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(Jordan) Derivation on Amalgamated Duplication of a Ring Along an Ideal

Khalid Louartiti, Abdellah Mamouni and Mohammed Tamekkante

ABSTRACT: Let A be aring and I be an ideal of A. The amalgamated duplication of A along I is the subring
of A x A defined by A< I := {(a,a+1i)|a € A, i € I}. In this paper, we characterize A > I over which
any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is
noncommutative prime, then A > I is noncommutative semiprime (but not prime except if I = (0)). In this
case, we prove that any map of A < I which is both Jordan and Jordan triple derivation is a derivation.
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1. Introduction

Throughout, A will represent an associative ring with center Z(A). By an ideal I in A, we shall always
mean a two-sided ideal of A. An ideal P of A is said to be prime if P # A and, for a,b € A, aAb C P
implies that @ € P or b € P. The ring A is called a prime ring if (0) is a prime ideal of A. A ring A
is called a semiprime ring if aAa = (0) implies a = 0. A ring A is said to be 2-torsion free, if whenever
2a = 0, with a € A, then a = 0. The Jordan product of two elements x and y of A is z oy = zy + yz.
By a derivation of A, we mean an additive map d : A — A satisfying d(zy) = d(x)y + zd(y) for all pairs
xz,y € A. Given a derivation d of A, an ideal I of A is said to be invariant under d (or d-invariant for
short) if d(I) C I. Tt is well known that every minimal prime ideal of a torsion-free semiprime ring is
invariant under all derivations [11]. Herstein raised the following problem:

Problem. Given a semiprime ring A, does d(P) C P hold for any minimal prime ideal P of A and for
any derivation d of A7

This problem has been often mentioned in the literature (see, for example, [3,13]). The best result of
the conjecture is the following: A ring A is said to be of bounded index m if m is a positive integer such
that ™ = 0 for all nilpotent elements x € A. Beidar and Mikhalev proved the theorem: Let A be a ring
of bounded index m such that the additive order of every nonzero torsion element of A, if any, is strictly
larger than m. Then all minimal prime ideals of A are invariant under all derivations of A (see [1] or [2,
Theorem 8.16]). As a special case of this, every minimal prime ideal of a reduced ring is invariant under
derivations of the ring (See [7, p. 614]). Unfortunately, this problem turns out to be false in general.
Chuang and Lee [7] constructed a semiprime ring A which possesses a minimal prime ideal not invariant
under a derivation of the ring.

Let A be a ring and I be an ideal of A. The subset of A x A defined by:

Al :={(a,a+1i)|ac A iel}

is clearly a subring of A x A, called the amalgamated duplication of A along I. The construction
AT (in the commutative case) was introduced and its basic properties were studied by D’Anna and
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Fontana (2007) in [9,10], and then it was investigated by D’Anna in [8] with the aim of applying it to
curve singularities (over algebraic closed fields) where he proved that the amalgamated duplication of an
algebroid curve along a regular canonical ideal yields a Gorenstein algebroid curve [8, Theorem 14 and
Corollary 17]. The aim of Section 2 of this paper is to characterize when the amalgamated duplication
of a semiprime ring along an ideal satisfies the Herstein’s Problem. Hence, Theorem 2.6 states that if A
is a semiprime ring and [ is an ideal of A. Then, the following are equivalent:

1. d(P) C P holds for any (resp. minimal) prime ideal P of At I and for any derivation d of A > I.

2. §(p) C p holds for any (resp. minimal) prime ideal p of A and for any derivation § of A keeping I
invariant.

An additive map d : A — A is called a Jordan derivation if d(z?) = d(x)z + xd(z) for all x € A, and
d is called a Jordan triple derivation if d(zyz) = d(z)yz + xd(y)r + zyd(z) for all z,y € A. If A is
2-torsion-free, then every Jordan derivation is a Jordan triple derivation ( [4, Proposition 2]). Obviously,
every derivation is a Jordan (resp. triple) derivation. The converse is in general not true. In [5, Theorem
4.3], Bresar proved that if A is 2-torsion free semiprime then every Jordan triple derivation is a deriva-
tion. Which means that derivations, Jordan derivations, and Jordan triple derivations of a 2-torsion-free
semiprime ring are the same. The case when the ring is of characteristic 2 is due to Herstein who proved
(in [12, Theorem 4.1]) that over a noncommutative ring any map which is both Jordan derivation and
Jordan triple derivation becomes a derivation. In Section 3, we extend the Herstein’s result to semiprime
rings with form A < I where A is a prime noncommutative ring.

Let’s adopt the following notations:

Notations. Let A be a ring and I be an ideal of A. By 71 and 72 we denote the naturel surjections of
A< into A defined by

mi(a,a+i) =a and me(a,a+i)=a+i forallaec A, iel.

For an additive map d : A1l — A a1, we consider the maps dj—1 2 : A — A and s;=1,2 : [ = A defined
by

di(a) =m od(a,a), da(a) =my0d(a,a), s1(i) =m10d(0,7), s2(i) =me 0d(i,0)
for all a € A and i € I. It is clear that dy, do, s1, and s9 are all additive.

2. Semiprime amalgamated duplication of a ring along an ideal with prime ideals
invariant under derivations

In this section, we characterize the derivations of A < I, specially when A is a semiprime ring. Our aim
is to see when every (minimal) prime ideal of A < [ is invariant under any derivation on A < I.

Let R and T be rings and let # and ¢ be homomorphisms of T" into R. Let X be an R-bimodule.
Following [6], an additive mapping d : T — X is called a (6, ¢)-derivation (resp. a Jordan (6, ¢)-
derivation) if d(zy) = d(z)p(y) + 0(x)d(y), for all z,y € T (resp. if d(x?) = d(z)¢(x) + 0(x)d(z), for all
zeT).

Suppose that d : T'— T is a (resp. Jordan) derivation. Then, 6 o d is a (resp. Jordan) (6, §)-derivation.
Indeed, 6 o d is clearly additive, and for all x,y € T, we have

00 d(zy) = (d(@)y + 2d(y)) = 00 d(x)8(y) + 0(x)8 o d(y)
(resp.f o d(z®) = 0(d(z)z + zd(z)) = 0 0 d(2)0(z) + 0(z)0 o d(z)).
We start with the following lemma.

Lemma 2.1. Let A be a ring and I be an ideal of A. A map d: A< I — A1 is a (resp. Jordan)
derivation if and only if 1 od is a (resp. Jordan) (mw1,mw1)-derivation and wo o d is a (resp. Jordan)
(7o, o) -derivation.
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Proof: (=) Clear.
(<) It is clear that, for all @ € A and 7 € I, we have

d(a,a+1i) = (1 od(a,a+1i),m20d(a,a+1)).

Hence, if w1 o d and 75 o d are additive then so is d.
Suppose that 71 od is a (71, 71 )-derivation and 7 od is a (ma, m2)-derivation. For all a,b € A and i,j € T
we have
d((a,a+d)(b,d+5) = (mod((a,a+i)(bd+7)),m20d((a,a+i)(bb+7)))
= (miod(a,a+i)m1(b,b+j)+ mi(a,a+i)m od(b,b+j),
T od(a,a+i)ma(b,b+ j) + m2(a,a +i)wa 0 d(b, b+ j))
= (mod(a,a+1i)b+am od(bb+ j),m20d(a,a+1i)(b+j)
+(a+i)mz0d(b,b+ j))
= (mod(a,a+1i),m20od(a,a+1i))(b,b+j)
+(a,a+i)(m1od(b,b+j),m2 0d(b,b+ j))
= d(a,a+1i)(b,b+j) + (a,a +i)d(b,b+ j).
Hence, d is a derivation.

By the same way, we show that if 71 o d is a Jordan (w1, 71 )-derivation and 75 o d is a Jordan (ma, m2)-
derivation then d is a Jordan derivation. O

The next result gives the necessary and sufficient conditions for an additive map d from A < [ into itself
to be a derivation.

Proposition 2.2. Let A be a ring, I be an ideal of A, and d : At I — A< I be an additive map.
Then, d is a deriwation if and only if

1. di and do are derivations.

2. sp(ai) = asi(i), sk(ia) = sp(i)a, and sp(ij) =0 for k=1,2 and for alla € A and i,j € I.

Proof: (=) From Lemma 2.1, my od is a (71, 71)-derivation and 73 o d is a (mg, m2)-derivation. Hence,
for all a € A, we have

dy(ab) = 71 od(ab,ab)
= m Od((a‘aa)(bv b))
= mod(a,a)b+ amy od(b,b)
d1 (a)b + ad1 (b)
Hence, d; is derivation. Similarly, we obtain that ds is a derivation.
Let a € A and i € I. We have
si(at) = m0d(0,ai)

T 0 d((a, a)(0, z))
= Tm10 d(a7 CL)T('l(O, 7’) + 1 (a7 a)ﬂ-l © d(Ov Z)

asi (1).

Similarly, si(ia) = s1(i)a. Now, for all ¢,j € I, we have

s1(ij) = w1 0d(0,i))

1 0d((0,4)(0, 7))

= m0od(0,7)m1(0,7) + m1(0,4)m1 0 d(0, )
0.
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By the same argument, we prove that sy satisfies the same conditions.
(<) For all a € A and i € I we have

mod(a,a+1) =7 od(a,a) + 71 0d(0,7) = di(a) + s1(7).
and
maod(a,a+1) =meod(a+i,a+i) —me0d(i,0) = da(a+ i) — s2(7).
By Lemma 2.1, we have to prove that 71 o d is a (71, 71)-derivation and w2 o d is a (mwe, m2)-derivation.
Let a,b € A and i,j € I. We have
miod((a,a+1i)(b,b+j)) = m od(ab,ab+ aj+ ib+ ij)
= dy(ab) + s1(aj +1ib+ij)
= dyi(a)b+ adi(b) + as1(j) + s1(4)b
= (di(a) + s1(2)b+ a(di(b) + s1(5))
= mod(a,a+0)m1(b,b+ )
+7i(a,a+i)m od(b, b+ j)
and, since 0 = s2(ij) = s2(i)j = is2(j), we get
mod((a,a+i)(b,b+j)) = mood(ab,ab+ aj+ ib+ ij)
= da((a+19)(b+j)) — s2(aj + ib+ij)
= do(a+9)(b+j) + (a+9)da(b+ )
—asa(j) — s2(i)b
= (dQ(CL‘FZ) - 82(2))(b+])
+(a+i)(da(b+ j) — s2(4))
= T2 Od(aaa+i)7r2(b7b+j)
+mo(a,a +i)me o d(b,b+ j)

Hence, we have the desired result. o

Next, we characterize the derivations of A <1 I when A is a semiprime ring.

Proposition 2.3. Let A be a semiprime ring, I be an ideal of A, and d : A< I — A I be an additive
map. Then, the following are equivalent:

1. d is a derivation

2. dy and ds are derivations and the ideals 0 x I and I x 0 of A1 are d-invariant.

8. there exist a derivation 01 : A — A keeping I invariant and a derivation §2 : A — I such that

d(a,a+1) = (61(a),01(a+1%) + d2(a+1)) forallac A i€l
Proof: (1) = (2) From Proposition 2.2, we have sy(ai) = asg(i), si(ia) = si(i)a, and sx(ij) = 0 for
k=1,2 and for all a € A and i,j € I. Then, for any i € I , we have
sk(i)ask(i) = sg(i)sg(ai) = sk (isk(ai)) = sg (sk(iai)) =0 for all a € A.

Thus, since A is semiprime, we have that s (i) = 0 for all < € I. Hence, for all i € I, we have m10d(0,47) = 0

and 7o 0 d(i,0) = 0. So, d(0,7) = (0,7) € A< I and d(,0) = (r/,0) € A I. Consequently, r,r" € I,
d(0,7) € 0 x I, and d(4,0) € I x 0.



(JORDAN) DERIVATION ON AMALGAMATED DUPLICATION OF A RING ALONG AN IDEAL )

(2) = (3) Since 0 x I and I x 0 are d-invariant, we have clearly s; = s = 0. Thus, for all a € A and
1 € I, we have
d(a,a + 1) = (di(a),d2(a + 1)).

Set 61 = dy and 03 = do — dy. For all i € I, we have 6,(i) = w1 o d(i,i) = m 0d(i,0) + 71 0 d(0,7) =
m 0d(i,0) € I. Hence, I is 01-invariant. Set d(a,a) = (b,b+ j) for some b € A and j € I. We have
02(a) = da(a) — di(a) = e od(a,a) — myod(a,a) = (b+j)—b=j€l

Then, 52(A) g I.
(3) = (1) Suppose that

d(a,a+1) = (d1(a),61(a + i) + d2(a+1)) forallac A,iel

with 07 : A — A is a derivation keeping [ invariant and do : A — [ is a derivation. Firstly, d is well
defined. Indeed, for all « € A and 7 € I, we have

(51(CL + 'L) + 52(@ + Z)) - 51(&) = 51(1) + 52(& + Z) el.
A simple check shows that such d is a derivation. O

We need the following lemmas.

Lemma 2.4. Let p be a prime ideal of A. Then,
p<I:={(a,a+1i)|a€p,iel}

and
p:={(a+i,a)|acp,icl}

are prime ideals of A< I.

Al

Al A
p<il 5

P
defined by 1 ((a, a+ z)) =a and ¢ ((a, a+ z)) = a + 1 are a well defined isomorphisms of rings. Then,

Al Al

since p is prime, % is a prime ring and so are el and = Then, p < I and P are prime ideals of

Al O

Proof: Clearly p < I and p are ideals of A 1 I. Moreover, the mappings 1) : — % and ¢ :

Lemma 2.5. Let P be a prime ideal of Av<xI. Then, 0 x I C P or I x0C P. Moreover,

1. If 0 x I C P then there exists a prime ideal p of A such that

P=pxI:={(a,a+i)|acp, i€}

2. If I x 0 C P then there exists a prime ideal p of A such that

P=p:={(a+1i,a)|acp,icl}.
In the both cases, P is minimal if and only if p is minimal.

Proof: Suppose that 0 x I ¢ P. Then, there exists ig € I such that (0,4) & P. However, for any i,j € I
and a € A, we have (4,0)(a,a + j)(0,i9) = (0,0) € P. Hence, (i,0) € P for all i € I. Thus, I x 0 C P.
(1) Set p = m1(P). It is clear that p is an ideal of A (since 7 is surjective). Let a,b € A with arb € p
for all r € A. Then, for each r there exists i, € I such that (arb,arb +i,) € P. Then, for all j € I,
(arb,a(r + j)b) = (arb,arb + i) + (0,ajb — i) € P since 0 x I C P. Thus, (a,a)(r,r + j)(b,b) € P.
Hence, (a,a) € P or (b,b) € P. Then, a € p or b € p. So, p is prime.

Clearly, we have P C p < I. For the reverse inclusion, let a € p. There exists ¢ € I such that (a,a+1i) € P.
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Hence, for all j € I, we have (a,a+ j) = (a,a+1) 4+ (0,7 —¢) € P. Then, P =p [.

(2) Set p = mo(P). It is clear that p is an ideal of A (since my is surjective). Let a,b € A with
arb € p for all r € A. Then, for each r there exists ¢, € I such that (arb + i,,arb) € P. Then, for
all j € I, (arb,a(r + j)b) = (a(r + 7)b + tryj, a(r + j)b) — (ir4; + ajb,0) € P since I x 0 C P. Thus,
(a,a)(r,r 4+ j)(b,b) € P. Then, (a,a) € P or (b,b) € P. Hence, a € p or b € p. So, p is prime.

Clearly, P C p. Now, let a € p. There exists 7 € ¢ such that (a 4+ i,a) € P. Hence, for all j € I, we have
(a+j,a) =(a+1i,a)+ (j —4,0) € P. Then, P =7.

For the last statement, Let p be a prime ideal of A.

Suppose that P = p > [ is minimal prime and let ¢ be a prime ideal of A with ¢ C p. Easily, we can
see that ¢ xx I € p 1 I = P. Since ¢ > [ is prime (by Lemma 2.4), we have P = ¢ < I, and so
p=m(g=l)=gq.

Conversely, suppose that p is minimal prime, and let @ be a prime ideal of A > [ with Q@ C P. If 0xI C Q
then @Q = ¢ < I for some prime ideal g of A, and so we get ¢ C p which means that ¢ = p, and then
@ = P. Now, if I x0 C @ then @ = g for some prime ideal q of A. Hence, g C ¢+ = m1(Q) C 71 (P) = p,
and then I C ¢ = p. Hence,

Q=9={(a+1i,a)|acq,icl}={(a,a+i)|a€qiel}=qI=P

Now, suppose that P = p is minimal prime, and let ¢ be a prime ideal of A such that ¢ C p. Then,
g Cp= P. Then, § =p. Hence, p = q. Therefore, p is minimal.

Conversely, suppose that p is minimal and and let @ be a prime ideal of A > [ with Q C P = p. If
0x I CQ then Q = g I for some prime ideal ¢ of A. Then, m2(Q) C 72(P) means that ¢ + I C p.
Hence, I C ¢ = p. So,

Q={(a,a+i)|acqicl}={(a+i,a)|acq,icl}=q=P.
If I x 0 C @ then @ =7 for some prime ideal ¢ of A. Hence, ¢ C p, and so ¢ = p. Then, Q = P. O

The main result of this section is as follows:
Theorem 2.6. Let A be a semiprime ring and I be an ideal of A. The following are equivalent:
1. d(P) C P holds for any (resp. minimal) prime ideal P of A< I and for any derivation d of A< I.

2. §(p) C p holds for any (resp. minimal) prime ideal p of A and for any derivation § of A keeping I
movariant.

Proof: (=) Let § be a derivation on A with §(I) C I. Then, by Proposition 2.3, the additive map
d: Al — A<l defined by d(a,a+ i) = (6(a),d(a + 7)) is a derivation on A >t I. Let p be a (resp.
minimal) prime ideal of A. By Lemmas 2.4 and 2.5, p > [ is a (resp. minimal) prime ideal of A > I.
Hence, d(pr<aI) C pxI. Let a € p. Then, (a,a) € p<I. Thus, (6(a),d(a)) = d(a,a) € pr< I, and so
0(a) € p. Hence, 0(p) C p.

(<) Let d be a derivation on A < I. Following Proposition 2.3, there exist a derivation §; : A — A
keeping I invariant and a derivation do : A — I such that

d(a,a+1) = (61(a),01(a +1i) +02(a+14)) forallae A, iel.

Let P be a (resp. minimal) prime ideal of A < I. Then, using Lemma 2.5, P = p < [ or P =P for some
(resp. minimal) prime ideal p of A. By hypothesis, §1(p) C p and d2(p) C p (see that I is also invariant
under Js).
Suppose that P = p < I. Then, the elements of P have the form (a,a + i) with a € p and 7 € I, and we
have

d(a,a + i) = (61(a), 01(a + i) + d2(a + i) = (61(a), 61(a) + (61(i) + d2(a + 1)) € P

since d1(a) € p and 61(i) + d2(a +4) € I. Thus, d(P) C P.
Now, suppose that P = p. The elements of P in this case have the form (a + 4,a) with a € p and i € I,
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and we have

dla+i,a) = (01(a+1),1(a)+ d2(a))
= (61(a) + 62(a) + (61(i) — 62(a)), 61(a) + b2(a)) € P
since 01(a) + d2(a) € p and 0, (i) — d2(a) € I. Again, d(P) C P. O

As consequences of the above theorem, we have the following corollaries.

Corollary 2.7. Let A be a semiprime ring and I be a prime ideal of A. The following are equivalent:
1. d(P) C P holds for any prime ideal P of A< I and for any derivation d of A< 1.
2. 5(p) C p holds for any prime ideal p of A and for any derivation §.

Corollary 2.8. Let A be a semiprime ring and I be a minimal prime ideal of A. The following are
equivalent:

1. d(P) C P holds for any minimal prime ideal P of A1 and for any derivation d of A< 1.

2. §(p) C p holds for any minimal prime ideal p of A and for any derivation §.
Corollary 2.9. Let A be a prime ring and I an ideal of A. Then, d(P) C P holds for any minimal
prime ideal P of A1 and for any derivation d of A< .

Proof: Follows immediately from Theorem 2.6 since the only minimal prime ideal of A is (0) which is
always invariant under any derivation on A (in particular under those keeping I invariant). O

3. (Jordan) derivations on amalgamated duplication of a ring along an ideal

Proposition 3.1. Let A be a ring, I be an ideal of A, and d : A I — A< I be an additive map.
Then, d is a Jordan derivation if and only if

1. di and ds are Jordan derivations.

2. si(aoi)=aosk(i) and s;(i?) =0 for allk =1,2, a € A and i,j € I.

Proof: Let R and T be rings and let § be a homomorphism of T into R. it’s easy to check that if
d:T — Ris a Jordan (6, 0)-derivation then for all z,y € T we have

d(zoy) = d(z) o 0(y) +0(x) o d(y).

(=) From Lemma 2.1, 71 o d is a Jordan (71, 71)-derivation and 75 o d is a Jordan (s, 72)-derivation.
Hence, for all a € A, we have
di(a®) = mod(a? a?)

= mo d((a, a)(a, a))

= mod(a,a)a+ am od(a,a)

= di(a)a + adi(a).
Hence, d; is Jordan derivation. Similarly, we obtain that ds is a Jordan derivation.
Let a € A and i € I. We have

si(aoi) = m1(d(0,a01))

71 (d((a,a) 0 (0,7)))
= mi(d(a,a))om(0,i) + m1(a,a) o m (d(0,7))

= aosi(i).
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Moreover, for all i € I, we have

51(4%) = m0d(0,4%)
= m10d((0,4)(0,7))
= mod(0,4)m1(0,7) + m1(0,4)m; 0d(0,1)
= 0.

Similarly, so satisfies the same conditions.
(<) As in the proof of Proposition 2.2, for all a € A and i € I, we have

mod(a,a+1) =di(a)+s1(i) and maod(a,a+ i) =da(a+1i)— sa(i).

Using Lemma 2.1, we have to prove that m; o d is a Jordan (mq, 7 )-derivation and 72 o d is a Jordan
(g, ma)-derivation. Let a € A and i € I. We have

miod((a,a+1)?) = m od(a®, a®+ ai +ia+ %)
= di(a®) +s1(aoi+i?)
= di(a)oa+aosi(i)
= (di(a) +51(1)) oa
m od(a,a+ i)mi(a,a + i)+ mi(a,a +i)m o d(a,a + ).

and, since 0 = 2s9(i%) = s2(i 04) = 52(i) 0 i = is9(i) + s2(i)i, we get

mood((a,a+1)?) = myod(a? (a+1i)?)
= do((a+1)?) —sa(aoi+i?)
= dala+i)(a+1i)+ (a+i)da(a+i)—aosa(i)
= (da(a+1i)—s2(i))(a+1)+ (a+1i)(de(a+1i) — s2(i))
= myod(a,a+)ma(a,a+1i)+ m(a,a+ )2 0d(a,a+1).

Hence, we have the desired result. O

Lemma 3.2. Let A be a ring and I be an ideal of A. Then,
1. A< I is prime if and only if I = (0) and A is prime.
2. Anx [ is semiprime if and only if A is semiprime.

3. A<l is 2-torsion free if and only if A is 2-torsion free.

Proof: (1) Suppose that A < I is prime. Hence, {(0,0)} is a prime ideal of A b I. Thus, by Lemma
2.5,0x I C{(0,0)} or I x0C {(0,0)}. In the both cases, I = (0). By Lemma 2.5, {(0,0)} = p < (0) for
some prime ideal of A. Hence, p = (0) is a prime ideal of A, and so A prime. Conversely, if I = (0) and
A is prime then {(0,0)} = (0) b< (0) is a prime ideal of A< I, and then A< is prime.
(2) Suppose that A a I is semiprime and let ¢ € A with ara = 0 for all v € A. Then, (a,a)(r,r+7)(a,a) =
(0,0) for all r € A and all j € I. Hence, (a,a) = (0,0), and so a = 0. Thus, A is semiprime.
Conversely, suppose that A is semiprime and let a € A and i € I with (a,a+4)(r,7+j)(a,a+1i) = (0,0)
for all r € A and j € I. Then, ara =0 for all » € A, and then a = 0. Now, we have i(r + j)i = 0 for all
r € A and j € I. Which means that ¢ri = 0 for all » € A. Then, i = 0. Hence, A< [ is prime.
(3) Trivial.

O

Corollary 3.3. Let A be a 2-torsion free semiprime ring, I be an ideal of A, and s : I — A be an additive
map. Then,
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1. if s(aoi) =aos(i) and 5(i®) =0 for alla € A and i € I then s = 0.

2. if there exists a derivation d on A such that s(aoi) = d(a)oi+aos(i) and s(i?) = s(i) o for all
ac Aandiecl then d and s coincide on 1.

Proof: (1) Consider the additive map d : A< I — A< I defined by d(a,a + 1) = (s(i), s(i)). For all
a€ Aandi€ I, we have

d((a,a +1)?) (s(aoi+i?),s(aoci+i?))
= (aos(i),aos(i))

(s(2),s(i))(a, a +14) + (@, a + ) (s(2), (7))
= d(a,a+1i)(a,a+1)+ (a,a+i)d(a,a+1).
since s(i) o i = s(2i%2) = 0. Hence, d is a Jordan derivation on A 1 I. But A < I is a 2-torsion free
semiprime ring (by Lemma 3.2). Thus, by [4, Theorem 1], d is a derivation. So, by Proposition 2.3, 0 x [
is d-invariant. Hence, for all i € I, d(0,4) = (s(i),s(i)) € 0 x I, and so s = 0.
(2) Set ' :==s—d: I — A. Foralla € A and i € I, we have

s'(aoi) = s(aoi)—d(aoi)=d(a)oi+aos(i)—d(a)oi—aod()
= aos(i)—aod(i)=aos'(i)
and
s'(i%) = s(i%) — d(i?) = 5(2i%) — s(i%) — d(i®) = s(i 0d) —i 0 s(i) — d(i) 0 i = 0.

Hence, from (1), s’ = 0, and so s(i) = d(i) for all i € I. O

Theorem 3.4. Let A be a non commutative prime ring and I be a nonzero ideal. If d is both a Jordan
derivation and a Jordan triple derivation of Al then d is a derivation.

Proof: When the characteristic of A is different of 2, the result follows from by [4, Theorem 1] and
Lemma 3.2. Hence, suppose that A is of characteristic two. Also, if I = (0), then A > (0) = A (following
the isomorphism (a,a) — a). In this case, the result follows immediately from [12, Theorem 4.1]. Thus,
we may suppose I # (0). From Proposition 3.1, d; and ds are Jordan derivations and, for £ = 1,2 and
for all a € A and i € I, we have sg(aoi) = ao s(i) and si(i?) = 0. Now, let a,b € A, we have
dqi(aba) = 1 od(aba,aba)
= mod((a,a)(bb)(a,a))
= m (d(a,a)(ba, ba) + (a,a)d(b, b)(a,a) + (a,a)(b,b)d(a, a))
= m od(a,a)ba+ am od(b,b)a+ abmy o d(a,a)
dy(a)ba + ady (b)a + abdy(a).
Hence, d; is also a Jordan triple derivation. Similarly, ds is a Jordan triple derivation. Hence, since A is
non commutative prime, d; and dy are derivations (by [12, Theorem 4.1]).
Let i,5 € I. We have
s1(iji) = mod(0,iji)
m1 0 d((0,4)(0,4)(0,7))
= m1(d(0,4)(0,57) + (0,4)d(0, 7)(0,%) + (0,4)d(0, 7))
0

Also,
s1(iji) = m1od(0,iji)
m1 0 d((i,4)(0,)(,4))
1 (d(i,)(0, ji) + (i,4)d(0, §)(i, 1) + (0,15)d(i, 1))
= im1(d(0,7))i

= is1(j)i.
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Hence,
0 =s1(iji) = is1(j)i  foralli,je I (3.1)

By analogy s, satisfies the same condition.
For k = 1,2, by linearizing the condition ”s;(i?) = 0 for all i € I”, we obtain

sp(ioj)=0 foralli,jel. (3.2)
Hence,
tasg(j) + sk(j)ia = iaosp(j) = sk (faoj) =0 foralli,jel, ac A (3.3)
Then,
i(aosk(j) +(iosk(y)a=0 foralli,jel, ac A (3.4)
But i 0 sx(j) = si(ioj) = 0. Hence,
i(aosk(y) =0 foralli,jel, ac A (3.5)
So,
ir(aosk(j) =0 foralli,jel, a,reA. (3.6)
Since A is prime, we get that
i=0 or aosk(j)=0 foralli,jel, acA. (3.7)
But I # (0), and then
aosp(j)=0 foralljel, acA. (3.8)

which means that s(j) € Z(A) for all j € I since A is of characteristic two.
Thus, (3.1) means that
sk(j)i? =0 foralli,jel. (3.9)

Thus, since s(j) € Z(A) for all j € I, we have
sk(j)=0 or i*=0 foralli,jel. (3.10)

If i =0 for all i € I, then 0 = ij + ji = ij — ji for all 4,j € I. Hence, for all i € I and r € A, we have
iri = i(ri) = (ri)i = ri> = 0. Thus, i = 0 for all i € I since A is prime. But I # 0, and so there exists
i € I such that i? # 0. Consequently, by (3.10), sx(j) = 0 for all j € I. Seen Proposition 2.2, d is a
derivation. O
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