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Existence and Multiplicity of Solutions for a p(x)-biharmonic Problem with Neumann
Boundary Conditions

Abdel Rachid El Amrouss, Fouzia Moradi, Mimoun Moussaoui

abstract: In this paper, we study the following problem with Neumann boundary conditions






∆2
p(x)

u+ α |u|p(x)−2 u = βf(x, u) in Ω,

∂u
∂ν

= ∂
∂ν

(

|∆u|p(x)−2 ∆u
)

= 0 on ∂Ω.

Where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 1, ∆2

p(x)
u := ∆

(

|∆u|p(x)−2 ∆u
)

, is

the p(x)-biharmonic operator, α and β are two positives reals numbers, p is a continuous function on Ω with
inf
x∈Ω

p(x) > 1 and f : Ω × R → R is a Caratheodory function such that f(x, 0) = 0. Using the three critical

point Theorem, we establish the existence of at least three solutions of this problem.

Key Words: p(x)-biharmonic operator, Critical point, Nemytskii’s operator.
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1. Introduction

In recent years, the theory of p-Laplacian equations has been generalized to p(x)-Laplacian equations.
Comparing with the p-Laplacian operator, the p(x)-Laplacian operator has more complicated nonlinear
properties: it is not homogeneous and the infimum of its principle eigenvalue is zero (see [2,3,4,5,11,14]).

This paper is motivated by recent advances in mathematical modeling of non-Newtonien fluids and
elastic mechanics, in particular, the electrorheological fluids (smart fluids). This important class of fluids
is characterized by the change of viscosity which is not easy and which depends on the electric field.
These fluids, which are known under the name ER fluids, have many applications in elastic mechanics,
fluid dynamics etc... For more information, the reader can refer to [8,13].

These physical problems was facilitated by the development of Lebesgue and Sobolev spaces with
variable exponent.

Neumann boundary value problems for p(x)-Laplacian operator and their existence of solutions was
established in [2,11,14].

More recently, in [1], A. Ayoujil and A. R. El Amrouss interested to the spectrum of a fourth order el-
liptic equation with variable exponent. They proved the existence of infinitely many eigenvalue sequences
and supΛ = +∞, where Λ is the set of all eigenvalues. Moreover, they present some sufficient conditions
for inf Λ = 0.

Consider the following problem with Neumann boundary conditions

{
∆2

p(x)u+ α |u|p(x)−2 u = βf(x, u) in Ω,

∂u
∂ν

= ∂
∂ν

(
|∆u|

p(x)−2
∆u
)
= 0 on ∂Ω,

(1.1)
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where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 1, ∆2

p(x)u := ∆
(
|∆u|

p(x)−2
∆u
)
,

is the p(x)-biharmonic operator, p ∈ C
(
Ω
)
such that 2p(x) ≥ N for all x ∈ Ω and α, β are two positives

reals numbers. We proves the existence of at least three weak solutions of the above problem, under the
following assumptions

(f1) For all (x, s) ∈ Ω× R

|f(x, s)| ≤ a(x) + b |s|
γ(x)−1

where b ≥ 0, a(x) ∈ L
γ(x)

γ(x)−1 (Ω) , a(x) ≥ 0 and γ (x) ∈ C+

(
Ω
)
with

γ (x) <

{
Np(x)

N−2p(x) if N > 2p (x)

+∞ if N ≤ 2p (x) ,

(f2) There exists a constant η > 0 such that

lim inf
t→+∞

f (x, t)

t
≥ η

for all x ∈ Ω.

(f3) There exist a constant c < 0 and a positive odd constant δ such that

lim sup
t→0

f (x, t)

tδ
≤ c

for x ∈ Ω uniformly.

Theorem 1.1. Suppose that f satisfies the conditions (f1,f2,f3), p− > γ+ and p(x) > N
2 . Then, there

exist an open interval Λ ⊂ ]0,+∞[ and a positive real number q, such that for each β ∈ Λ, the problem
(1.1) has at least three solutions in X whose norms are less than q.

Theorem 1.2. Suppose that f satisfies the conditions (f1) and

(f4) There exists an odd constant ω > p+ − 1 such that

lim inf
|t|→+∞

f (x, t)

tω
= +∞.

If γ− > p+ ≥ p− > N
2 , then there exist an open interval Λ ⊂ ]0,+∞[ and a positive real number q, such

that for each β ∈ Λ, the problem (1.1) has at least three solutions in X whose norms are less than q.

This paper is divided into four sections, organized as follows: In section 2, we introduce some basic
properties of the Lebesgue and Sobolev spaces with variable exponent. Moreover, we cite one lemma
which is needed later. In the third section, we study boundary trace embedding theorems for variable
exponent Sobolev space W 2,p(x) (Ω) and we present some important properties of the p(x)-biharmonic
operator. In section 4, we give the proofs of our results.

2. Preliminaries

In order to deal with p(x)-Laplacian problems, we need some results on spaces Lp(x) (Ω) and
W k,p(x) (Ω), and properties of p(x)-Laplacian, which we will use later.

Define the generalized Lebesgue space by

Lp(x) (Ω) :=

{
u : Ω → R measurable and

∫

Ω

|u (x)|p(x) dx < ∞

}
,
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where p ∈ C+

(
Ω
)

and

C+

(
Ω
)
:=
{
p ∈ C

(
Ω
)
: p(x) > 1 ∀x ∈ Ω

}
.

Denote
p+ = max

x∈Ω
p(x), p− = min

x∈Ω
p(x),

and for all x ∈ Ω and k ≥ 1

p∗ (x) :=

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N,

and

p∗k (x) :=

{
Np(x)

N−kp(x) if kp(x) < N

+∞ if kp(x) ≥ N.

One introduces in Lp(x) (Ω) the following norm

|u|p(x) = inf

{
λ > 0/

∫

Ω

∣∣∣∣
u (x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}

and the space
(
Lp(x) (Ω) , |.|p(x)

)
is a Banach.

Proposition 2.1. [6]. The space
(
Lp(x) (Ω) , |.|p(x)

)
is separable, uniformly convex, reflexive and its

conjugate space is Lq(x) (Ω) where q(x) is the conjugate function of p(x), i.e

1

p(x)
+

1

q(x)
= 1, ∀x ∈ Ω.

For all u ∈ Lp(x) (Ω) and v ∈ Lq(x) (Ω) we have

∣∣∣∣
∫

Ω

u (x) v(x)dx

∣∣∣∣ ≤ (
1

p−
+

1

q−
) |u|p(x) |v|q(x) .

The Sobolev space with variable exponent W k,p(x) (Ω) is defined by

W k,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : Dαu ∈ Lp(x) (Ω) , |α| ≤ k

}
,

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, (the derivation in distributions sense) with α = (α1, ..., αN ) is a multi-

index and |α| =
∑N

i=1 αi. The space W k,p(x) (Ω), equipped with the norm

‖u‖k,p(x) :=
∑

|α|≤k

|Dαu|p(x) ,

also becomes a Banach, separable and reflexive space. For more details, we can refer to [3,6,11,15]. We

denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x) (Ω) .
Our results are based on the following lemma

Lemma 2.1. Let X be a separable and reflexive real Banach space; Φ : X → R is a continuous Gâteaux
differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits
a continuous inverse on X∗; Ψ;X → R is a continuous Gâteaux differentiable functional whose Gâteaux
derivative is compact. Suppose the following assertions

1. lim
‖u‖X→∞

(Φ (u) + λΨ(u)) = ±∞ for all λ > 0;
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2. There exist r ∈ R and u0, u1 ∈ X such that

Φ (u0) < r < Φ (u1) ;

3.

inf
u∈Φ−1]−∞,r]

Ψ(u) >
(Φ (u1)− r) Ψ (u0) + (r − Φ (u0))Ψ (u1)

Φ (u1)− Φ (u0)
.

Then there exist an open interval Λ ⊂ ]0,+∞[ and a positive real number q such that the equation

Φ′ (u) + λΨ′ (u) = 0

admits at least three solutions in X whose norms are less than q, for all λ ∈ Λ.

3. Position of problem

We say that u is a weak solution for the problem (1.1) if

u ∈ X :=

{
u ∈ W 2,p(x) (Ω) /

∂u

∂ν
= 0 on ∂Ω

}

and ∫

Ω

(
|∆u|p(x)−2 ∆u∆v + α |u|p(x)−2 uv

)
dx = β

∫

Ω

f (x, u (x)) vdx ∀v ∈ X.

Put for α > 0

Φα (u) =

∫

Ω

1

p(x)

(
|∆u (x)|

p(x)
+ α |u (x)|

p(x)
)
dx

and

Ψ (u) = −

∫

Ω

F (x, u (x)) dx

where F (x, s) =
∫ s

0
f(x, t)dt.

The space W 2,p(x) (Ω) is equipped with the norm

‖u‖α = inf

{
λ > 0 :

∫

Ω

(∣∣∣∣
∆u (x)

λ

∣∣∣∣
p(x)

+ α

∣∣∣∣
u (x)

λ

∣∣∣∣
p(x)
)
dx ≤ 1

}
.

Remark 3.1. The norm ‖u‖α is equivalent to the norm

|∆u|Lp(x)(Ω) + |u|Lp(x)(Ω)

Proposition 3.1. If we put

Jα (u) :=

∫

Ω

(
|∆u (x)|

p(x)
+ α |u (x)|

p(x)
)
dx

then for all u ∈ W 2,p(x) (Ω) we have

(1) ‖u‖α < (=;> 1) ⇔ Jα (u) < (=;> 1) ,

(2) ‖u‖α ≤ 1 ⇒ ‖u‖
p+

α ≤ Jα (u) ≤ ‖u‖
p−

α ,

(3) ‖u‖α ≥ 1 ⇒ ‖u‖p
−

α ≤ Jα (u) ≤ ‖u‖p
+

α ,

for all un ∈ W 2,p(x) (Ω) we have

(4) ‖un‖α → 0 ⇔ Jα (un) → 0,

(5) ‖un‖α → ∞ ⇔ Jα (un) → ∞.
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It is necessary to show that X is a closed subspace of W 2,p(x) (Ω) . In order to obtain our goal, we
need the following boundary trace embedding theorem for variable exponent Sobolev spaces

Theorem 3.2. Let Ω be a bounded domain in R
N with C2 boundary. If 2p(x) ≥ N ≥ 2 for all x ∈ Ω,

then for all q ∈ C+

(
Ω
)
there is a continuous boundary trace embedding

1.
W 2,p(x) (Ω) →֒ Lq(x) (∂Ω) ,

and

2.
W 2,p(x) (Ω) →֒ W 1,p(x) (∂Ω) .

Proof: (1) Let p, q ∈ C+

(
Ω
)
such that for all x ∈ Ω, 2p(x) ≥ N. It’s clear that there exists the following

continuous embedding

W 2,p(x) (Ω) →֒ W 2,p−

(Ω) (3.1)

and
Lq+ (∂Ω) →֒ Lq(x) (∂Ω) . (3.2)

Using the classical boundary trace embedding theorem, since 2p− ≥ N and q+ ≥ 1, there exists the
continuous embedding

W 2,p−

(Ω) →֒ Lq+ (∂Ω) . (3.3)

Hence, the space W 2,p(x) (Ω) is continuously embedded into Lq(x) (∂Ω) by combining (3.1), (3.2) and
(3.3).

(2) Since 2p− ≥ N and p+ > 1, we have the continuous embedding (see [10])

W 2,p−

(Ω) →֒ W 1,p+

(∂Ω) . (3.4)

Moreover, it’s easy to see that

W 1,p+

(∂Ω) →֒ W 1,p(x) (∂Ω) . (3.5)

Then, the result is given from (3.1), (3.4) and (3.5). ✷

Proposition 3.2. If 2p(x) ≥ N for all x ∈ Ω then, the set

X =

{
u ∈ W 2,p(x) (Ω) /

∂u

∂υ
|∂Ω = 0

}

is a closed subspace of W 2,p(x) (Ω) .

Proof: To prove the above proposition, we must show that the operator

D : W 2,p(x) (Ω) → Lp(x) (∂Ω)
u 7−→ ∂u

∂υ
|∂Ω

is continuous from
(
W 2,p(x) (Ω) , ‖.‖α

)
to
(
Lp(x) (∂Ω) , |.|Lp(x)(∂Ω)

)
.

First, let us prove the continuity of the operator

∇ : W 2,p(x) (Ω) →
(
Lp(x) (∂Ω)

)N
u 7−→ (∇u) |∂Ω.

from
(
W 2,p(x) (Ω) , ‖.‖α

)
to
((

Lp(x) (∂Ω)
)N

, ‖.‖p(x),N

)
with

‖−→n ‖p(x),N :=

N∑

i=1

|ni|p(x) .
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Let (un)n ⊂ W 2,p(x) (Ω) be a sequence such that un → u in W 2,p(x) (Ω) . From the second assertion
of the theorem 3.2, we have

un → u in W 1,p(x) (∂Ω)

what implies that

∇un → ∇u in
(
Lp(x) (∂Ω)

)N

and then ∇ is continuous.
Moreover, D = T ◦ ∇ with T is the linear function defined as

T :
(
Lp(x) (∂Ω)

)N
→ Lp(x) (∂Ω)

−→n = (n1, ..., nN ) 7−→ −→n .−→υ

where −→υ (x) = (α1 (x) , ..., αN (x)) is the outer unit normal vector and

N∑

i=1

|αi (x)|
2
= 1 for all x ∈ ∂Ω. (3.6)

The operator T is continuous, indeed, for −→n ∈
(
Lp(x) (∂Ω)

)N
we have

|−→n .−→υ |p(x) =

∣∣∣∣∣

N∑

i=1

niαi

∣∣∣∣∣
p(x)

≤

N∑

i=1

|niαi|p(x) .

On the other hand, thanks to (3.6), we obtain

|αi (x)| ≤ 1 for all x ∈ ∂Ω, i ∈ {1, ..., N} .

Consequently, we deduct that

|−→n .−→υ |Lp(x)(∂Ω) ≤

N∑

i=1

|ni|p(x) = ‖−→n ‖p(x),N (3.7)

which assert that T is continuous and then D is also continuous. Finally, since

X = D−1 {0} ,

it results that X is closed in W 2,p(x) (Ω). Hence, the proof of the proposition 3.2 is completed. ✷

In what follows, we have to need the following proposition which is an extension of Sobolev embedding
theorems to the Sobolev spaces with variable exponent.

Proposition 3.3. Let p ∈ C+

(
Ω
)
such that 2p(x) > N for all x ∈ Ω then

1. there exists a continuous and compact embedding of W 2,p(x) (Ω) into Lq(x) (Ω) for all q ∈ C+

(
Ω
)
.

2. there exists a continuous embedding of W 2,p(x) (Ω) into C
(
Ω
)
.

Proof: (1) We can refer to [4].
(2) For each x ∈ Ω, we have 2p(x) > N . Then, there exists a neighborhood Ux ⊂ Ω such that

2p− (Ux) > N

where
p− (Ux) = inf

y∈Ux

p (y) .
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Hence, we get a family open covering {Ux}x∈Ω for the compact set Ω. For a sub-covering {Ui}i=1,...,r,
one considers mi such that

0 ≤ mi < 2−
N

p−i
< mi + 1.

Thanks to the theorem 7.26 [7], there exists a continuous embedding

W 2,p−
i (Ui) →֒ Cmi,αi

(
Ui

)
(3.8)

where αi = 2− N

p
−
i

−mi. On the other hand, for all i ∈ {1, ..., r}, it easy to see that

W 2,p(x) (Ui) ⊂ W 2,p−
i (Ui) (3.9)

and
Cmi,αi

(
Ui

)
⊂ C

(
Ui

)
. (3.10)

From (3.8), (3.9) and (3.10), it follows that

W 2,p(x) (Ui) ⊂ C
(
Ui

)

for all Ui ,i = 1, ..., r. This assert that the embedding

W 2,p(x) (Ω) →֒ C
(
Ω
)

is continuous. The proof of proposition 3.3 is completed. ✷

Remark 3.3. Note that the space (W 2,p(x) (Ω) , ‖.‖α) is a Banach, separable and reflexive.

It’s clear that Φα ∈ C1 (X,R) with

〈Φ′
α (u) , v〉 =

∫

Ω

(
|∆u (x)|

p(x)−2
∆u∆v + α |u (x)|

p(x)−2
uv
)
dx.

For the operator Ψ, we cite the following theorem

Theorem 3.4. If f : Ω × R → R is a Caratheodory function and satisfies the condition (f1), then the
operator Ψ satisfies the following assertions

(i) Ψ is a C1 operator and for all u, v in X

〈Ψ′ (u) , v〉 = −

∫

Ω

f (x, u) vdx.

(ii) The operator Ψ′ : X → X ′ is completely continuous.

Proof: (i)From the condition (f1), we have

|F (x, s)| ≤ a(x) |s|+
b

γ(x)
|s|

γ(x)

≤ A(x) + b |s|
γ(x)

where A(x) ≥ 0, A ∈ L1 (Ω) and γ < p∗2. So, the Nemytskii’s operator properties assert that Ψ is a C1

function in Lγ(x) (Ω). Since X embedded continuously into Lγ(x) (Ω), Ψ is a C1 function in X and

〈Ψ′(u), v〉 = −

∫

Ω

f (x, u (x)) v (x) dx.
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(ii) Let (un)n ⊂ X be a sequence such that un ⇀ u. By the compact embedding of X into Lγ(x) (Ω),
there exists a subsequence, also noted (un)n , such that un → u in Lγ(x) (Ω). Thanks to the Krasnoselki
theorem, the Nemytskii’s operator

Nf : Lγ(x) (Ω) → L
γ(x)

γ(x)−1 (Ω)
u 7−→ f (., u)

is continuous. It follows that Nf (un) → Nf (u) in L
γ(x)

γ(x)−1 (Ω).
By Holder’s inequality and the continuous embedding of X into Lγ(x) (Ω), we deduct

|〈Ψ′(un)−Ψ′(u), v〉| =

∣∣∣∣
∫

Ω

(f (x, un)− f (x, u)) v (x) dx

∣∣∣∣
≤ 2 |Nf (un)−Nf (u)|

L
γ(x)

γ(x)−1 (Ω)
|v|Lγ(x)(Ω)

≤ C |Nf (un)−Nf (u)|
L

γ(x)
γ(x)−1 (Ω)

‖v‖α .

Hence, Ψ′(un) → Ψ′(u) in X ′. The proof of theorem 3.4 is completed. ✷

Consequently, the weak solutions of the problem (1.1) are the critical points of the operator Φα (u) +
βΨ(u).

Remark 3.5. The condition lim inf
t→+∞

f (x, t)

t
= +∞ implies (f2).

Theorem 3.6. The operator Φ′
α : X → X ′ satisfies the following assertions

(1) Φ′
α is a continuous, bounded and strictly monotone operator.

(2) Φ′
α is of (S+) type.

(3) Φ′
α is homeomorphism.

Proof: (1) Since Φ′
α is the Fréchet derivative of Φα, it follows that Φ

′
α is continuous and bounded. Let’s

define the sets

Up = {x ∈ Ω : p(x) ≥ 2} , and Vp = {x ∈ Ω : 1 < p(x) < 2} .

Using the elementary inequalities





|x− y|γ ≤ 2γ
(
|x|γ−2 x− |y|γ−2 y

)
. (x− y) if γ ≥ 2,

|x− y|
2
≤ 1

(γ−1) (|x|+ |y|)
2−γ

(
|x|

γ−2
x− |y|

γ−2
y
)
. (x− y) if 1 < γ < 2,

for all (x, y) ∈
(
R

N
)2

, where x.y denotes the usual inner product in R
N , we obtain for all u, v ∈ X

such that u 6= v

〈Φ′
α(u)− Φ′

α(v), u − v〉 > 0,

which means that Φ′
α is strictly monotone.

(2) Let (un)n be a sequence of X such that

un ⇀ u in X and lim sup
n→+∞

〈Φ′
α(un), un − u〉 ≤ 0. (3.11)

From the proposition 3.1, it suffices to shows that

∫

Ω

(
|∆un −∆u|p(x) + α |un − u|p(x)

)
dx → 0. (3.12)
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In view of the monotonicity of Φ′
α, we have

〈Φ′
α(un)− Φ′

α(u), un − u〉 ≥ 0.

On the other hand, (3.11) implies that

lim sup
n→+∞

〈Φ′
α(un)− Φ′

α(u), un − u〉 ≤ 0. (3.13)

So,
lim sup
n→+∞

〈Φ′
α(un)− Φ′

α(u), un − u〉 = 0. (3.14)

Put

ϕn (x) =
(
|∆un|

p(x)−2
∆un − |∆u|

p(x)−2
∆u
)
. (∆un −∆u) ,

ξn (x) =
(
|un|

p(x)−2
un − |u|

p(x)−2
u
)
. (un − u) .

By the compact embedding of X into Lp(x) (Ω), it follows that

un → u in Lp(x) (Ω)

and
|un|

p(x)−2
un → |u|

p(x)−2
u in Lq(x) (Ω)

where 1
q(x) +

1
p(x) = 1 for all x ∈ Ω. It results that

∫

Ω

ξn (x) dx → 0. (3.15)

It follows by (3.14) and (3.15) that

lim sup
n→+∞

∫

Ω

ϕn (x) dx = 0. (3.16)

Thanks to above inequalities, we deduct

∫

Up

|∆un −∆uk|
p(x)

dx ≤ 2p
+

∫

Up

ϕn (x) dx,

and ∫

Up

|un − uk|
p(x) dx ≤ 2p

+

∫

Up

ξn (x) dx.

Then ∫

Up

(
|∆un −∆u|

p(x)
+ α |un − u|

p(x)
)
dx → 0 as n → +∞. (3.17)

On the other hand, in Vp , setting δn = |∆un|+ |∆u| , we have

∫

Vp

|∆un −∆u|
p(x)

dx ≤
1

p− − 1

∫

Vp

(ϕn)
p(x)
2 (δn)

p(x)
2 (2−p(x))

dx,

and the Young’s inequality gives that

d

∫

Vp

|∆un −∆u|
p(x)

dx ≤
1

p− − 1

∫

Vp

[
d (ϕn)

p(x)
2

]
(δn)

p(x)
2 (2−p(x))

dx,

≤
1

p− − 1

∫

Vp

(
ϕn (d)

2
p(x) + (δn)

p(x)
)
dx. (3.18)
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From (3.16) and since ϕn ≥ 0 , one can consider that

0 ≤

∫

Vp

ϕndx < 1.

If
∫
Vp

ϕndx = 0 then
∫
Vp

|∆un −∆u|
p(x)

dx = 0. If not, we take

d =

(∫

Vp

ϕn (x) dx

)− 1
2

> 1,

and the fact that 2
p(x) < 2 , the inequality (3.18) becomes

(
p− − 1

) ∫

Vp

|∆un −∆u|
p(x)

dx ≤
1

d

(∫

Vp

ϕnd
2dx+

∫

Ω

δp(x)n dx

)
,

≤

(∫

Vp

ϕndx

) 1
2 (

1 +

∫

Ω

δp(x)n dx

)
.

Note that,
∫
Ω δp(x)n dx is bounded, this implies that

∫

Vp

|∆un −∆u|p(x) dx → 0 as n → +∞.

A similar method gives ∫

Vp

|un − u|
p(x)

dx → 0 as n → +∞.

Hence, it results that
∫

Vp

(
|∆un −∆u|

p(x)
+ α |un − u|

p(x)
)
dx → 0 as n → +∞. (3.19)

Finally, (3.12) is given by combining (3.17) and (3.19).
(3) Note that the strictly monotonicity of Φ′

α implies this injectivity. Moreover, Φ′
α is a coercive

operator. Indeed, since p− − 1 > 0, for each u ∈ X such that ‖u‖ ≥ 1 we have

〈Φ′
α(u), u〉

‖u‖α
=

Jα (u)

‖u‖α
≥ ‖u‖

p−−1
α → ∞ as ‖u‖α → ∞.

Consequently, thanks to a Minty-Browder theorem [16], the operator Φ′
α is an surjection and admits an

inverse mapping. It suffices then to show the continuity of (Φ′
α)

−1
. Let (fn)n be a sequence of X ′ such

that fn → f in X ′. Let un and u in X such that

(Φ′
α)

−1
(fn) = un and (Φ′

α)
−1

(f) = u.

By the coercivity of Φ′
α, one deducts that the sequence (un) is bounded in the reflexive space X . For a

subsequence, we have un ⇀ û in X , this implies that

lim
n→+∞

〈Φ′
α(un)− Φ′

α(u), un − û〉 = lim
n→+∞

〈fn − f, un − û〉 = 0.

It follows by the second assertion and the continuity of Φ′
α that

un → û in X and Φ′
α(un) → Φ′

α(û) = Φ′
α(u) in X ′.

Moreover, since Φ′
α is an injection, we conclude that u = û. This ends the proof. ✷
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4. Existence Results

Proof: [Proof of theorem 1.1]
The function Φα is continuous and convex, so it is weakly lower semicontinuous. From the two theorems
(theorem 3.4 and theorem 3.6), the functional Φα is continuous Gâteaux differentiable and sequentially
weakly lower semicontinuous whose Gâteaux derivative admits a continuous inverse on X∗, and Ψ is a
continuous Gâteaux differentiable functional whose Gâteaux derivative is compact. In what follows, we
will prove that the conditions of lemma 2.1 are satisfied.

(1) Let u ∈ X such that ‖u‖α ≥ 1. We have

Ψ (u) = −

∫

Ω

F (x, u (x)) dx = −

∫

Ω

[∫ u(x)

0

f (x, t) dt

]
dx

≤

∫

u(x)≥0

[∫ u(x)

0

|f (x, t)| dt

]
dx+

∫

u(x)<0

[∫ 0

u(x)

|f (x, t)| dt

]
dx

≤

∫

Ω

[
a(x) |u(x)|+

b

γ(x)
|u(x)|

γ(x)

]
dx

≤ 2 |a|
L

γ(x)
γ(x)−1 (Ω)

|u|Lγ(x)(Ω) +
b

γ−

∫

Ω

|u(x)|
γ(x)

dx.

By the proposition 3.3, we have u ∈ Lγ(x) (Ω) and there exists C > 0 such that

|u|Lγ(x)(Ω) ≤ C ‖u‖α .

Moreover, it’s clear that

∫

Ω

|u(x)|γ(x) dx ≤ max
{
|u|γ

−

γ(x) , |u|
γ+

γ(x)

}

≤ C′ ‖u‖
γ+

α ,

so

|Ψ(u)| ≤ 2C |a|
L

γ(x)
γ(x)−1 (Ω)

‖u‖α +
b

γ−
C′ ‖u‖γ

+

α . (4.1)

Thanks to the proposition 3.1, we have

Φα (u) =

∫

Ω

1

p(x)

(
|∆u (x)|

p(x)
+ α |u (x)|

p(x)
)
dx

≥
‖u‖

p−

α

p+
. (4.2)

Then, for all β > 0, from (4.1) and (4.2) we obtain

Φα (u) + βΨ(u) ≥
‖u‖

p−

α

p+
− 2βC |a|

L
γ(x)

γ(x)−1 (Ω)
‖u‖α −

βC′b

γ−
‖u‖γ

+

α .

Since p− > γ+ > 1, the right term of the inequality goes to +∞ as ‖u‖α → +∞. So,

lim
‖u‖α→+∞

[Φα (u) + βΨ(u)] = +∞,

for all α, β > 0. Consequently, the assertion (1) of lemma 2.1 is satisfied. Let us prove the second
assertion.
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(2) Choose u0 (x) = 0 for all x ∈ Ω. It is clear that u0 ∈ X and Φα (u0) = Ψ (u0) = 0. From the

condition (f2), we can find a constant M>max

{
1,
(

1
α|Ω|

) 1

p−

}
such that F (x,M) > 0, it follows that

Ψ (M) = −

∫

Ω

F (x,M) dx < 0,

this implies that
(Φα (M)− r) Ψ (u0) + (r − Φα (u0)) Ψ (M)

Φα (M)− Φα (u0)
=

rΨ(M)

Φα (M)
< 0.

Take for all x ∈ Ω, u1 (x) = M and 0 < r < 1
p+ , we have

Φα (M) =

∫

Ω

α

p(x)
Mp(x)dx ≥

α

p+
Mp−

|Ω| >
1

p+
,

it follows that

0 = Φα (u0) < r <
1

p+
< Φα (M) .

(3) We must choose an r > 0 such that for all u ∈ X satisfying Φα (u) ≤ r, we have Ψ (u) > 0. This
assert that

inf
u∈Φ−1

α ]−∞,r]
Ψ(u) > 0 >

rΨ(M)

Φα (M)
.

Let u ∈ X such that Φα (u) ≤ r. First, we give the following claim

Claim 1. If r < 1
p+ then ‖u‖α ≤ (p+r)

1

p+ .

Indeed, let us show that ‖u‖α < 1. Suppose by contradiction that ‖u‖α ≥ 1. From the proposition
3.1, we have Jα (u) ≥ 1 and

Φα (u) =

∫

Ω

1

p(x)

(
|∆u (x)|

p(x)
+ α |u (x)|

p(x)
)
dx

≥
1

p+
Jα (u) ≥

1

p+
,

this contradict the fact that r < 1
p+ . Consequently, ‖u‖α < 1, then

Φα (u) ≥
1

p+
Jα (u) ≥

1

p+
‖u‖p

+

α .

Since Φα (u) ≤ r, it follows that ‖u‖α ≤ (p+r)
1

p+ . By the second assertion of proposition 3.3 and the
fact p(x) > N

2 , there exists C3 > 0 such that

|v| ≤ C3 ‖v‖α for all v ∈ X

where |v| = max
x∈Ω

|v (x)|. Hence, we obtain

|u| ≤ C3

(
p+r

) 1

p+ . (4.3)

On the other hand, the condition (f3) implies that there exists ε > 0 such that

f (x, t)

tδ
≤

c

2
, ∀0 < |t| < ε.

Integrating to respect t and since δ + 1 is even, it follows that

F (x, t) ≤
c

2(δ + 1)
|t|δ+1 , ∀0 < |t| < ε.
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Therefore

Ψ (v) = −

∫

Ω

F (x, v) dx ≥ −
c

2(δ + 1)

∫

Ω

|v|
δ+1

dx

for all v ∈ X satisfying 0 < |v| < ε. From the proposition 3.3, it gives that v ∈ Lδ+1 (Ω). So

Ψ (v) ≥ −
c

2(δ + 1)
|v|

δ+1
Lδ+1(Ω) > 0 for all 0 < |v| < ε. (4.4)

Then considering r < min

{
1
p+ ,

1
p+

(
ε

2C3

)p+}
in (4.3), one conclude that |u| <

ε

2
and from (4.4), it

follows that Ψ (u) > 0. Hence, the proof of theorem 3.4 is completed. ✷

Proof: [Proof of theorem 1.2]
The proof of this theorem is similar at the above ones. We start by the assertion (1) of lemma 2.1. Let

u ∈ X , denote by s = ‖u‖α and v =
u

s
. It’s clear that ‖v‖α = 1 and s → +∞ as ‖u‖α → +∞.

Replacing in Φα, we obtain

Φα (u) ≤
1

p−

∫

Ω

(
|∆u (x)|p(x) + α |u (x)|p(x)

)
dx

≤
1

p−

∫

Ω

sp(x)
(
|∆v (x)|

p(x)
+ α |v (x)|

p(x)
)
dx.

For s > 1 and using the relation (1) of proposition 3.1, we deduct that

Φα (u) ≤
sp

+

p−
Jα (v) =

sp
+

p−
. (4.5)

On the other hand, the condition (f4) implies that there exists M > 1 such that

f (x, t)

tω
> 1, for all |t| ≥ M,

and

F (x, t) ≥
1

ω + 1
|t|

ω+1
, for all |t| ≥ M. (4.6)

It follows that

Ψ (u) = −

∫

Ω

F (x, u (x)) dx = −

∫

|u|≤M

F (x, u (x)) dx−

∫

|u|>M

F (x, u (x)) dx

≤ −

∫

|u|≤M

F (x, u (x)) dx−
1

ω + 1

∫

|u|>M

|u|ω+1 dx

≤ −

∫

|u|≤M

F (x, u (x)) dx+
1

ω + 1

∫

|u|≤M

|u|
ω+1

dx −
1

ω + 1

∫

Ω

|u|
ω+1

dx.

setting M ′ = −
∫
|u|≤M

F (x, u (x)) dx+ 1
ω+1

∫
|u|≤M

|u|
ω+1

dx which is bounded, we have

Ψ (u) ≤ M ′ −
1

ω + 1

∫

Ω

|u|ω+1 dx ≤ M ′ −
sω+1

ω + 1

∫

Ω

|v|ω+1 dx. (4.7)

From the inequalities (4.5) and (4.7), for each β > 0

Φα (u) + βΨ(u) ≤
sp

+

p−
− β

sω+1

ω + 1

∫

Ω

|v|ω+1 dx+ βM ′. (4.8)



14 A. R. El Amrouss, F. Moradi and M. Moussaoui

We must show that
∫
Ω |v|

ω+1
dx 6= 0. Assume par contradiction, suppose that

∫
Ω |v|

ω+1
dx = 0, so we

have v(x) = 0 for a.e x ∈ Ω. From the proposition 3.3, v ∈ C
(
Ω
)
and then v(x) = 0 for all x ∈ Ω.

This implies that ‖v‖α = 0, this contradicts the fact that ‖v‖α = 1.
Let us return to the inequality (4.8). Since ω + 1 > p+, we deduct that the term on the right goes to

−∞ as s → +∞. Consequently, we have

lim
‖u‖α→+∞

[Φα (u) + βΨ(u)] = −∞,

and the assertion (1) is proved.
Let us show the assertion (2) of lemma 2.1. For M > 1 found by the condition (f4), we get

Φα (M) =

∫

Ω

α

p(x)
Mp(x)dx ≥

α

p+
Mp−

|Ω| . (4.9)

Then for M > max

{
1,

(
1

α |Ω|

) 1
p−

}
and 0 < r < 1

p+ , we obtain

Φα (M) ≥
1

p+
> r > 0 = Φα (0) .

Finally, for the third assertion, replacing t by M in (4.6) it follows

−Ψ(M) =

∫
F (x,M) dx ≥

1

ω + 1
|M |

ω+1
|Ω| (4.10)

and

Φα (M) =

∫

Ω

α

p(x)
Mp(x)dx ≤

α

p−
Mp+

|Ω| . (4.11)

Combining (4.10) and (4.11), we have

− r
Ψ(M)

Φα (M)
≥

rp−

α (ω + 1)
Mω+1−p+

. (4.12)

Let r = ε
p+ with 0 < ε < 1. From the preceding claim, for all u ∈ X such that Φα (u) ≤ r < 1

p+ we get

‖u‖α ≤ ε
1

p+ .

The same method used in the preceding proof give

|Ψ(u)| ≤ 2 |a|
L

γ(x)
γ(x)−1 (Ω)

|u|Lγ(x)(Ω) +
b

γ−
|u|γ

−

Lγ(x)(Ω)

≤ 2C |a|
L

γ(x)
γ(x)−1 (Ω)

(ε)
1

p+ +
C′′b

γ−
(ε)

γ−

p+ . (4.13)

Define the function g as

g (t) := 2C |a|
L

γ(x)
γ(x)−1 (Ω)

(t)
1

p+ +
C′′b

γ−
(t)

γ−

p+ .

In what follows, we interest to find an 0 < ε < 1 such that

g (ε) <
p−Mω+1−p+

αp+ (ω + 1)
ε.

Hence, from (4.12) and (4.13), we obtain

−Ψ(u) ≤ g (ε) <
p−Mω+1−p+

αp+ (ω + 1)
ε ≤ −r

Ψ(M)

Φα (M)
,
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for all u ∈ X satisfying Φα (u) ≤ r = ε
p+ . Which gives the assertion 3.

Let us search this ε. Define the function h as

h(t) := g (t)−
p−Mω+1−p+

αp+ (ω + 1)
t.

This function is continuous on [0, 1] such that h (0) = 0 , h′ (0) = +∞ and for M >
[
p+(ω+1)

p− g (1)
] 1

ω+1−p+

we have h(1) < 0. Then, there exists ε ∈ ]0, 1[ such that h(ε) < 0. This ends the proof of theorem 1.2.
✷
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