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(Jordan) Derivation on Amalgamated Duplication of a Ring Along an Ideal

Khalid Louartiti, Abdellah Mamouni and Mohammed Tamekkante

abstract: Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring
of A × A defined by A ⊲⊳ I := {(a, a + i) | a ∈ A, i ∈ I}. In this paper, we characterize A ⊲⊳ I over which
any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is
noncommutative prime, then A ⊲⊳ I is noncommutative semiprime (but not prime except if I = (0)). In this
case, we prove that any map of A ⊲⊳ I which is both Jordan and Jordan triple derivation is a derivation.
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1. Introduction

Throughout, A will represent an associative ring with center Z(A). By an ideal I in A, we shall always
mean a two-sided ideal of A. An ideal P of A is said to be prime if P 6= A and, for a, b ∈ A, aAb ⊆ P

implies that a ∈ P or b ∈ P . The ring A is called a prime ring if (0) is a prime ideal of A. A ring A
is called a semiprime ring if aAa = (0) implies a = 0. A ring A is said to be 2-torsion free, if whenever
2a = 0, with a ∈ A, then a = 0. The Jordan product of two elements x and y of A is x ◦ y = xy + yx.
By a derivation of A, we mean an additive map d : A→ A satisfying d(xy) = d(x)y + xd(y) for all pairs
x, y ∈ A. Given a derivation d of A, an ideal I of A is said to be invariant under d (or d-invariant for
short) if d(I) ⊆ I. It is well known that every minimal prime ideal of a torsion-free semiprime ring is
invariant under all derivations [11]. Herstein raised the following problem:

Problem. Given a semiprime ring A, does d(P ) ⊆ P hold for any minimal prime ideal P of A and for
any derivation d of A?

This problem has been often mentioned in the literature (see, for example, [3,13]). The best result of
the conjecture is the following: A ring A is said to be of bounded index m if m is a positive integer such
that xm = 0 for all nilpotent elements x ∈ A. Beidar and Mikhalev proved the theorem: Let A be a ring
of bounded index m such that the additive order of every nonzero torsion element of A, if any, is strictly
larger than m. Then all minimal prime ideals of A are invariant under all derivations of A (see [1] or [2,
Theorem 8.16]). As a special case of this, every minimal prime ideal of a reduced ring is invariant under
derivations of the ring (See [7, p. 614]). Unfortunately, this problem turns out to be false in general.
Chuang and Lee [7] constructed a semiprime ring A which possesses a minimal prime ideal not invariant
under a derivation of the ring.
Let A be a ring and I be an ideal of A. The subset of A×A defined by:

A ⊲⊳ I := {(a, a+ i) | a ∈ A, i ∈ I}

is clearly a subring of A × A, called the amalgamated duplication of A along I. The construction
A ⊲⊳ I (in the commutative case) was introduced and its basic properties were studied by D’Anna and
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Fontana (2007) in [9,10], and then it was investigated by D’Anna in [8] with the aim of applying it to
curve singularities (over algebraic closed fields) where he proved that the amalgamated duplication of an
algebroid curve along a regular canonical ideal yields a Gorenstein algebroid curve [8, Theorem 14 and
Corollary 17]. The aim of Section 2 of this paper is to characterize when the amalgamated duplication
of a semiprime ring along an ideal satisfies the Herstein’s Problem. Hence, Theorem 2.6 states that if A
is a semiprime ring and I is an ideal of A. Then, the following are equivalent:

1. d(P ) ⊆ P holds for any (resp. minimal) prime ideal P of A ⊲⊳ I and for any derivation d of A ⊲⊳ I.

2. δ(p) ⊆ p holds for any (resp. minimal) prime ideal p of A and for any derivation δ of A keeping I
invariant.

An additive map d : A → A is called a Jordan derivation if d(x2) = d(x)x + xd(x) for all x ∈ A, and
d is called a Jordan triple derivation if d(xyx) = d(x)yx + xd(y)x + xyd(x) for all x, y ∈ A. If A is
2-torsion-free, then every Jordan derivation is a Jordan triple derivation ( [4, Proposition 2]). Obviously,
every derivation is a Jordan (resp. triple) derivation. The converse is in general not true. In [5, Theorem
4.3], Bres̆ar proved that if A is 2-torsion free semiprime then every Jordan triple derivation is a deriva-
tion. Which means that derivations, Jordan derivations, and Jordan triple derivations of a 2-torsion-free
semiprime ring are the same. The case when the ring is of characteristic 2 is due to Herstein who proved
(in [12, Theorem 4.1]) that over a noncommutative ring any map which is both Jordan derivation and
Jordan triple derivation becomes a derivation. In Section 3, we extend the Herstein’s result to semiprime
rings with form A ⊲⊳ I where A is a prime noncommutative ring.

Let’s adopt the following notations:

Notations. Let A be a ring and I be an ideal of A. By π1 and π2 we denote the naturel surjections of
A ⊲⊳ I into A defined by

π1(a, a+ i) = a and π2(a, a+ i) = a+ i for all a ∈ A, i ∈ I.

For an additive map d : A ⊲⊳ I → A ⊲⊳ I, we consider the maps di=1,2 : A→ A and si=1,2 : I → A defined
by

d1(a) = π1 ◦ d(a, a), d2(a) = π2 ◦ d(a, a), s1(i) = π1 ◦ d(0, i), s2(i) = π2 ◦ d(i, 0)

for all a ∈ A and i ∈ I. It is clear that d1, d2, s1, and s2 are all additive.

2. Semiprime amalgamated duplication of a ring along an ideal with prime ideals
invariant under derivations

In this section, we characterize the derivations of A ⊲⊳ I, specially when A is a semiprime ring. Our aim
is to see when every (minimal) prime ideal of A ⊲⊳ I is invariant under any derivation on A ⊲⊳ I.

Let R and T be rings and let θ and φ be homomorphisms of T into R. Let X be an R-bimodule.
Following [6], an additive mapping d : T → X is called a (θ, φ)-derivation (resp. a Jordan (θ, φ)-
derivation) if d(xy) = d(x)φ(y) + θ(x)d(y), for all x, y ∈ T (resp. if d(x2) = d(x)φ(x) + θ(x)d(x), for all
x ∈ T ).
Suppose that d : T → T is a (resp. Jordan) derivation. Then, θ ◦ d is a (resp. Jordan) (θ, θ)-derivation.
Indeed, θ ◦ d is clearly additive, and for all x, y ∈ T , we have

θ ◦ d(xy) = θ(d(x)y + xd(y)) = θ ◦ d(x)θ(y) + θ(x)θ ◦ d(y)

(

resp.θ ◦ d(x2) = θ(d(x)x + xd(x)) = θ ◦ d(x)θ(x) + θ(x)θ ◦ d(x)
)

.

We start with the following lemma.

Lemma 2.1. Let A be a ring and I be an ideal of A. A map d : A ⊲⊳ I → A ⊲⊳ I is a (resp. Jordan)
derivation if and only if π1 ◦ d is a (resp. Jordan) (π1, π1)-derivation and π2 ◦ d is a (resp. Jordan)
(π2, π2)-derivation.
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Proof: (⇒) Clear.
(⇐) It is clear that, for all a ∈ A and i ∈ I, we have

d(a, a+ i) =
(

π1 ◦ d(a, a+ i), π2 ◦ d(a, a+ i)
)

.

Hence, if π1 ◦ d and π2 ◦ d are additive then so is d.
Suppose that π1 ◦d is a (π1, π1)-derivation and π2 ◦d is a (π2, π2)-derivation. For all a, b ∈ A and i, j ∈ I
we have

d
(

(a, a+ i)(b, b+ j)
)

=
(

π1 ◦ d
(

(a, a+ i)(b, b+ j)
)

, π2 ◦ d
(

(a, a+ i)(b, b+ j)
))

=
(

π1 ◦ d(a, a+ i)π1(b, b+ j) + π1(a, a+ i)π1 ◦ d(b, b+ j),

π2 ◦ d(a, a+ i)π2(b, b+ j) + π2(a, a+ i)π2 ◦ d(b, b+ j)
)

=
(

π1 ◦ d(a, a+ i)b+ aπ1 ◦ d(b, b+ j), π2 ◦ d(a, a+ i)(b+ j)

+(a+ i)π2 ◦ d(b, b+ j)
)

=
(

π1 ◦ d(a, a+ i), π2 ◦ d(a, a+ i)
)

(b, b+ j)

+(a, a+ i)
(

π1 ◦ d(b, b+ j), π2 ◦ d(b, b+ j)
)

= d(a, a+ i)(b, b+ j) + (a, a+ i)d(b, b+ j).

Hence, d is a derivation.
By the same way, we show that if π1 ◦ d is a Jordan (π1, π1)-derivation and π2 ◦ d is a Jordan (π2, π2)-
derivation then d is a Jordan derivation. ✷

The next result gives the necessary and sufficient conditions for an additive map d from A ⊲⊳ I into itself
to be a derivation.

Proposition 2.2. Let A be a ring, I be an ideal of A, and d : A ⊲⊳ I → A ⊲⊳ I be an additive map.
Then, d is a derivation if and only if

1. d1 and d2 are derivations.

2. sk(ai) = ask(i), sk(ia) = sk(i)a, and sk(ij) = 0 for k = 1, 2 and for all a ∈ A and i, j ∈ I.

Proof: (⇒) From Lemma 2.1, π1 ◦ d is a (π1, π1)-derivation and π2 ◦ d is a (π2, π2)-derivation. Hence,
for all a ∈ A, we have

d1(ab) = π1 ◦ d(ab, ab)

= π1 ◦ d
(

(a, a)(b, b)
)

= π1 ◦ d(a, a)b + aπ1 ◦ d(b, b)

= d1(a)b+ ad1(b).

Hence, d1 is derivation. Similarly, we obtain that d2 is a derivation.
Let a ∈ A and i ∈ I. We have

s1(ai) = π1 ◦ d(0, ai)

= π1 ◦ d
(

(a, a)(0, i)
)

= π1 ◦ d(a, a)π1(0, i) + π1(a, a)π1 ◦ d(0, i)

= as1(i).

Similarly, s1(ia) = s1(i)a. Now, for all i, j ∈ I, we have

s1(ij) = π1 ◦ d(0, ij)

= π1 ◦ d
(

(0, i)(0, j)
)

= π1 ◦ d(0, i)π1(0, j) + π1(0, i)π1 ◦ d(0, j)

= 0.
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By the same argument, we prove that s2 satisfies the same conditions.
(⇐) For all a ∈ A and i ∈ I we have

π1 ◦ d(a, a+ i) = π1 ◦ d(a, a) + π1 ◦ d(0, i) = d1(a) + s1(i).

and
π2 ◦ d(a, a+ i) = π2 ◦ d(a+ i, a+ i)− π2 ◦ d(i, 0) = d2(a+ i)− s2(i).

By Lemma 2.1, we have to prove that π1 ◦ d is a (π1, π1)-derivation and π2 ◦ d is a (π2, π2)-derivation.
Let a, b ∈ A and i, j ∈ I. We have

π1 ◦ d
(

(a, a+ i)(b, b+ j)
)

= π1 ◦ d(ab, ab+ aj + ib+ ij)

= d1(ab) + s1(aj + ib+ ij)

= d1(a)b+ ad1(b) + as1(j) + s1(i)b

=
(

d1(a) + s1(i)
)

b+ a
(

d1(b) + s1(j)
)

= π1 ◦ d(a, a+ i)π1(b, b+ j)

+π1(a, a+ i)π1 ◦ d(b, b+ j)

and, since 0 = s2(ij) = s2(i)j = is2(j), we get

π2 ◦ d
(

(a, a+ i)(b, b+ j)
)

= π2 ◦ d(ab, ab+ aj + ib+ ij)

= d2
(

(a+ i)(b+ j)
)

− s2(aj + ib+ ij)

= d2(a+ i)(b+ j) + (a+ i)d2(b+ j)

−as2(j)− s2(i)b

=
(

d2(a+ i)− s2(i)
)

(b+ j)

+(a+ i)
(

d2(b + j)− s2(j)
)

= π2 ◦ d(a, a+ i)π2(b, b+ j)

+π2(a, a+ i)π2 ◦ d(b, b+ j)

Hence, we have the desired result. ✷

Next, we characterize the derivations of A ⊲⊳ I when A is a semiprime ring.

Proposition 2.3. Let A be a semiprime ring, I be an ideal of A, and d : A ⊲⊳ I → A ⊲⊳ I be an additive
map. Then, the following are equivalent:

1. d is a derivation

2. d1 and d2 are derivations and the ideals 0× I and I × 0 of A ⊲⊳ I are d-invariant.

3. there exist a derivation δ1 : A→ A keeping I invariant and a derivation δ2 : A→ I such that

d(a, a+ i) = (δ1(a), δ1(a+ i) + δ2(a+ i)) for all a ∈ A, i ∈ I.

Proof: (1) ⇒ (2) From Proposition 2.2, we have sk(ai) = ask(i), sk(ia) = sk(i)a, and sk(ij) = 0 for
k = 1, 2 and for all a ∈ A and i, j ∈ I. Then, for any i ∈ I , we have

sk(i)ask(i) = sk(i)sk(ai) = sk (isk(ai)) = sk (sk(iai)) = 0 for all a ∈ A.

Thus, since A is semiprime, we have that sk(i) = 0 for all i ∈ I. Hence, for all i ∈ I, we have π1◦d(0, i) = 0
and π2 ◦ d(i, 0) = 0. So, d(0, i) = (0, r) ∈ A ⊲⊳ I and d(i, 0) = (r′, 0) ∈ A ⊲⊳ I. Consequently, r, r′ ∈ I,
d(0, i) ∈ 0× I, and d(i, 0) ∈ I × 0.



(Jordan) Derivation on Amalgamated Duplication of a Ring Along an Ideal 5

(2) ⇒ (3) Since 0 × I and I × 0 are d-invariant, we have clearly s1 = s2 = 0. Thus, for all a ∈ A and
i ∈ I, we have

d(a, a+ i) = (d1(a), d2(a+ i)).

Set δ1 = d1 and δ2 = d2 − d1. For all i ∈ I, we have δ1(i) = π1 ◦ d(i, i) = π1 ◦ d(i, 0) + π1 ◦ d(0, i) =
π1 ◦ d(i, 0) ∈ I. Hence, I is δ1-invariant. Set d(a, a) = (b, b+ j) for some b ∈ A and j ∈ I. We have

δ2(a) = d2(a)− d1(a) = π2 ◦ d(a, a)− π1 ◦ d(a, a) = (b+ j)− b = j ∈ I.

Then, δ2(A) ⊆ I.
(3) ⇒ (1) Suppose that

d(a, a+ i) = (δ1(a), δ1(a+ i) + δ2(a+ i)) for all a ∈ A, i ∈ I

with δ1 : A → A is a derivation keeping I invariant and δ2 : A → I is a derivation. Firstly, d is well
defined. Indeed, for all a ∈ A and i ∈ I, we have

(δ1(a+ i) + δ2(a+ i))− δ1(a) = δ1(i) + δ2(a+ i) ∈ I.

A simple check shows that such d is a derivation. ✷

We need the following lemmas.

Lemma 2.4. Let p be a prime ideal of A. Then,

p ⊲⊳ I := {(a, a+ i) | a ∈ p, i ∈ I}

and
p := {(a+ i, a) | a ∈ p, i ∈ I}

are prime ideals of A ⊲⊳ I.

Proof: Clearly p ⊲⊳ I and p are ideals of A ⊲⊳ I. Moreover, the mappings ψ : A⊲⊳I
p⊲⊳I

→ A
p
and ϕ : A⊲⊳I

p
→ A

p

defined by ψ
(

(a, a+ i)
)

= a and ϕ
(

(a, a+ i)
)

= a+ i are a well defined isomorphisms of rings. Then,

since p is prime, A
p

is a prime ring and so are A⊲⊳I
p⊲⊳I

and A⊲⊳I
p

. Then, p ⊲⊳ I and p are prime ideals of
A ⊲⊳ I. ✷

Lemma 2.5. Let P be a prime ideal of A ⊲⊳ I. Then, 0× I ⊆ P or I × 0 ⊆ P . Moreover,

1. If 0× I ⊆ P then there exists a prime ideal p of A such that

P = p ⊲⊳ I := {(a, a+ i) | a ∈ p, i ∈ I}.

2. If I × 0 ⊆ P then there exists a prime ideal p of A such that

P = p := {(a+ i, a) | a ∈ p, i ∈ I}.

In the both cases, P is minimal if and only if p is minimal.

Proof: Suppose that 0× I 6⊆ P . Then, there exists i0 ∈ I such that (0, i0) 6∈ P . However, for any i, j ∈ I

and a ∈ A, we have (i, 0)(a, a+ j)(0, i0) = (0, 0) ∈ P . Hence, (i, 0) ∈ P for all i ∈ I. Thus, I × 0 ⊆ P .
(1) Set p = π1(P ). It is clear that p is an ideal of A (since π1 is surjective). Let a, b ∈ A with arb ∈ p

for all r ∈ A. Then, for each r there exists ir ∈ I such that (arb, arb + ir) ∈ P . Then, for all j ∈ I,
(arb, a(r + j)b) = (arb, arb + ir) + (0, ajb − ir) ∈ P since 0 × I ⊆ P . Thus, (a, a)(r, r + j)(b, b) ∈ P .
Hence, (a, a) ∈ P or (b, b) ∈ P . Then, a ∈ p or b ∈ p. So, p is prime.
Clearly, we have P ⊆ p ⊲⊳ I. For the reverse inclusion, let a ∈ p. There exists i ∈ I such that (a, a+i) ∈ P .
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Hence, for all j ∈ I, we have (a, a+ j) = (a, a+ i) + (0, j − i) ∈ P . Then, P = p ⊲⊳ I.
(2) Set p = π2(P ). It is clear that p is an ideal of A (since π2 is surjective). Let a, b ∈ A with
arb ∈ p for all r ∈ A. Then, for each r there exists ir ∈ I such that (arb + ir, arb) ∈ P . Then, for
all j ∈ I, (arb, a(r + j)b) = (a(r + j)b + ir+j, a(r + j)b) − (ir+j + ajb, 0) ∈ P since I × 0 ⊆ P . Thus,
(a, a)(r, r + j)(b, b) ∈ P . Then, (a, a) ∈ P or (b, b) ∈ P . Hence, a ∈ p or b ∈ p. So, p is prime.
Clearly, P ⊆ p. Now, let a ∈ p. There exists i ∈ i such that (a+ i, a) ∈ P . Hence, for all j ∈ I, we have
(a+ j, a) = (a+ i, a) + (j − i, 0) ∈ P . Then, P = p.
For the last statement, Let p be a prime ideal of A.
Suppose that P = p ⊲⊳ I is minimal prime and let q be a prime ideal of A with q ⊆ p. Easily, we can
see that q ⊲⊳ I ⊆ p ⊲⊳ I = P . Since q ⊲⊳ I is prime (by Lemma 2.4), we have P = q ⊲⊳ I, and so
p = π1 (q ⊲⊳ I) = q.
Conversely, suppose that p is minimal prime, and let Q be a prime ideal of A ⊲⊳ I with Q ⊆ P . If 0×I ⊆ Q

then Q = q ⊲⊳ I for some prime ideal q of A, and so we get q ⊆ p which means that q = p, and then
Q = P . Now, if I×0 ⊆ Q then Q = q for some prime ideal q of A. Hence, q ⊆ q+I = π1(Q) ⊆ π1(P ) = p,
and then I ⊆ q = p. Hence,

Q = q = {(a+ i, a) | a ∈ q, i ∈ I} = {(a, a+ i) | a ∈ q, i ∈ I} = q ⊲⊳ I = P.

Now, suppose that P = p is minimal prime, and let q be a prime ideal of A such that q ⊆ p. Then,
q ⊆ p = P . Then, q = p. Hence, p = q. Therefore, p is minimal.
Conversely, suppose that p is minimal and and let Q be a prime ideal of A ⊲⊳ I with Q ⊆ P = p. If
0 × I ⊆ Q then Q = q ⊲⊳ I for some prime ideal q of A. Then, π2(Q) ⊆ π2(P ) means that q + I ⊆ p.
Hence, I ⊆ q = p. So,

Q = {(a, a+ i) | a ∈ q, i ∈ I} = {(a+ i, a) | a ∈ q, i ∈ I} = q = P.

If I × 0 ⊆ Q then Q = q for some prime ideal q of A. Hence, q ⊆ p, and so q = p. Then, Q = P . ✷

The main result of this section is as follows:

Theorem 2.6. Let A be a semiprime ring and I be an ideal of A. The following are equivalent:

1. d(P ) ⊆ P holds for any (resp. minimal) prime ideal P of A ⊲⊳ I and for any derivation d of A ⊲⊳ I.

2. δ(p) ⊆ p holds for any (resp. minimal) prime ideal p of A and for any derivation δ of A keeping I
invariant.

Proof: (⇒) Let δ be a derivation on A with δ(I) ⊆ I. Then, by Proposition 2.3, the additive map
d : A ⊲⊳ I → A ⊲⊳ I defined by d(a, a + i) = (δ(a), δ(a + i)) is a derivation on A ⊲⊳ I. Let p be a (resp.
minimal) prime ideal of A. By Lemmas 2.4 and 2.5, p ⊲⊳ I is a (resp. minimal) prime ideal of A ⊲⊳ I.
Hence, d(p ⊲⊳ I) ⊆ p ⊲⊳ I. Let a ∈ p. Then, (a, a) ∈ p ⊲⊳ I. Thus, (δ(a), δ(a)) = d(a, a) ∈ p ⊲⊳ I, and so
δ(a) ∈ p. Hence, δ(p) ⊆ p.
(⇐) Let d be a derivation on A ⊲⊳ I. Following Proposition 2.3, there exist a derivation δ1 : A → A

keeping I invariant and a derivation δ2 : A→ I such that

d(a, a+ i) = (δ1(a), δ1(a+ i) + δ2(a+ i)) for all a ∈ A, i ∈ I.

Let P be a (resp. minimal) prime ideal of A ⊲⊳ I. Then, using Lemma 2.5, P = p ⊲⊳ I or P = p for some
(resp. minimal) prime ideal p of A. By hypothesis, δ1(p) ⊆ p and δ2(p) ⊆ p (see that I is also invariant
under δ2).
Suppose that P = p ⊲⊳ I. Then, the elements of P have the form (a, a+ i) with a ∈ p and i ∈ I, and we
have

d(a, a+ i) = (δ1(a), δ1(a+ i) + δ2(a+ i)) =
(

δ1(a), δ1(a) + (δ1(i) + δ2(a+ i))
)

∈ P

since δ1(a) ∈ p and δ1(i) + δ2(a+ i) ∈ I. Thus, d(P ) ⊆ P .
Now, suppose that P = p. The elements of P in this case have the form (a+ i, a) with a ∈ p and i ∈ I,
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and we have

d(a+ i, a) = (δ1(a+ i), δ1(a) + δ2(a))

=
(

δ1(a) + δ2(a) + (δ1(i)− δ2(a)), δ1(a) + δ2(a)
)

∈ P

since δ1(a) + δ2(a) ∈ p and δ1(i)− δ2(a) ∈ I. Again, d(P ) ⊆ P . ✷

As consequences of the above theorem, we have the following corollaries.

Corollary 2.7. Let A be a semiprime ring and I be a prime ideal of A. The following are equivalent:

1. d(P ) ⊆ P holds for any prime ideal P of A ⊲⊳ I and for any derivation d of A ⊲⊳ I.

2. δ(p) ⊆ p holds for any prime ideal p of A and for any derivation δ.

Corollary 2.8. Let A be a semiprime ring and I be a minimal prime ideal of A. The following are
equivalent:

1. d(P ) ⊆ P holds for any minimal prime ideal P of A ⊲⊳ I and for any derivation d of A ⊲⊳ I.

2. δ(p) ⊆ p holds for any minimal prime ideal p of A and for any derivation δ.

Corollary 2.9. Let A be a prime ring and I an ideal of A. Then, d(P ) ⊆ P holds for any minimal
prime ideal P of A ⊲⊳ I and for any derivation d of A ⊲⊳ I.

Proof: Follows immediately from Theorem 2.6 since the only minimal prime ideal of A is (0) which is
always invariant under any derivation on A (in particular under those keeping I invariant). ✷

3. (Jordan) derivations on amalgamated duplication of a ring along an ideal

Proposition 3.1. Let A be a ring, I be an ideal of A, and d : A ⊲⊳ I → A ⊲⊳ I be an additive map.
Then, d is a Jordan derivation if and only if

1. d1 and d2 are Jordan derivations.

2. sk(a ◦ i) = a ◦ sk(i) and sk(i
2) = 0 for all k = 1, 2, a ∈ A and i, j ∈ I.

Proof: Let R and T be rings and let θ be a homomorphism of T into R. it’s easy to check that if
d : T → R is a Jordan (θ, θ)-derivation then for all x, y ∈ T we have

d(x ◦ y) = d(x) ◦ θ(y) + θ(x) ◦ d(y).

(⇒) From Lemma 2.1, π1 ◦ d is a Jordan (π1, π1)-derivation and π2 ◦ d is a Jordan (π2, π2)-derivation.
Hence, for all a ∈ A, we have

d1(a
2) = π1 ◦ d(a

2, a2)

= π1 ◦ d
(

(a, a)(a, a)
)

= π1 ◦ d(a, a)a+ aπ1 ◦ d(a, a)

= d1(a)a+ ad1(a).

Hence, d1 is Jordan derivation. Similarly, we obtain that d2 is a Jordan derivation.
Let a ∈ A and i ∈ I. We have

s1(a ◦ i) = π1 (d(0, a ◦ i))

= π1 (d((a, a) ◦ (0, i)))

= π1(d(a, a)) ◦ π1(0, i) + π1(a, a) ◦ π1 (d(0, i))

= a ◦ s1(i).
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Moreover, for all i ∈ I, we have

s1(i
2) = π1 ◦ d(0, i

2)

= π1 ◦ d ((0, i)(0, i))

= π1 ◦ d(0, i)π1(0, i) + π1(0, i)π1 ◦ d(0, i)

= 0.

Similarly, s2 satisfies the same conditions.
(⇐) As in the proof of Proposition 2.2, for all a ∈ A and i ∈ I, we have

π1 ◦ d(a, a+ i) = d1(a) + s1(i) and π2 ◦ d(a, a+ i) = d2(a+ i)− s2(i).

Using Lemma 2.1, we have to prove that π1 ◦ d is a Jordan (π1, π1)-derivation and π2 ◦ d is a Jordan
(π2, π2)-derivation. Let a ∈ A and i ∈ I. We have

π1 ◦ d((a, a+ i)2) = π1 ◦ d(a
2, a2 + ai+ ia+ i2)

= d1(a
2) + s1(a ◦ i+ i2)

= d1(a) ◦ a+ a ◦ s1(i)

= (d1(a) + s1(i)) ◦ a

= π1 ◦ d(a, a+ i)π1(a, a+ i) + π1(a, a+ i)π1 ◦ d(a, a+ i).

and, since 0 = 2s2(i
2) = s2(i ◦ i) = s2(i) ◦ i = is2(i) + s2(i)i, we get

π2 ◦ d((a, a+ i)2) = π2 ◦ d(a
2, (a+ i)2)

= d2
(

(a+ i)2
)

− s2(a ◦ i+ i2)

= d2(a+ i)(a+ i) + (a+ i)d2(a+ i)− a ◦ s2(i)

= (d2(a+ i)− s2(i))(a+ i) + (a+ i)(d2(a+ i)− s2(i))

= π2 ◦ d(a, a+ i)π2(a, a+ i) + π2(a, a+ i)π2 ◦ d(a, a+ i).

Hence, we have the desired result. ✷

Lemma 3.2. Let A be a ring and I be an ideal of A. Then,

1. A ⊲⊳ I is prime if and only if I = (0) and A is prime.

2. A ⊲⊳ I is semiprime if and only if A is semiprime.

3. A ⊲⊳ I is 2-torsion free if and only if A is 2-torsion free.

Proof: (1) Suppose that A ⊲⊳ I is prime. Hence, {(0, 0)} is a prime ideal of A ⊲⊳ I. Thus, by Lemma
2.5, 0× I ⊆ {(0, 0)} or I × 0 ⊆ {(0, 0)}. In the both cases, I = (0). By Lemma 2.5, {(0, 0)} = p ⊲⊳ (0) for
some prime ideal of A. Hence, p = (0) is a prime ideal of A, and so A prime. Conversely, if I = (0) and
A is prime then {(0, 0)} = (0) ⊲⊳ (0) is a prime ideal of A ⊲⊳ I, and then A ⊲⊳ I is prime.
(2) Suppose that A ⊲⊳ I is semiprime and let a ∈ A with ara = 0 for all r ∈ A. Then, (a, a)(r, r+j)(a, a) =
(0, 0) for all r ∈ A and all j ∈ I. Hence, (a, a) = (0, 0), and so a = 0. Thus, A is semiprime.
Conversely, suppose that A is semiprime and let a ∈ A and i ∈ I with (a, a+ i)(r, r+ j)(a, a+ i) = (0, 0)
for all r ∈ A and j ∈ I. Then, ara = 0 for all r ∈ A, and then a = 0. Now, we have i(r + j)i = 0 for all
r ∈ A and j ∈ I. Which means that iri = 0 for all r ∈ A. Then, i = 0. Hence, A ⊲⊳ I is prime.
(3) Trivial.

✷

Corollary 3.3. Let A be a 2-torsion free semiprime ring, I be an ideal of A, and s : I → A be an additive
map. Then,
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1. if s(a ◦ i) = a ◦ s(i) and s(i2) = 0 for all a ∈ A and i ∈ I then s = 0.

2. if there exists a derivation d on A such that s(a ◦ i) = d(a) ◦ i+ a ◦ s(i) and s(i2) = s(i) ◦ i for all
a ∈ A and i ∈ I then d and s coincide on I.

Proof: (1) Consider the additive map d : A ⊲⊳ I → A ⊲⊳ I defined by d(a, a + i) = (s(i), s(i)). For all
a ∈ A and i ∈ I, we have

d((a, a+ i)2) = (s(a ◦ i + i2), s(a ◦ i+ i2))

= (a ◦ s(i), a ◦ s(i))

= (s(i), s(i))(a, a+ i) + (a, a+ i)(s(i), s(i))

= d(a, a+ i)(a, a+ i) + (a, a+ i)d(a, a+ i).

since s(i) ◦ i = s(2i2) = 0. Hence, d is a Jordan derivation on A ⊲⊳ I. But A ⊲⊳ I is a 2-torsion free
semiprime ring (by Lemma 3.2). Thus, by [4, Theorem 1], d is a derivation. So, by Proposition 2.3, 0× I
is d-invariant. Hence, for all i ∈ I, d(0, i) = (s(i), s(i)) ∈ 0× I, and so s = 0.
(2) Set s′ := s− d : I → A. For all a ∈ A and i ∈ I, we have

s′(a ◦ i) = s(a ◦ i)− d(a ◦ i) = d(a) ◦ i+ a ◦ s(i)− d(a) ◦ i− a ◦ d(i)

= a ◦ s(i)− a ◦ d(i) = a ◦ s′(i)

and
s′(i2) = s(i2)− d(i2) = s(2i2)− s(i2)− d(i2) = s(i ◦ i)− i ◦ s(i)− d(i) ◦ i = 0.

Hence, from (1), s′ = 0, and so s(i) = d(i) for all i ∈ I. ✷

Theorem 3.4. Let A be a non commutative prime ring and I be a nonzero ideal. If d is both a Jordan
derivation and a Jordan triple derivation of A ⊲⊳ I then d is a derivation.

Proof: When the characteristic of A is different of 2, the result follows from by [4, Theorem 1] and
Lemma 3.2. Hence, suppose that A is of characteristic two. Also, if I = (0), then A ⊲⊳ (0) ∼= A (following
the isomorphism (a, a) 7→ a). In this case, the result follows immediately from [12, Theorem 4.1]. Thus,
we may suppose I 6= (0). From Proposition 3.1, d1 and d2 are Jordan derivations and, for k = 1, 2 and
for all a ∈ A and i ∈ I, we have sk(a ◦ i) = a ◦ sk(i) and sk(i

2) = 0. Now, let a, b ∈ A, we have

d1(aba) = π1 ◦ d(aba, aba)

= π1 ◦ d ((a, a)(b, b)(a, a))

= π1 (d(a, a)(ba, ba) + (a, a)d(b, b)(a, a) + (a, a)(b, b)d(a, a))

= π1 ◦ d(a, a) ba+ aπ1 ◦ d(b, b)a+ abπ1 ◦ d(a, a)

= d1(a)ba+ ad1(b)a+ abd1(a).

Hence, d1 is also a Jordan triple derivation. Similarly, d2 is a Jordan triple derivation. Hence, since A is
non commutative prime, d1 and d2 are derivations (by [12, Theorem 4.1]).
Let i, j ∈ I. We have

s1(iji) = π1 ◦ d(0, iji)

= π1 ◦ d((0, i)(0, j)(0, i))

= π1 (d(0, i)(0, ji) + (0, i)d(0, j)(0, i) + (0, ij)d(0, i))

= 0

Also,

s1(iji) = π1 ◦ d(0, iji)

= π1 ◦ d((i, i)(0, j)(i, i))

= π1 (d(i, i)(0, ji) + (i, i)d(0, j)(i, i) + (0, ij)d(i, i))

= iπ1(d(0, j))i

= is1(j)i.
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Hence,
0 = s1(iji) = is1(j)i for all i, j ∈ I. (3.1)

By analogy s2 satisfies the same condition.
For k = 1, 2, by linearizing the condition ”sk(i

2) = 0 for all i ∈ I”, we obtain

sk(i ◦ j) = 0 for all i, j ∈ I. (3.2)

Hence,
iask(j) + sk(j)ia = ia ◦ sk(j) = sk (ia ◦ j) = 0 for all i, j ∈ I, a ∈ A. (3.3)

Then,
i(a ◦ sk(j)) + (i ◦ sk(j))a = 0 for all i, j ∈ I, a ∈ A. (3.4)

But i ◦ sk(j) = sk(i ◦ j) = 0. Hence,

i(a ◦ sk(j)) = 0 for all i, j ∈ I, a ∈ A. (3.5)

So,
ir(a ◦ sk(j)) = 0 for all i, j ∈ I, a, r ∈ A. (3.6)

Since A is prime, we get that

i = 0 or a ◦ sk(j) = 0 for all i, j ∈ I, a ∈ A. (3.7)

But I 6= (0), and then
a ◦ sk(j) = 0 for all j ∈ I, a ∈ A. (3.8)

which means that s(j) ∈ Z(A) for all j ∈ I since A is of characteristic two.
Thus, (3.1) means that

sk(j)i
2 = 0 for all i, j ∈ I. (3.9)

Thus, since s(j) ∈ Z(A) for all j ∈ I, we have

sk(j) = 0 or i2 = 0 for all i, j ∈ I. (3.10)

If i2 = 0 for all i ∈ I, then 0 = ij + ji = ij − ji for all i, j ∈ I. Hence, for all i ∈ I and r ∈ A, we have
iri = i(ri) = (ri)i = ri2 = 0. Thus, i = 0 for all i ∈ I since A is prime. But I 6= 0, and so there exists
i ∈ I such that i2 6= 0. Consequently, by (3.10), sk(j) = 0 for all j ∈ I. Seen Proposition 2.2, d is a
derivation. ✷
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