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Characterizing Inequalities for Contact CR-warped Product Submanifolds of Generalized

Sasakian Space Forms Admitting a Nearly Cosymplectic Structure
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abstract: This paper studies the contact CR-warped product submanifolds of a generalized Sasakian space
form admitting a nearly cosymplectic structure. Some inequalities for existence of these types of warped
product submanifolds are established, the obtained inequalities generalize the results that have acquired in
[14]. Moreover, we also estimate another inequality for the second fundamental form in the expressions of the
warping function, this inequality also generalize the inequalities that have obtained in [19]. In addition, we
also explore the equality cases.
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1. Introduction

It is illustrious that warped products of manifolds perform an significant role in differential geometry,
the theory of relativity and mathematical physics. One of the most important examples of a warped
product manifold is the excellent setting to the model spacetime close to black holes or bodies with high
gravitational fields [20].

The concept of the warped products for the theory of submanifolds was first investigated by B. Y.
Chen [2]. Basically, Chen worked out CR-warped product submanifolds in the background of Kaehler
manifolds and established a sharp estimate for the length of the second fundamental form in the expres-
sions of warping function. Motivated by Chen, I. Mihai ( [10], [11]) studied the contact version of these
warped products and acquired the similar estimate for the contact CR-warped product submanifolds of a
Sasakian space form. In this line of research many articles have appeared in the setting of almost contact
metric manifolds ( [8], [12], [15], [18]). K. A. Khan et al. [13] deliberate the existence and nonexistence
for the warped product submanifolds of the cosymplectic manifolds and a step forward was made by M.
Atceken [14] who proved a characterizing inequality for the existence of the contact CR-warped product
submanifolds of a cosymplectic space form.

In this paper, we achieve a characterization for the existence of the contact CR-warped product
submanifolds isometrically immersed in a generalized Sasakian space form admitting a nearly cosymplectic
structure and as a special case, we also discuss the existence of these warped products for the cosymplectic
space forms. Moreover, we prove an estimate for the length of the second fundamental form in the
expressions of warping function and some special conditions are also investigated.
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2. Preliminaries

Following [7] a (2n+ 1)−dimensional C∞−manifold M̄ is said to have an almost contact structure
if there exist on M̄ a tensor field φ of type (1, 1), a vector field ξ1 and a 1-form η1 satisfying

φ2 = −I + η1 ⊗ ξ1, φξ1 = 0, η1 ◦ φ = 0, η1(ξ1) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact metric manifold M̄ satisfying the
subsequent conditions

η1(U1) = g(U1, ξ1), g(φU1, φV1) = g(U1, V1)− η1(U1)η1(V1), (2.2)

for all U1, V1 ∈ TM̄.

An almost contact structure (φ, ξ1, η1) is said to be normal, if the almost complex structure J on
the product manifold M̄ ×R is given by

J(U1, λ
d

dx
) = (φU1 − λξ1, η1(U1)

d

dx
),

where λ is a C∞−function on M̄×R has no torsion that is J is integrable and the condition for normality
in terms of φ, ξ1 and η1 is [φ, φ] + 2dη1 ⊗ ξ1 = 0 on M̄, where [φ, φ] is the Nijenhuis tensor of φ. The
fundamental 2-form Φ1 is defined by Φ1(U1, V1) = g(U1, φV1).

An almost contact metric structure (φ, ξ1, η1, g) on M̄ is said to be cosymplectic if it is normal and
both φ and η1 are closed and the manifold M̄ with the cosymplectic structure (φ, ξ1, η1, g) is said to be a
cosymplectic manifold [5]. Moreover, the structure (φ, ξ1, η1, g) on M̄ is said to be nearly cosymplectic if
φ is of killing type. The manifold M̄ equipped with a nearly cosymplectic structure is said to be a nearly
cosymplectic manifold. The characteristic equation for the nearly cosymplectic manifolds is described by

(∇̄U1
φ)U1 = 0, (2.3)

for any U1 ∈ TM̄ , where ∇̄ is the Riemannian connection of the metric g on M̄.

In [16] Alegre et al. determined the concept of generalized Sasakian space form as that an almost
contact metric manifold (M̄, φ, ξ1, η1, g) whose curvature tensor R̄ satisfies

R̄(U1, V1)W1 = f1{g(V1,W1)U1 − g(U1,W1)V1}

+f2{g(U1, φW1)φV1 − g(V1, φW1)φU1

+2g(U1, φV1)φW1}+ f3{η1(U1)η1(W1)V1

−η1(V1)η1(W1)U1 + g(U1,W1)η1(V1)ξ1

−g(V1,W1)η1(U1)ξ1}, (2.4)

∀ vector fields U1, V1,W1 ∈ TM̄, and three differentiable functions f1, f2, f3 on M̄. A generalized Sasakian
space form with functions f1, f2, f3 is denoted by M̄(f1, f2, f3). If f1 = c+3

4 , f2 = f3 = c−1
4 , then

M̄(f1, f2, f3) is a Sasakian space form M̄(c) [7]. If f1 = c−3
4 , f2 = f3 = c+1

4 , then M̄(f1, f2, f3) is a
Kenmotsu space form M̄(c) [12], and if f1 = f2 = f3 = c

4 , then M̄(f1, f2, f3) is a cosymplectic space
form M̄(c) [16].

For a submanifoldM of a Riemannian manifold M̄ with induced metric g, the Gauss and Weingarten
formulae are governed by the following equations

∇̄U1
V1 = ∇U1

V1 + σ(U1, V1), (2.5)

∇̄U1
N = −ANU1 +∇⊥

U1
N, (2.6)
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where ∇ and ∇⊥ are the induced connections on the tangent bundle TM and normal bundle T⊥M ofM,

for any U1, V1 ∈ TM,N ∈ T⊥M. The second fundamental form and the shape operator for the immersion
of M in M̄ are denoted by σ and AN respectively, and they are associated by

g(σ(U1, V1), N) = g(ANU1, V1), (2.7)

where g represents the Riemannian metric on M̄ as well as on M.

We have the following formula for squared norm of σ

‖σ‖2 =
k∑

i,j=1

g(σ(ui, uj), σ(ui, uj)),

where {u1, u2, . . . , uk} is a local orthonormal set of vector fields on M.

A submanifoldM of M̄ is said to be a totally geodesic submanifold if σ(U1, V1) = 0, ∀ U1, V1 ∈ TM,

and totally umbilical submanifold if σ(U1, V1) = g(U1, V1)H, where H is the mean curvature vector.

For any V1 ∈ TM, we write
φV1 = PV1 + FV1, (2.8)

where PV1 and FV1 are the tangential and normal parts of φV1 correspondingly.

The covariant differentiation of the tensors φ, P, and F are illustrated respectively, as follows

(∇̄U1
φ)V1 = ∇̄U1

φV1 − φ∇̄U1
V1, (2.9)

(∇̄U1
P )V1 = ∇U1

PV1 − P∇U1
V1, (2.10)

(∇̄U1
F )V1 = ∇⊥

U1
FV1 − F∇U1

V1 (2.11)

Additionally, for any U1, V1 ∈ TM, the tangential and normal components of (∇̄U1
φ)V1 are symbolized

by PU1
V1 and QU1

V1 i.e.,
(∇̄U1

φ)V1 = PU1
V1 +QU1

V1. (2.12)

By (2.3) and (2.12), it is easy to see that

(a) PU1
V1 = −PV1

U1, (b) QU1
V1 = −QV1

U1, (2.13)

for any U1, V1 ∈ TM.

Definition 2.1. An m-dimensional Riemannian submanifold M of an almost contact metric manifold
M̄ , such that ξ1 is tangent to M is said to be a contact CR-submanifold if there exist two orthogonal
complementary distributions DT and D⊥ such that DT is invariant i.e., φDT ⊆ DT and D⊥ is anti
invariant i.e., φD⊥ ⊆ T⊥M.

Then for a contact CR-submanifold M̄ , the tangent bundle TM of M can be written as follows

TM = DT ⊕D⊥ ⊕ 〈ξ1〉,

where 〈ξ1〉 represents the 1-dimensional distribution spanned by ξ1.

The normal bundle T⊥M can be decomposed as follows

T⊥M = µ⊕ φD⊥, (2.14)

where µ is the invariant subspace of T⊥M.

A contact CR-submanifoldM of an almost contact metric manifold M̄ is called contact CR-product
if the distributions D and D⊥ are parallel on M . The warped product of Riemannian manifolds is the
generalization of the product manifolds, which is defined as follows
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Definition 2.2. Let (R, gR) and (S, gS) be two Riemannian manifolds with Riemannian metrics gR and
gS respectively and ψ be a positive differentiable function on R. The warped product of R and S is the
Riemannian manifold (R × S, g), where

g = gR + ψ2gS (2.15)

The warped product manifold (R× S, g) is denoted by R×ψ S. If U1 is the tangent vector field to
M = R×ψ S at (p, q) then

‖U1‖
2 = ‖dπ1U1‖

2 + ψ2(p)‖dπ2U1‖
2. (2.16)

We have the following theorem,

Theorem 2.3. [17]. LetM = R×ψ S be the warped product manifolds. If X1, Y1 ∈ TR and V1,W1 ∈ TS

then

(i) ∇X1
Y1 ∈ TR,

(ii) ∇X1
V1 = ∇V1

X1 = (X1ψ
ψ

)V1,

(iii) ∇V1
W1 = −g(V1,W1)

ψ
∇ψ.

From the above theorem, for the warped product M = R×ψ S, it is easy to observe that

∇X1
V1 = ∇V1

X1 = (X1lnψ)V1, (2.17)

for any X1 ∈ TR and V1 ∈ TS.

∇ψ is the gradient of ψ and is expressed by

g(∇ψ,U1) = U1ψ, (2.18)

for all U1 ∈ TM.

If the warping function ψ is constant, then the warped product is said to be trivial warped product.

Let M be a m−dimensional Riemannian manifold with Riemannian metric g and let {u1, . . . , um}
be an orthonormal basis of TM. As a significance of (2.18), we have

‖∇ψ‖2 =

m∑

i=1

(ui(ψ))
2 (2.19)

The Laplacian of ψ is given by

∆ψ =

m∑

i=1

{(∇ui
ui)ψ − uiuiψ}. (2.20)

Now, we state the Hopf’s Lemma.

Lemma 2.1. [3]. If ψ is a differentiable function on a n-dimensional compact Riemannian manifold. If
∆ψ ≥ 0 or ∆ψ ≤ 0 everywhere on M , then ψ is a constant function.
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3. Results and Discussion

This section deal with the study of the contact CR-warped product submanifolds of a nearly cosym-
plectic manifold and is divided into the two subsections.

3.1 Inequalities of the first kind

In this subsection, some characterizing inequalities are proved for existence of these types of warped
product submanifolds.

Theorem 3.1. [18]. A warped product submanifold M = N1 ×ψ N2 of a nearly cosymplectic manifold
M̄ is simply a Riemannian product if the structure vector field ξ1 is tangent to N2, where N1 and N2 are
the Riemannian manifolds.

Throughout this paper, we consider the warped products of the type M = NT ×ψ N
⊥, such that

NT is an invariant submanifold of M̄ tangent to ξ1 and N⊥ is an anti-invariant submanifold of M̄. These
types of warped product submanifolds are called the contact CR-warped product submanifolds. Now we
have the following basic results for further application.

Lemma 3.1. [18]. Let M = NT ×ψ N
⊥ be a contact CR-warped product submanifold of a nearly

cosymplectic manifold M̄ , then we have

(i) ξ1lnψ = 0,

(ii) g(σ(U1, V1), φW1) = 0,

(iii) g(σ(φU1,W1), φW1) = U1lnψ‖W1‖
2,

for any U1 ∈ TNT and W1 ∈ TN⊥.

The following Lemma will be utilized for subsequent results.

Lemma 3.2. Let M = NT ×ψN
⊥ be a contact CR-warped product submanifold of a nearly cosymplectic

manifold M̄ , then we have

g(σ(φU1,W1), φσ(U1,W1)) = ‖σµ(U1,W1)‖
2 − g(φσ(U1,W1), QU1

W1),

for any U1 ∈ TNT and W1 ∈ TN⊥.

Proof. By (2.5) and (2.9)

σ(φU1,W1) = (∇̄W1
φ)U1 + φ∇W1

U1 + φσ(U1,W1)−∇W1
φU1.

Thus by using (2.12) and (2.17)

σ(φU1,W1) = PW1
U1 +QW1

U1 + U1lnψφW1 + φσ(U1,W1)− φU1lnψW1.

Comparing the normal parts

σ(φU1,W1) = QW1
U1 + U1lnψφW1 + φσµ(U1,W1),

or
g(σ(φU1,W1), φσ(U1,W1)) = g(QW1

U1, φσ(U1,W1)) + ‖σµ(U1,W1)‖
2.
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By using (2.13)(b), we get

g(σ(φU1,W1), φσ(U1,W1)) = ‖σµ(U1,W1)‖
2 − g(φσ(U1,W1), QU1

W1).

✷

Further, we have the following characterizing inequalities for the contact CR-warped product sub-
manifolds of a generalized Sasakian space form admitting a nearly cosymplectic structure.

Theorem 3.2. Let M = NT ×ψ N
⊥ be a contact CR-warped product submanifold of a generalized Sasa-

kian space form M̄(f1, f2, f3) admitting a nearly cosymplectic structure such that MT is a compact sub-
manifold. Then, M is a contact CR-product submanifold if either one of the following inequality holds

(i)
2k1∑
i=1

k2∑
j=1

‖σµ(ui, u
j)‖2 ≥ 2.k1.k2.f2 +

2k1∑
i=1

k2∑
j=1

‖Qui
uj‖2,

(ii)
2k1∑
i=1

k2∑
j=1

‖σµ(ui, u
j)‖2 ≤ 2.k1.k2.f2,

where σµ is the component of σ in µ, 2k1 + 1 and k2 are the dimensions of MT and M⊥ respectively.

Proof. For any unit vector fields U1 ∈ TNT − 〈ξ1〉 and W1 ∈ TN⊥. Then from (2.4) we have

R̄(U1, φU1,W1, φW1) = −2.f2.g(U1, U1) g(W1,W1). (3.1)

By Codazzi equation, we calculate the curvature as follows

R̄(U1, φU1,W1, φW1) = g(∇⊥
U1
σ(φU1,W1), φW1)− g(σ(∇U1

φU1,W1), φW1)−

−g(σ(φU1,∇U1
W1), φW1)− g(∇⊥

φU1
σ(U1,W1), φW1)+

+ g(σ(∇φU1
U1,W1), φW1) + g(σ(U1,∇φU1

W1), φW1). (3.2)

By using part (iii) of the Lemma 3.1, (2.9), (2.5) and (2.12), we get

g(∇⊥
U1
σ(φU1,W1), φW1) = U1g(σ(φU1,W1), φW1)− g(σ(φU1,W1), ∇̄U1

φW1)

= U1(U1lnψg(W1,W1))− g(σ(φU1,W1), (∇̄U1
φ)W1 + φ∇̄U1

W1).

On further simplification the above equation yields

g(∇⊥
U1
σ(φU1,W1), φW1) = U2

1 lnψg(W1,W1) + 2(U1lnψ)
2g(W1,W1)

−g(σ(φU1,W1), QU1
W1)

−g(σ(φU1,W1), φσ(U1,W1))

−U1lnψg(σ(φU1,W1), φW1).

By using the Lemma 3.2, we have

g(∇⊥
U1
σ(φU1,W1), φW1) = U2

1 lnψg(W1,W1) + (U1lnψ)
2g(W1,W1)− ‖σµ(U1,W1)‖

2

−g(φσ(U1,W1)− σ(φU1,W1), QU1
W1).

Further, using (2.5), (2.12), (2.13)(b) and (2.17) in the last term of the above equation, we get

g(∇⊥
U1
σ(φU1,W1), φW1) = U2

1 lnψg(W1,W1) + (U1lnψ)
2g(W1,W1)

− ‖σµ(U1,W1)‖
2 + ‖QU1

W1‖
2. (3.3)
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Similarly, we can calculate

−g(∇⊥
φU1

σ(U1,W1), φW1) = (φU1)
2lnψg(W1,W1) + (φU1lnψ)

2g(W1,W1)

− ‖σµ(φU1,W1)‖
2 + ‖QφU1

W1‖
2. (3.4)

From part (iii) of the Lemma 3.1, we have

g(AφW1
W1, φU1) = U1lnψ,

replacing U1 by ∇U1
U1

g(AφW1
W1, φ∇U1

U1) = ∇U1
U1lnψ.

By utilsing (2.5) in the last equation, we acquire

g(AφW1
W1, φ(∇̄U1

U1 − σ(U1, U1)) = ∇U1
U1lnψ. (3.5)

By use of (2.5), (2.9), (2.3) and (2.17), it is easy to see that σ(U1, U1) ∈ µ, applying this fact in (3.5),
then we get

g(AφW1
W1, ∇̄U1

φU1 − (∇̄U1
φ)U1) = ∇U1

U1lnψ.

By (2.3) and (2.5), the previous equation transformed to

g(AφW1
W1,∇U1

φU1) = ∇U1
U1lnψ.

or

g(σ(∇U1
φU1,W1), φW1) = ∇U1

U1lnψ (3.6)

Similarly,

g(σ(∇φU1
U1,W1), φW1) = −∇φU1

φU1lnψ. (3.7)

By use of (2.17) and the part (iii) of the Lemma 3.1, it is simple to see the following

g(σ(φU1,∇U1
W1), φW1) = (U1lnψ)

2g(W1,W1) (3.8)

and

g(σ(U1,∇φU1
W1), φW1) = −(φU1lnψ)

2g(W1,W1). (3.9)

Substituting (3.3), (3.4), (3.6), (3.7), (3.8) and (3.9) in (3.2), we find

R̄(U1, φU1,W1, φW1) = U2
1 lnψg(W1,W1) + (φU1)

2lnψg(W1,W1)

−∇U1
U1lnψg(W1,W1)−∇φU1

φU1g(W1,W1)

−‖σµ(U1,W1)‖
2 − ‖σµ(φU1,W1)‖

2 + ‖QU1
W1‖

2

+‖QφU1
W1‖

2. (3.10)

Let

{u0 = ξ1, u1, u2, . . . , uk1 , uk1+1 = φu1,

uk1+2 = φu2, . . . , u2k1 = φuk1 , u
1, u2, . . . , uk2}

be an orthonormal frame of TM such that the set of the vector fields

{u1, u2, . . . , uk1 , φu1, φu2, . . . , φuk1}

is tangent to MT and {u1, u2, . . . , uk2} is tangent to M⊥.
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Using (3.1) and (2.20) in (3.10) and summing over i = 1, 2, . . . , k1 and j = 1, 2, . . . , k2, we get

k2∆lnψ = 2.k1.k2.f2 −

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 +

2k1∑

i=1

k2∑

j=1

‖Qui
uj‖2. (3.11)

From Hopf’s Lemma and (3.11), if

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 ≥ 2.k1.k2.f2 +

2k1∑

i=1

‖Qui
uf j‖2,

or
2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 ≤ 2.k1.k2.f2,

then the warping function ψ is constant onM i.e., M is simply a contact CR-product submanifold, which
proves the theorem completely.
✷

From the above observations, we have the following propositions, which can be confirmed easily.

Proposition 3.1. Let M = NT ×ψ N
⊥ be a contact CR-warped product submanifold of a generalized

Sasakian space form M̄(f1, f2, f3) admitting a nearly cosymplectic structure such that MT is a compact
submanifold. Then M is contact CR-product if and only if

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 = 2.k1.k2.f2 +

2k1∑

i=1

k2∑

j=1

‖Qui
uj‖2.

Moreover, as a special case, from Theorem 3.2, we derive the following result.

Theorem 3.3. Let M = NT ×ψ N
⊥ be a contact CR-warped product submanifold of a cosymplectic space

form M̄(c) such that MT is compact. Then M is a contact CR-product submanifold if either the inequality

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 ≥

c.k1.k2

2
,

or

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 ≤

c.k1.k2

2

holds, where σµ denotes the component of σ in µ, 2k1 + 1 and k2 are the dimensions of MT and M⊥.

Corollary 3.4. Let M = NT ×ψ N
⊥ be a compact contact CR-warped product submanifold of a cosym-

plectic space form M̄(c). Then M is a contact CR-product submanifold if and only if

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 =

c.k1.k2

2
.

3.2 Inequalities of the second kind

In the present subsection, we prove an approximation for the norm of the second fundamental form
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Theorem 3.5. Let M̄(f1, f2, f3) be a (2n+ 1)−dimensional generalized Sasakian space form admitting
a nearly cosymplectic structure and M = NT ×ψ N

⊥ be an m-dimensional contact CR-warped product
submanifold, such that MT is a (2k1 + 1)−dimensional invariant submanifold tangent to ξ1 and M⊥ be
a k2−dimensional anti-invariant submanifold of M̄(f1, f2, f3). Then

(i) The squared norm of the second fundamental form σ satisfies

‖σ‖2 ≥ k2{‖∇lnψ‖
2 −∆lnψ}+ 2.k1.k2.f2 + ‖QDD

⊥‖2, (3.12)

where ∆ denotes the Laplace operator on MT .

(ii) The equality sign of (3.12) holds identically if and only if we have

(a) MT is a totally geodesic invariant submanifold of M̄(f1, f2, f3). Hence NT is a generalized
Sasakian space form admitting a nearly cosymplectic structure.

(b) M⊥ is a totally umbilical anti-invariant submanifold of M̄(f1, f2, f3).

Proof. For any U1 ∈ TNT and W1 ∈ TN⊥, from (2.8), (2.6) and (2.3) we have

g(σ(ξ1,W1), φW1) = 0

and from part (iii) of the Lemma 3.1

g(σ(φU1,W1), φW1) = U1lnψ‖W1‖
2.

From above two equations one can get

2k1∑

i=0

k2∑

j=1

‖σφD⊥(ui, u
j)‖2 = k2‖∇lnψ‖

2. (3.13)

Again from equation (3.11)

2k1∑

i=1

k2∑

j=1

‖σµ(ui, u
j)‖2 = 2.k1.k2.f2 − k2∆lnψ +

2k1∑

i=1

k2∑

j=1

‖Qui
uj‖2. (3.14)

The following notation is assummed

2k1∑

i=1

k2∑

j=1

‖Qui
uj‖2 = ‖QDD

⊥‖2.

Utilizing the above notation in (3.14) and combining it with (3.13), we obtain the inequality (3.12).

Let σ′′ be the second fundamental form of M⊥ in M. Then, for any U1 ∈ TNT and Z1, Z̄1 ∈ TN⊥,

we have

g(σ′′(Z1, Z̄1), U1) = g(∇Z1
Z̄1, U1) = −U1lnψg(Z1, Z̄1),

By using (2.18), we get

σ′′(Z1, Z̄1) = −g(Z1, Z̄1)∇lnψ. (3.15)

If the equality sign of (3.12) holds identically, then we get

σ(D,D) = 0, σ(D⊥, D⊥) = 0. (3.16)
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The first case of (3.16) implies that MT is totally geodesic in M. On the other hand, one has

g(σ(U1, φV1), φW1) = g(∇̄U1
φV1, φW1) = −g(φV1, (∇̄U1

φ)W1). (3.17)

By use of (2.9) and (2.5) we get the following equation

g(φV1, (∇̄W1
φ)U1) = g(φV1,∇W1

φU1)− g(V1,∇W1
U1),

in view of (2.17) the previous equation reduced to

g(φV1, (∇̄W1
φ)U1) = 0. (3.18)

From (3.17), (3.18) and (2.3) we have

g(σ(U1, φV1), φW1) = −g(φV1, (∇̄U1
φ)W1 + (∇̄W1

φ)U1) = 0. (3.19)

From (3.19), it is evident that the submanifold NT is totally geodesic in M̄(f1, f2, f3) and hence is a
generalized Sasakian space form admitting a nearly cosymplectic structure.

The second case of (3.16) and (3.15) imply that the submanifold M⊥ is totally umbilical in
M̄(f1, f2, f3).

✷

In the last we have the following Corollary, which can be deduced from inequality (3.12)

Corollary 3.6. LetM = NT ×ψ N⊥ be a contact CR-warped product submanifold of a cosymplectic space
form M̄(c), then the squared norm of the second fundamental form satisfies

‖σ‖2 ≥ k2{‖∇lnψ‖
2 −∆lnψ}+

c.k1.k2

2
,

where ∆ is the Laplace operator onMT , and 2k1+1 and k2 are the dimensions ofMT andM⊥ respectively.

Note 3.1. The inequality obtained in Corollary 2 is the improved version of the inequality obtained in
[15].

4. Conclusion

The inequality
k1∑
i=1

k2∑
j=1

‖σµ(ui, u
j)‖2 ≥ c.k1.k2

4 for the existence of a contact CR-warped product

submanifold in a cosymplectic space form M̄(c) was proved by M. Atceken [14]. In the Theorem 3.3,
the first inequality is equivalent to the inequality obtained by M. Atceken and we also prove the second
inequality for the contact CR-warped product submanifolds of a cosymplectic space form. Moreover, the
inequalities obtained in Theorem 3.2 are the generalization of the inequalities that have obtained by M.
Atceken [14]. On the other hand various estimate for the squared norm of the second fundamental form
for the contact CR-warped product submanifolds in the background of Sasakian and Kenmotsu space
forms are studied (see [11], [12]), still these types of estimate are not studied in the setting of the cosym-
plctic space forms as well as in the generalized Sasakian space forms admitting a nearly cosymplectic
structure. So the present author tries to fill this gap and in this connection proved an optimal inequality
for the squared norm of the second fundamental form in the setting of generalized Sasakian space forms
admitting a nearly cosymplectic structure and in particular for the cosymplectic space forms.
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