] and [xi,1, xi+1], and Si be a spline of degree 2 and class C1 defined on [xi, xi+1]. Denote by

S
g
i := Si|[xi,xi,1] and S

d
i := Si|[xi,1,xi+1]

the restrictions of the spline Si in each subinterval. The polynomials Sgi and Sdi are written in the Bernstein
basis as follows

S
g
i (x) =

2∑

j=0

cjφj,2

(
x− xi

h

)
, S

d
i (x) =

2∑

j=0

djφj,2

(
x− xi,1

h

)
,

where xi,1 = xi+xi+1

2 = xi + h and the unknown coefficients cj and dj , for j = 0, 1, 2, are determined
by the values and the first derivatives of Si at the knots xi and xi+1 and by the C1 smoothness at the
midpoint xi,1. Then, we can show that

S
g
i (x) =f(xi)φ0,2

(
x− xi

h

)
+
(h
2
f ′(xi) + f(xi)

)
φ1,2

(
x− xi

h

)

+
1

2

(
f(xi) + f(xi+1) +

h

2

(
f ′(xi)− f ′(xi+1)

))
φ2,2

(
x− xi

h

)

and

S
d
i (x) =

1

2

(
f(xi) + f(xi+1) +

h

2

(
f ′(xi)− f ′(xi+1)

))
φ0,2

(
x− xi,1

h

)

+
(
f(xi+1)−

h

2
f ′(xi+1)

)
φ1,2(

x − xi,1

h
) + f(xi+1)φ2,2

(
x− xi,1

h

)
.

The quadratic finite element Si of class C
1 on [xixi+1] is defined by Sdi and S

g
i (see Figure 1).

Figure 1: Finite element of class C1 and degree 2.
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Define τ1 := ∪n−1
i=0 τ i,1 as a refinement of τ. The space of C1 quadratic splines on the interval I endowed

with τ1
P
1
2(I, τ1) := {S ∈ C1(I) : S|[xi,xi,1]

and S|[xi,1,xi+1]
∈ P2(R), i = 0, . . . , n− 1},

where P2(R) is the polynomial space of degree two.
In [32], Schumaker proved that for a given data f(xi) and f

′(xi), i = 0, . . . , n, there exists a unique
spline S ∈ P

1
2(I, τ1) solution of the following Hermite interpolation problem:

S(xi) = f(xi), S
′

(xi) = f
′

(xi), i = 0, . . . , n. (2.1)

Therefore, the dimension of the space P
1
2(I, τ1) equals 2(n+ 1).

2.2. Hermite basis of space P
1
2(I, τ1)

Let ϕi and ψi be the solution functions of the problem (2.1) in P
1
2(I, τ1) which satisfy the conditions

ϕi(xj) = δij , ϕ
′
i(xj) = 0, j = 0, .., n,

ψi(xj) = 0, ψ′
i(xj) = δij , j = 0, .., n,

where δij stands for the Kronecker symbol. We can easily verify that the supports of ϕi and ψi are
suppϕi = suppψi = [xi−1, xi+1] and that the spline S solution of the problem (2.1) can be written as

S =

n∑

i=0

(f(xi)ϕi + f ′(xi)ψi) .

Furthermore, the functions ϕi, ψi, i = 0, . . . , n, constitute the Hermite basis of the space P
1
2(I, τ1).

This basis presents a major disadvantage which is the instability caused by the non-positivity of its
elements (see Figure 2). Consequently, it is in practice undesirable especially in the construction of
approximants.

j0 ji jn

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ψ0 Ψi

Ψn

0.0 0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.00

0.01

0.02

Figure 2: Hermite basis of P1
2([0, 1], τ1), τ1 = {0, 1

16 ,
2
16 ,

3
16 , . . . , 1}.

To remedy this problem we are going to build a normalized basis of the spline space P
1
2(I, τ1).

2.3. Normalized basis of P1
2(I, τ1)

In this subsection, we present the construction of new normalized B-splines. For i = 0, . . . , n, let
[ai, bi] be an interval such that xi ∈ ]ai, bi[ , i = 1, . . . , n− 1, a0 = x0 and bn = xn. Let φj,1, j = 0, 1, be
the Bernstein polynomials of degree 1 associated with the interval [ai, bi], where they have been defined
in subsection 2.1. Then, we construct new B-splines Hi,j as follows

Hi,0(x) := αiϕi(x) + βiψi(x), Hi,1(x) := (1− αi)ϕi(x) − βiψi(x), (2.2)

where αi = φ0,1(
xi−ai

bi−ai
) and βi =

d

dx

(
φ0,1(

x−ai

bi−ai
)
)
(xi). It is easy to see that Hi,s, i = 0, . . . , n, s = 0, 1,

are linearly independents and therefore form a basis of the space P
1
2(I, τ1). We will prove that this basis

can be constructed in such a way that its elements have a local support [xi−1, xi+1] with modifications
when i = 0, n,, are nonnegative and form a partition of unity, i.e., for each x ∈ I

Hi,s(x) ≥ 0,

n∑

i=0

1∑

s=0

Hi,s(x) = 1.
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Remark 2.1. The basis elements Hi,s, s = 0, 1 and the Bernstein basis elements of degree 1, φi
s,1, s =

0, 1, defined in the interval [ai, bi] take same values and first derivatives at the knot xi, i.e.

Hi,s(xi) = φs,1(
xi − ai

bi − ai
), H ′

i,s(xi) =
d

dx

(
φs,1(

x− ai

bi − ai
)

)
(xi), ∀i = 0, . . . , n

The following theorem gives the non-negativity conditions.

Theorem 2.2. The B-splines Hi,s, s = 0, 1, are non-negative if and only if

ai ≤ xi −
h

2
and bi ≥ xi +

h

2
for i = 0, . . . , n.

Proof. The B-coefficients of the basis elementsHi,s are easily computed on the subintervals of the support.
They appear in Table 1.

[xi−1, xi] [xi, xi+1]

ϕi [0 0 1
2 ;

1
2 1 1] [1 1 1

2 ;
1
2 0 0]

ψi [0 0 −h
4 ; −h

4
−h
2 0] [0 h

2
h
4 ;

h
4 0 0]

Table 1: B-coefficients of the functions ϕi and ψi i = 1, . . . , n− 1 on the subintervals of [xi−1, xi+1].

Consequently, with the boundary conditions x0 = a0 and xn = bn, the normalized B-splines coefficients
in the Bernstein basis on their support are given in Table 2.

[xi−1, xi] [xi, xi+1]

Hi,0 [0 0 2bi−2xi+h
4(bi−ai)

; 2bi−2xi+h
4(bi−ai)

2bi−2xi+h
2(bi−ai)

bi−xi

bi−ai
] [ bi−xi

bi−ai

2bi−2xi−h
2(bi−ai)

2bi−2xi−h
4(bi−ai)

; 2bi−2xi−h
4(bi−ai)

0 0]

Hi,1 [0 0 2xi−2ai−h
4(bi−ai)

; 2xi−2ai−h
4(bi−ai)

2xi−2ai−h
2(bi−ai)

xi−ai

bi−ai
] [xi−ai

bi−ai

2xi−2ai+h
2(bi−ai)

2xi−2ai+h
4(bi−ai)

; 2xi−2ai+h
4(bi−ai)

0 0]

Table 2: B-coefficients of Hi,s, i = 1, . . . , n− 1 s = 0, 1 on the subintervals of [xi−1, xi+1].

For s = 0, 1, the B-splines Hi,s are nonnegatives since all their B-cofficients are no-negatives, if

ai ≤ xi −
h

2
and bi ≥ xi +

h

2
for i = 0, . . . , n.

From Table 2, we see that these conditions are also necessary. ✷

In Figure 3, we show four cases illustrating the form of the normalized B-splines on [xi−1, xi+1]
according to given values of ai and bi. Then, we can see that where the interval [ai, bi] contains the
points xi −

h
2 and xi +

h
2 , we ensure the positivity of the B-splines. Otherwise, at least one of the

B-splines is non-positive.
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ai bixi-1 xi-1,1 xi xi,1 xi+1

Hi,0 Hi,1

0.0 0.2 0.4 0.6 0.8 1.0

ai=xi-
h

4
, bi=xi+

h

4

ai bixi-1 xi-1,1 xi xi,1 xi+1

Hi,0 Hi,1

0.0 0.2 0.4 0.6 0.8 1.0

ai=xi-
h

2
, bi=xi+

h

4

ai bixi-1 xi-1,1 xi xi,1 xi+1

Hi,0 Hi,1

0.0 0.2 0.4 0.6 0.8 1.0

ai=xi-
h

2
, bi=xi+

h

2

ai bi
xi-1,1 xi xi,1 xi+1xi-1

Hi,0 Hi,1

0.0 0.2 0.4 0.6 0.8 1.0

ai=xi-h, bi=xi+h

Figure 3: Normalized B-splines according to values of ai and bi of the space P
1
2([0, 1], τ1) with τ1 =

{0, 14 ,
1
2 ,

3
4 , 1}.

The form of the boundary B-splines change according to the boudary conditions x0 = a0 and xn =
bn(see Figure 4).

Remark 2.3. The segment [ak, bk] = [xk −
h

2
, xk +

h

2
] represents the minimal segment ensuring the

positivity of the corresponding B-splines.

2.4. Basis of the classical B-splines

In this subsection, We prove that for a particular choice of the normalized B-splines, we can construct
the classical quadratic B-splines of class C1.

If we cancel the first non zero B-coefficient of Hi,1 and the last non zero B-coefficient of Hi,0, we obtain
ai = xi −

h
2 and bi = xi +

h
2 . Then for i = 0, . . . , n we have

Hi,0(x) =
1

2
ϕi(x)−

1

h
ψi(x), Hi,1(x) =

1

2
ϕi(x) +

1

h
ψi(x).

Hence, defining the partition with knots Xi given by X2i := xi and X2i+1 := xi,1, the normalized B-
splines Hi,0 and Hi,1 provide the classical C1 quadratic B-splines Bj,2, j = −2, . . . , 2n−1 associated with
the subdivision Xj , j = 0, . . . , 2n, with X−2 = X−1 = X0 and X2n = X2n+1 = X2n+2. The support of
each B-spline is supp(Bj,2) = [Xj, Xj+3].

H0,0 Hn,1

H0,1

Hi,0 Hi,1

Hn,0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Classical B-spline basis of degree 2 on the interval [0, 1].
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Remark 2.4. The normalized B-splines are then a generalization of the classical B-splines without using
the recurrence relation or divided differences.

3. Representation of Hermite interpolant of polynomials or splines in the normalized basis

3.1. The polar form

An interesting and powerful tool in the approximation which is based on new polar approach has
been emerged from the work of de Casteljau, Ramshaw and others (see [7,20,34]). The polar form of a
polynomial is a transformation that reduces its complexity by adding new variables while having a certain
symmetry property. In this subsection, we review some basic properties of the blossoming principle.

Definition 3.1. Let m ∈ N and u1, u2, . . . , um ∈ R. For each p ∈ Pm(R), the polar form p̂ of p (or the
blossom B[p] of p) is a function of m variables satisfying the following properties:

• Multi-affine: for any index i and any real number λ, it holds

p̂(u1, . . . , ui−1, λu+ λv, ui+1, . . . , um) = λp̂(u1, . . . , ui−1, u, ui+1, . . . , um)

+ λp̂(u1, . . . , ui−1, v, ui+1, . . . , um),

where λ := 1− λ.

• Symmetry: for any permutation σ of the set {1, 2, . . . ,m} it holds

p̂(u1, . . . , um) = p̂(uσ(1), . . . , uσ(m)).

• Diagonal: p̂ reduces to p when evaluated on its diagonal for each real number u, i.e.,

p̂(u, . . . , u) = p(u).

In order to express the polar form of a product of polynomials of the first degree, we have the following
result.

Proposition 3.2. Let l1, l2, . . . , lm be m polynomials in P1, and let Pm denote the symmetric group of
all permutations of the set {1, 2, . . . ,m}. If

p(x) =

m∏

i=1

li(x),

then we have

p̂(u1, u2, . . . , um) =
1

m!

∑

σ∈Pm

m∏

i=1

li(uσ(i)).

Proof. We put

q(u1, u2, . . . , um) =
1

m!

∑

σ∈Pm

m∏

i=1

li(uσ(i)).
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q is multiaffine. Indeed, let λ, λ ∈ R such that λ = 1− λ and k ∈ {1, 2, . . . ,m}. Then

q(u1, . . . , uk−1, λvk + λwk, uk+1, . . . , um) =
∑

σ∈Pm

lσ−1(k)(λvk + λwk)
m∏

i=1
i6=σ−1(k)

li(uσ(i))

= λ
∑

σ∈Pm

lσ−1(k)(vk)

m∏

i=1
i6=σ−1(k)

li(uσ(i))

+ λ
∑

σ∈Pm

lσ−1(k)(wk)

m∏

i=1
i6=σ−1(k)

li(uσ(i))

= λ
∑

σ∈Pm

m∏

i=1

li(uσ(i)) + λ
∑

σ∈Pm

m∏

i=1

li(uσ(i))

= λq(u1, . . . , uk−1, vk, uk+1, . . . , um)

+ λq(u1, . . . , uk−1, wk, uk+1, . . . , um).

q is symmetric by construction.
If we suppose that u1 = u2 = . . . = un = u, we obtain

q(u1, u2, . . . , um) =
1

m!

∑

σ∈Pm

m∏

i=1

li(u) =
1

m!

m∏

i=1

li(u)Card(Pm) = p(u).

Then, q is diagonal.
Finally, q satisfies the properties of Definition 3.1 and by uniqueness of the blossom we deduce that

p̂(u1, u2, . . . , um) = q(u1, u2, . . . , um).

Hence the result. ✷

3.2. Quadratic Hermite interpolation

By using the polar form approach, we give some result to represent the Hermite interpolant Hf of
any function f of class C1 in P

1
2(I, τ1).

Let m be an integer greater than or equal to 2 and let Ai and Bi be two points such that

Ai := mai − (m− 1)xi, Bi := mbi − (m− 1)xi. (3.1)

It is well known, see [10] page 5, that every polynomial q of degree ≤ k defined on a segment [ai, bi] can
be written in the Bernstein basis of Pk as follows :

q(x) =

k∑

s=0

q̂
(
ak−s
i bsi

)
φs,k

(
x− ai

bi − ai

)
, (3.2)

where φs,k are the Bernstein polynomials of degree k defined in subection 2.1.

Theorem 3.3. For any f ∈ C1(I), the Hermite interpolant Hf of f in the space P
1
2(I, τ1) is given by

Hf(x) =

n∑

i=0

1∑

s=0

(
f(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
f ′(xi)

)
Hi,s(x) , (3.3)

for all x ∈ I and m ≥ 2.
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Proof. Define

ψ(x) :=

n∑

i=0

1∑

s=0

(
f(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
f ′(xi)

)
Hi,s(x).

For 0 ≤ l ≤ n, we have

ψ(xl) =

n∑

i=0

1∑

s=0

(
f(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
f ′(xi)

)
Hi,s(xl)

=
1∑

s=0

(
f(xl) +

(
A1−s

l Bs
l + (m− 1)xl
m

− xl

)
f ′(xl)

)
φs,1

(
xl − al

bl − al

)

=

(
f(xl) +

(
(m− 1)xl

m
− xl

)
f ′(xl)

)(
φ0,1

(
xl − al

bl − al

)
+ φ1,1

(
xl − al

bl − al

))

+
f ′(xl)

m

(
Alφ0,1

(
xl − al

bl − al

)
+Blφ1,1

(
xl − al

bl − al

))
.

From (3.1) and the partition of the unity of the Bernstein basis, we have

ψ(xl) = f(xl)− xlf
′(xl) + f ′(xl)

1∑

s=0

B[x](a1−s
l bsl )φs,1

(
xl − al

bl − al

)
.

Using (3.2), we obtain

xl =
1∑

s=0

B[x](a1−s
l bsl )φs,1

(
xl − al

bl − al

)
.

Then,
ψ(xl) = f(xl), 0 ≤ l ≤ n.

On the other hand, we have

ψ′(x) =

n∑

i=0

1∑

s=0

(
f(xi) +

(
A1−s

l Bs
l + (m− 1)xi
m

− xi

)
f ′(xi)

)
H ′

i,s(x).

Then, 0 ≤ l ≤ n, we get

ψ′(xl) =
n∑

i=0

1∑

s=0

(
f(xi) +

(
A1−s

l Bs
l + (m− 1)xi
m

− xi

)
f ′(xi)

)
H ′

i,s(xl)

=
1∑

s=0

(
f(xl) +

(
A1−s

l Bs
l + (m− 1)xl
m

− xl

)
f ′(xl)

)
∂

∂x

(
φs,1

(
x− al

bl − al

))
(xl)

=
f ′(xl)

m(bl − al)
(Bl −Al).

By using (3.1), we get
ψ′(xl) = f ′(xl), 0 ≤ l ≤ n.

Finally, by uniqueness of the Hermite interpolant in the space P
1
2(I, τ1), we deduce that ψ = Hf, which

completes the proof. ✷

Let us denote by xmi the expression xi, xi, . . . , xi︸ ︷︷ ︸
m times

. The value m is called the multiplicity of xi. In the

following theorem we represent the Hermite interpolant of any spline in the space P
1
m(I, τ1) in terms of

its polar form.
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Theorem 3.4. For any piecewise polynomial S of degree m ≥ 2 and of class C1 over the refinement τ1,
we have

HS(x) =

n∑

i=0

1∑

s=0

Ŝi(A
1−s
i Bs

i , x
m−1
i )Hi,s(x), ∀x ∈ I, (3.4)

where Si is the restriction of S on the interval [xi−1,1, xi] or [xi, xi,1].

Proof. Let S be a polynomial spline of degree m ≥ 2 and of class C1 on the interval I endowed with the
refinement τ1. From Theorem 3.3, the Hermite interpolant in P

1
2(I, τ1) of S can be written in the form

HS(x) =

n∑

i=0

1∑

s=0

(
S(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
S′(xi)

)
Hi,s(x),

where Si is the restriction of S on the interval [xi−1,1, xi] or [xi, xi,1]. Then

HS(x) =

n∑

i=0

1∑

s=0

(
Si(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
S′
i(xi)

)
Hi,s(x).

From Taylor expansion, we have

Si(x) = Si(xi) + (x− xi)S
′
i(xi) + . . . .+

(x− xi)
m

m!
S
(m)
i (xi).

For k = 2, . . . ,m, we put

lj(x) =

{
x− xi, if 1 ≤ j ≤ k

1, if k + 1 ≤ j ≤ m.

By using the Proposition 3.2, one can see that, for m ≥ 2

p̂(A1−s
i Bs

i , x
m−1
i ) =

1

m

m∑

j=1

lj(A
1−s
i Bs

i )

m∏

t=1,t6=j

lt(xi) = 0.

where p(x) =
m∏

j=0

lj(x). Thus

Ŝi(A
1−s
i Bs

i , x
m−1
i ) = Si(xi) +

(
A1−s

i Bs
i + (m− 1)xi
m

− xi

)
S′
i(xi).

Therefore

HS(x) =

n∑

i=0

1∑

s=0

Ŝi(A
1−s
i Bs

i , x
m−1
i )Hi,s(x).

✷

In particular if the spline S is a polynomial in Pm(R), we have the following results :

Corollary 3.5. For each p ∈ Pm(R), the Hermite interpolant Hp of p in the space P
1
2(I, τ1) is given by

Hp(x) =
n∑

i=0

1∑

s=0

p̂(A1−s
i Bs

i , x
m−1
i )Hi,s(x), ∀x ∈ I. (3.5)

Remark 3.6. (Marsden Identity). For m = 2, we have

p(x) =

n∑

i=0

1∑

s=0

p̂(A1−s
i Bs

i , xi)Hi,s(x), ∀x ∈ I.
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4. Superconvergent discrete quasi-interpolants in P
1
2(I, τ1)

In this section, we propose a method to build quasi-interpolants based on discrete values of a function
f . We are interested on the quasi-interpolants of the form

Qf =

n∑

i=0

1∑

s=0

µi,s(f)Hi,s, (4.1)

where, µi,s i = 0, 1, . . . , n and s = 0, 1 are linear functionals defined using values of f at some points
in the neighbourhood of the supports of the B-splines Hi,s and m is an integer greater than or equal to
2. The constructed quasi-interpolants is called discrete quasi-interpolants. Supported by these values,
we construct in a neighbourhood of suppHi,s a local linear polynomial operator Ii,s that reproduces the
space of polynomials of degree at most m, i.e. Ii,s(f) = f for each f ∈ Pm(R). Let us denote by Qm the
quasi-interpolant of degree m. Then we have the following result

Theorem 4.1. Let f be a function defined on I such that the values of f are given at some discrete
points in a neighbourhood of the support of Hi,s, i = 0, . . . , n, s = 0, 1. If we denote Ii,s(f) by pi,s, then
the quasi-interpolant defined by (4.1) with

µi,s(f) = p̂i,s(A
1−s
i Bs

i , x
m−1
i ) (4.2)

satisfies
Qmp = Hp, ∀p ∈ Pm.

Proof. Let f ∈ Pm, then we have pi,s = Ii,s(f) = f for i = 0, .., n, s = 0, 1. According to (4.1) and
Corollary 3.5, we get

Qmf =

n∑

i=0

1∑

s=0

µi,s(f)Hi,s

=

n∑

i=0

1∑

s=0

p̂i,s(A
1−s
i Bs

i , x
m−1
i )Hi,s

=

n∑

i=0

1∑

s=0

f̂(A1−s
i Bs

i , x
m−1
i )Hi,s.

Then,
Qmf = Hf

✷

To build a superconvergent discrete spline quasi-interpolant, it suffices to take m+1 distinct interpo-
lation points in the support of Hi,s for i = 0, . . . , n and s = 0, 1. Let ti,s,k, k = 0, . . . ,m, be these points
and consider the interpolation polynomial of f at ti,s,k i.e.,

pi,s =

m∑

k=0

f(ti,s,k)Li,s,k, (4.3)

where Li,s,k are the Lagrange basis functions of Pm associated with the points ti,s,k. Then, the quasi-
interpolant defined by (4.1) and (4.2) satisfies

Qmp = Hp, ∀p ∈ Pm.

In the following theorem, we give an explicit formula of the coefficients µi,s(f) in terms of the data values
f(ti,s,k) for k = 0, . . . ,m.
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Theorem 4.2. Let ti,s,k := βi,s,kxi + (1− βi,s,k)A
1−s
i Bs

i , for k = 0, . . . ,m, be m+ 1 distinct points in a
neighborhood of the support of Hi,s. If the quasi-interpolant defined by (4.1) with

µi,s(f) =

m∑

k=0

qi,s,kf(ti,s,k) (4.4)

satisfies
Qmp = Hp ∀ p ∈ Pm,

then

qi,s,k =
(−1)

m

m∑

α=0
α 6=k

βi,s,α

m∏

γ=0
γ 6=α,γ 6=k

(1− βi,s,γ)

m∏

α=0
α 6=k

(βi,s,k − βi,s,α)

(4.5)

Proof. Let Li,s,k, k = 0, . . . ,m, be the Lagrange basis corresponding respectively to ti,s,k k = 0, . . . ,m.
We have

Li,s,k(x) =
m∏

α=0
α 6=k

(
x− ti,s,α

ti,s,k − ti,s,α

)
=

m∏

α=0
α 6=k

lα,k(x)

m∏

α=0
α 6=k

lα,k(ti,s,k)

,

where lα,k(x) = x− ti,s,α. We set

qi,s,k = L̂i,s,k(A
1−s
i Bs

i , x
m−1
i ), ∀k = 0, . . . ,m.

Then the quasi-interpolant

Qmf =

n∑

i=0

1∑

s=0

µi,s(f)Hi,s,

with

µi,s(f) =

m∑

k=0

qi,s,kf(ti,s,k), i = 0, . . . , n, s = 0, 1,

satisfies
Qmp = Hp ∀ p ∈ Pm.

In order to compute the value of qi,s,k k = 0, . . . ,m, we use Proposition 3.2, then

L̂i,s,k(A
1−s
i Bs

i , x
m−1
i ) =

1

m

m∑

α=0
α 6=k

lα,k(A
1−s
i Bs

i )

m∏

γ=0
γ 6=α,γ 6=k

lγ,k(xi)

m∏

α=0
α 6=k

lα,k(ti,s,k)

.

Since,
lα,k(A

1−s
i Bs

i ) = A1−s
i Bs

i − ti,s,α = −βi,s,α(xi −A1−s
i Bs

i ),

and
lγ,k(xi) = xi − ti,s,γ = (1− βi,s,γ)(xi −A1−s

i Bs
i ),

and
lα,k(ti,s,k) = ti,s,k − ti,s,α = (βi,s,k − βi,s,α)(xi −A1−s

i Bs
i ),
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it holds that

qi,s,k =
(−1)

m

m∑

α=0
α 6=k

βi,s,α

m∏

γ=0
γ 6=α,γ 6=k

(1− βi,s,γ)

m∏

α=0
α 6=k

(βi,s,k − βi,s,α)

✷

5. Error estimate of superconvegent discrete quasi interpolants

In this section, we will prove that the constructed quasi-interpolant is superconvergent at knots xi,
i = 0, . . . , n. Let f be a function in C3(I). Since the operators Qm, m ≥ 2 reproduce the space P2, there
exists constants Ck > 0, k = 0, 1, independent of m such that

∥∥∥(Qmf)
(k)

− f (k)
∥∥∥
∞,I

≤ Ckh
3−k

∥∥∥f (3)
∥∥∥
∞,I

,

where ‖.‖∞,I denotes the infinity norm on the interval I. In the following proposition we give the error
estimates associated with Qm and its first derivative at the knots.

Theorem 5.1. For any function f ∈ Cm+1(I), we have
∣∣∣(Qmf)

(k) (xi)− f (k)(xi)
∣∣∣ = O

(
hm+1−k

)
, ∀i = 0, . . . , n and k = 0, 1.

Proof. Let f ∈ Cm+1(I) the Taylor expansion of f around xi, i = 1, . . . ,m, is given by

f(x) =

m∑

j=0

f (j)(xi)

j!
(x− xi)

j + O
(
(x− xi)

m+1
)
.

Denote by Rm the polynomial part of the Taylor expansion. Then for each point x in the support of
Hi,s, we have

f(x) = Rm(x) + O
(
(x− xi)

m+1
)

From Theorem 4.1, we have HRm = QmRm, and by use the fact that Rm(xi) = HRm(xi), we get

|Qmf(xi)− f(xi)| = |Qmf(xi)−Rm(xi)| = |Qm(f −Rm)(xi)| .

By (4.5), we assume that qi,s,k are bounded by a constant C. Then, from (4.4) we obtain

∣∣µi,s (f −Rm)
∣∣ =

∣∣∣∣∣

m∑

k=0

qi,s,k (f(ti,s,k)−Rm(ti,s,k))

∣∣∣∣∣

≤ C

m∑

k=0

|(f(ti,s,k)−Rm(ti,s,k))| .

Then, ∣∣µi,s(f −Rm)
∣∣ = O

(
(ti,s,k − xi)

m+1
)
,

and therefore
|Qm(f −Rm)(xi)| = O

(
(ti,s,k − xi)

m+1
)
.

Thus,
|Qmf(xi)− f(xi)| = O

(
hm+1

)
.

In a similar way, we prove that ∣∣(Qmf)
′
(xi)− f ′(xi)

∣∣ = O(hm),

which completes the proof. ✷
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We present now the results of the numerical experiments for the classical case. To illustrate the
superconvergence characteristic of the C1 quadratic spline quasi-interpolants Qm, we choose arbitary the
interpolation points in the interval [xi, A

s
iB

1−s
i ] for s = 0, 1 such that βi,s,k ∈ [0, 1], k = 0, . . . ,m shown

in Table 3.

m βi,0,k βi,1,k

2 1
10 ,

1
2 ,

9
10

8
10 ,

6
10 ,

2
10

3 1
10 ,

1
3 ,

2
3 ,

9
10

8
10 ,

6
10 ,

3
10 ,

2
10

4 1
10 ,

1
4 ,

1
2 ,

3
4 ,

9
10

8
10 ,

6
10 ,

4
10 ,

3
10 ,

2
10

5 1
10 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

9
10

8
10 ,

7
10 ,

5
10 ,

4
10 ,

3
10 ,

2
10

Table 3: The values of ti,s,k for m = 2, 3, 4, 5 and k = 0, ..,m.

We consider the following test functions defined on I = [0, 1] by

f1(x) = exp(−3x) sin(
π

2
x) and f2(x) =

x

3
(exp(x2)− 1).

We define the local error between a function g and the quasi-interpolant Qmg at the knots of τ by the
following relation:

E(k)
m,n(g) := max

06i6n

∣∣∣Q(k)
m g(xi)− g(k)(xi)

∣∣∣ , k = 0, 1,

and the numerical convergence order by

NCO
(k)
m := NCO

(k)
m (n1 → n2) =

log

(
E(k)

m,n1
(g)

E
(k)
m,n2

(g)

)

log
(

n2

n1

) ,

where, m = 2, 3, 4, 5.

Approximating function values

To illustrate numerically the result, we give in Table 4, for different values of n, the maximum absolute

errors at knots E
(0)
m,n(f1) associated with the operator Qm for m = 2, 3, 4, 5. In the case of the function

f2 the same errors (i.e., E
(0)
m,n(f2), m = 2, 3, 4, 5) are given in Table 6. Also, we list in Tables 5 and 7

respectively the numerical convergence orders NCOm of the maximum absolute errors at the knots.

n E
(0)
2,n(f1) E

(0)
3,n(f1) E

(0)
4,n(f1) E

(0)
5,n(f1)

16 3.68420 × 10−6 2.01571 × 10−6 2.03558 × 10−8 2.16091 × 10−9

32 6.34560 × 10−7 1.36744 × 10−7 7.32423 × 10−10 3.40381 × 10−11

64 9.13294 × 10−8 8.89603 × 10−9 2.43058 × 10−11 5.32296 × 10−13

128 1.22035 × 10−9 5.67123 × 10−10 7.80653 × 10−13 1.09357 × 10−14

Table 4: The maximum absolute errors E
(0)
m,n(f1).

n1 → n2 NCO
(0)
2 NCO

(0)
3 NCO

(0)
4 NCO

(0)
5

16 → 32 2.53752 3.88174 4.79662 5.98834
32 → 64 2.79660 3.94217 4.91330 5.99920
64 → 128 2.90378 3.97143 4.96048 5.60511

Theoretical value 03 04 05 06

Table 5: The numerical convergence orders NCO
(0)
m,n for f1.
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n E
(0)
2,n(f2) E

(0)
3,n(f2) E

(0)
4,n(f2) E

(0)
5,n(f2)

16 6.41606 × 10−6 2.09509 × 10−6 6.06966 × 10−8 1.02726 × 10−8
32 7.83480 × 10−7 1.48969 × 10−7 1.84323 × 10−9 1.89311 × 10−10

64 9.58526 × 10−8 9.94141 × 10−9 5.61283 × 10−11 3.22575 × 10−12

128 1.18178 × 10−8 6.42218 × 10−10 1.72373 × 10−12 5.97300 × 10−14

Table 6: The maximum absolute errors E
(0)
m,n(f2).

n1 → n2 NCO
(0)
2 NCO

(0)
3 NCO

(0)
4 NCO

(0)
5

16 → 32 3.03372 3.81392 5.04131 5.76191
32 → 64 3.03101 3.90542 5.03736 5.87498
64 → 128 3.01986 3.95232 5.02512 5.75504

Theoretical value 03 04 05 06

Table 7: The numerical convergence orders NCO
(0)
m,n for f2.

From the above examples, we remark that when we increase n or m, we get a quasi-interpolant with
small errors and the numerical convergence order is in good agreement with the theoretical one.

Approximating derivative values

As in above, we illustrate numerically in Tables 8 and 10 the superconvergence phenomenon when
derivative values are approximated. The same comments given previously are true in this case.

n E
(1)
2,n(f1) E

(1)
3,n(f1) E

(1)
4,n(f1) E

(1)
5,n(f1)

16 3.83988 × 10−3 1.62514 × 10−4 7.68511 × 10−6 9.28639 × 10−8

32 9.78455 × 10−4 2.07757 × 10−5 4.89128 × 10−7 2.79467 × 10−9

64 2.46955 × 10−4 2.62611 × 10−6 3.08382 × 10−8 8.53984 × 10−11

128 6.20331 × 10−5 3.30093 × 10−7 1.93561 × 10−9 2.76401 × 10−12

Table 8: The maximum absolute errors E
(1)
m,n(f1).

n1 → n2 NCO
(1)
2 NCO

(1)
3 NCO

(1)
4 NCO

(1)
5

16 → 32 1.97248 2.96759 3.97378 5.05437
32 → 64 1.98626 2.98390 3.98742 5.03232
64 → 128 1.99313 2.99198 3.99386 4.94937

Theoretical value 02 03 04 05

Table 9: The numerical convergence orders NCO
(1)
m,n for f1.

n E
(1)
2,n(f2) E

(1)
3,n(f2) E

(1)
4,n(f2) E

(1)
5,n(f2)

16 2.67904 × 10−3 1.41350 × 10−4 1.03490 × 10−5 9.86546 × 10−7

32 7.03270 × 10−4 1.83794 × 10−5 7.30584 × 10−7 3.34695 × 10−8

64 1.86979 × 10−4 2.34347 × 10−6 4.86127 × 10−8 1.08645 × 10−9

128 4.82144 × 10−5 2.95864 × 10−7 3.13583 × 10−9 3.59819 × 10−11

Table 10: The maximum absolute errors E
(1)
m,n(f2).
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n1 → n2 NCO
(1)
2 NCO

(1)
3 NCO

(1)
4 NCO

(1)
5

16 → 32 1.92957 2.94311 3.82429 4.88147
32 → 64 1.91120 2.97137 3.90964 4.94515
64 → 128 1.95534 2.98564 3.95441 4.91620

Theoretical value 02 03 04 05

Table 11: The numerical convergence orders NCO
(1)
m,n for f2.

6. Super-superconvergence phenomenon

In this section, we add a concept called the super-superconvergence phenomenon. From a numerical
observation , we have remarked that the approximation order is O(hm+2) at knots when the degree m
of the local polynomials is even. This is what we call a super-convergence phenomenon, it leads to
an improvement of approximation properties. Unfortunately, this phenomenon does not happen for an
arbitrary data site. In the following result, we sum up how to choose quasi-interpolation points in order
to achieve the super-superconvergence phenomenon.

For each i = 1, . . . , n− 1, let xi be the midpoint of [ai, bi].

Theorem 6.1. Let f ∈ Cm+2(I) such that m is even. If the set of the local interpolation points corre-
sponding to Hi,0 is symmetric to the one corresponding to Hi,1 with respect to xi for i = 1, . . . , n − 1,
and if the local polynomial approximant p0,0 (resp. pn,0) interpolates f at x0 (resp. xn), then the quasi-
interpolant Qm is super-superconvergent at xi, and

|Qmf(xi)− f(xi)| = O
(
hm+2

)
∀i = 0, . . . , n.

Proof. Let f ∈ Cm+2(I), the Taylor expansion of f around xi for i = 1, . . . , n− 1 is given by

f(x) =
m+1∑

j=0

f (j)(xi)

j!
(x− xi)

j + O
(
(x − xi)

m+2
)
.

Denote by Rm the polynomial part of the Taylor expansion and by gm+1 its last term

gm+1(x) =
f (m+1)(xi)

(m+ 1)!
(x− xi)

m+1.

Using a similar way as in the proof of Proposition 5.1, we get

|Qmf(xi)− f(xi)| = |Qmf(xi)−QmRm(xi) +QmRm(xi)− f(xi)|
≤ |Qm(f −Rm)(xi)|+ |Qmgm+1(xi)|

(6.1)

and

|µi,s(f −Rm)| ≤ C

m∑

k=0

| (f(ti,s,k)−Rm(ti,s,k)) |.

This implies that
|µi,s(f −Rm)| = O

(
(ti,s,k − xi)

m+2
)
,

and therefore
|Qm(f −Rm)(xi)| = O

(
(ti,s,k − xi)

m+2
)
. (6.2)

By using the fact that

m∑

k=0

qi,s,k = 1 and

n∑

j=0

1∑

s=0

Hj,s(xi) = 1, then for any function g ∈ C1(I) we have

Qmg(xi) =

1∑

s=0

µi,s(g)Hi,s(xi).
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By considering that ai = xi − d and bi = xi + d with d ≥ 0, we get

Hi,0(xi) = αi = 1−
xi − ai

bi − ai
=

1

2
, Hi,1(xi) = 1− αi =

1

2
.

First of all, we show that the coefficients qi,s,k, s = 0, 1 are the same for two symmetrical interpolation
points with respect to xi. i.e., ti,0,k + ti,1,k = 2xi.
As

ti,s,k = βi,s,kxi + (1− βi,s,k)A
1−s
i Bs

i , k = 0, . . . ,m,

we have
βi,0,kxi + (1− βi,0,k)Ai + βi,1,kxi + (1− βi,1,k)Bi

2
= xi,

and
xi(βi,0,k + βi,1,k) + (1− βi,0,k)Ai + (1− βi,1,k)Bi

2
= xi.

Also, as Ai and Bi are symmetric with respect to xi, we have xi =
Ai+Bi

2 and we deduce that βi,0,k =
βi,1,k.
From Theorem 4.2, we easily obtain qi,0,k = qi,1,k = qi,k, for k = 0, . . . .m
Then

Qmg(xi) =
1

2

m∑

k=0

qi,k (g(ti,0,k) + g(ti,1,k)) .

Particularly, for g = gm+1 we obtain

gm+1(ti,0,k) + gm+1(ti,1,k) =
(
(ti,0,k − xi)

m+1 + (ti,1,k − xi)
m+1

) f (m+1)(xi)

(m+ 1)!
.

Knowing that m is even and ti,s,k, s = 0, 1 are symmetric with respect to xi, then

gm+1(ti,0,k) + gm+1(ti,1,k) = 0, ∀i = 1, . . . , n− 1.

Therefore, for i = 1, . . . , n− 1,

Qmgm+1(xi) = 0. (6.3)

Using (6.1), (6.2) and (6.3) we get

|Qmf(xi)− f(xi)| = O(hm+2).

For i = 0, we have

H0,0(x0) = 1, H0,1(x0) = 0,

then,

Qmf(x0) = p̂0,0(x
m
0 )H0,0(x0) + p̂0,1(B0, x

m−1
0 )H0,1(x0) = p0,0(x0) = f(x0).

Similarly, for i = n we get

Hn,0(xn) = 0, Hn,1(xn) = 1,

then

Qmf(xn) = p̂n,0(An, x
m−1
n )Hn,0(xn) + p̂n,1(x

m
n )Hn,1(xn) = pn,1(xn) = f(xn),

and the proof is complete. ✷

Remark 6.2. If the data sites ti,0,k, k = 0, . . . ,m, are symmetric with respect to xi, to achieve the super-
superconvergence, it suffices to take {ti,0,k, k = 0, . . . ,m} = {ti,1,k, k = 0, . . . ,m} for i = 1, . . . , n − 1
i.e., we take the same interpolation points for pi,0 and pi,1.
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Approximating function values

To illustrate numerically the super-superconvergence phenomenon, we consider the same test func-
tions taken in the previous section for the classical case. We choose the sets of interpolation points
corresponding to Hi,0 and Hi,1 such that they are symmetric with respect to xi. We take βi,0,k = βi,1,k ∈
[0, 1], k = 0, . . . ,m as shown in the Table 12.

m βi,0,k βi,1,k

2 1
10 ,

1
2 ,

9
10

9
10 ,

1
2 ,

1
10

3 1
10 ,

1
3 ,

2
3 ,

9
10

9
10 ,

2
3 ,

1
3 ,

1
10

4 1
10 ,

1
4 ,

1
2 ,

3
4 ,

9
10

9
10 ,

3
4 ,

1
2 ,

1
4 ,

1
10

5 1
10 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

9
10

9
10 ,

4
5 ,

3
5 ,

2
5 ,

1
5 ,

1
10

Table 12: The values of ti,s,k for m = 2, 3, 4, 5 and k = 0, ..,m.

We give in Table 13 (resp. Table 15), for different values of n, the maximum absolute errors at knots

E
(0)
m,n(f1) (resp. E

(0)
m,n(f2)) associated with the operator Qm for m = 2, 3, 4, 5. Also, we list in Tables 14

and 16 the numerical convergence orders NCOm.

n E
(0)
2,n(f1) E

(0)
3,n(f1) E

(0)
4,n(f1) E

(0)
5,n(f1)

16 1.47575 × 10−6 1.78296 × 10−6 2.72369 × 10−9 1.59321 × 10−9

32 9.98421 × 10−8 1.20570 × 10−7 4.27642 × 10−11 2.51321 × 10−11

64 6.48421 × 10−9 7.83193 × 10−9 6.68382 × 10−13 3.92908 × 10−13

128 4.13197 × 10−10 4.98917 × 10−10 1.04916 × 10−14 6.10623 × 10−15

Table 13: The maximum absolute errors E
(0)
m,n(f1).

n1 → n2 NCO
(0)
2 NCO

(0)
3 NCO

(0)
4 NCO

(0)
5

16 → 32 3.88565 3.88634 5.99301 5.98625
32 → 64 3.94421 3.94436 5.99959 5.9992
64 → 128 3.97246 3.97249 5.99337 6.000777

Theoretical value 04 04 06 06

Table 14: The numerical convergence orders NCO
(0)
m,n for f1.

n E
(0)
2,n(f2) E

(0)
3,n(f2) E

(0)
4,n(f2) E

(0)
5,n(f2)

16 1.50503 × 10−6 1.82277 × 10−6 1.33319 × 10−8 7.93178 × 10−9

32 1.07808 × 10−7 1.30273 × 10−7 2.42292 × 10−10 1.42970 × 10−10

64 7.21751 × 10−9 8, 71645 × 10−9 4.08740 × 10−12 2.40663 × 10−12

128 4.66934 × 10−10 5.63260 × 10−10 6.57252 × 10−14 4.06342 × 10−14

Table 15: The maximum absolute errors E
(0)
m,n(f2).
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n1 → n2 NCO
(0)
2 NCO

(0)
3 NCO

(0)
4 NCO

(0)
5

16 → 32 3.80325 3.80625 5.78199 5.79386
32 → 64 3.90082 3.90166 5.88942 5.89255
64 → 128 3.95021 3.95042 5.95859 5.88818

Theoretical value 04 04 06 06

Table 16: The numerical convergence orders NCO
(0)
m,n for f2.

Through these examples, we remark that the numerical convergence order is in good agreement with
the theoretical one. A comparison with the previous results allow us to see that when m is even, the
associated errors of the super-superconvergence phenomenon are smaller than the ones of the supercon-
vergence phenomenon.

7. Conclusion

In this paper, we have shown how to construct a new normalized B-spline basis of a C1 continuous
spline space of degree two. The basis functions have a local support, they are nonnegative, and they
form a partition of unity. The classical C1 quadratic B-splines are a particular case of our Hermite
B-splines. Moreover, we used some results on blossoming to establish the B-spline representation of
Hermite interpolant of any C1 continuous spline of degree 2 in terms of its polar form. Hence we used
this representation for constructing several superconvergent and super-superconvergent discrete quasi-
interpolants. This new approach provides an interesting approximation and it can be used for solving
some numerical analysis problems. In futur works, the generalization of the proposed results to higher
degrees will be studied.
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