(Jordan) Derivation on Amalgamated Duplication of a Ring Along an Ideal

Khalid Louartiti, Abdellah Mamouni and Mohammed Tamekkante

Abstract

Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of $A \times A$ defined by $A \bowtie I:=\{(a, a+i) \mid a \in A, i \in I\}$. In this paper, we characterize $A \bowtie I$ over which any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is noncommutative prime, then $A \bowtie I$ is noncommutative semiprime (but not prime except if $I=(0)$). In this case, we prove that any map of $A \bowtie I$ which is both Jordan and Jordan triple derivation is a derivation.

Key Words: (Jordan) derivation, Prime and semiprime rings, Extension of a ring by an ideal.

Contents

1 Introduction

2 Semiprime amalgamated duplication of a ring along an ideal with prime ideals invariant under derivations

3 (Jordan) derivations on amalgamated duplication of a ring along an ideal

1. Introduction

Throughout, A will represent an associative ring with center $Z(A)$. By an ideal I in A, we shall always mean a two-sided ideal of A. An ideal P of A is said to be prime if $P \neq A$ and, for $a, b \in A, a A b \subseteq P$ implies that $a \in P$ or $b \in P$. The ring A is called a prime ring if (0) is a prime ideal of A. A ring A is called a semiprime ring if $a A a=(0)$ implies $a=0$. A ring A is said to be 2 -torsion free, if whenever $2 a=0$, with $a \in A$, then $a=0$. The Jordan product of two elements x and y of A is $x \circ y=x y+y x$.
By a derivation of A, we mean an additive map $d: A \rightarrow A$ satisfying $d(x y)=d(x) y+x d(y)$ for all pairs $x, y \in A$. Given a derivation d of A, an ideal I of A is said to be invariant under d (or d-invariant for short) if $d(I) \subseteq I$. It is well known that every minimal prime ideal of a torsion-free semiprime ring is invariant under all derivations [11]. Herstein raised the following problem:

Problem. Given a semiprime ring A, does $d(P) \subseteq P$ hold for any minimal prime ideal P of A and for any derivation d of A ?

This problem has been often mentioned in the literature (see, for example, [3,13]). The best result of the conjecture is the following: A ring A is said to be of bounded index m if m is a positive integer such that $x^{m}=0$ for all nilpotent elements $x \in A$. Beidar and Mikhalev proved the theorem: Let A be a ring of bounded index m such that the additive order of every nonzero torsion element of A, if any, is strictly larger than m. Then all minimal prime ideals of A are invariant under all derivations of A (see [1] or [2, Theorem 8.16]). As a special case of this, every minimal prime ideal of a reduced ring is invariant under derivations of the ring (See [7, p. 614]). Unfortunately, this problem turns out to be false in general. Chuang and Lee [7] constructed a semiprime ring A which possesses a minimal prime ideal not invariant under a derivation of the ring.
Let A be a ring and I be an ideal of A. The subset of $A \times A$ defined by:

$$
A \bowtie I:=\{(a, a+i) \mid a \in A, i \in I\}
$$

is clearly a subring of $A \times A$, called the amalgamated duplication of A along I. The construction $A \bowtie I$ (in the commutative case) was introduced and its basic properties were studied by D'Anna and

[^0]Fontana (2007) in [9,10], and then it was investigated by D'Anna in [8] with the aim of applying it to curve singularities (over algebraic closed fields) where he proved that the amalgamated duplication of an algebroid curve along a regular canonical ideal yields a Gorenstein algebroid curve [8, Theorem 14 and Corollary 17]. The aim of Section 2 of this paper is to characterize when the amalgamated duplication of a semiprime ring along an ideal satisfies the Herstein's Problem. Hence, Theorem 2.6 states that if A is a semiprime ring and I is an ideal of A. Then, the following are equivalent:

1. $d(P) \subseteq P$ holds for any (resp. minimal) prime ideal P of $A \bowtie I$ and for any derivation d of $A \bowtie I$.
2. $\delta(p) \subseteq p$ holds for any (resp. minimal) prime ideal p of A and for any derivation δ of A keeping I invariant.

An additive map $d: A \rightarrow A$ is called a Jordan derivation if $d\left(x^{2}\right)=d(x) x+x d(x)$ for all $x \in A$, and d is called a Jordan triple derivation if $d(x y x)=d(x) y x+x d(y) x+x y d(x)$ for all $x, y \in A$. If A is 2 -torsion-free, then every Jordan derivation is a Jordan triple derivation ([4, Proposition 2]). Obviously, every derivation is a Jordan (resp. triple) derivation. The converse is in general not true. In [5, Theorem 4.3], Bres̆ar proved that if A is 2-torsion free semiprime then every Jordan triple derivation is a derivation. Which means that derivations, Jordan derivations, and Jordan triple derivations of a 2-torsion-free semiprime ring are the same. The case when the ring is of characteristic 2 is due to Herstein who proved (in [12, Theorem 4.1]) that over a noncommutative ring any map which is both Jordan derivation and Jordan triple derivation becomes a derivation. In Section 3, we extend the Herstein's result to semiprime rings with form $A \bowtie I$ where A is a prime noncommutative ring.

Let's adopt the following notations:

Notations. Let A be a ring and I be an ideal of A. By π_{1} and π_{2} we denote the naturel surjections of $A \bowtie I$ into A defined by

$$
\pi_{1}(a, a+i)=a \quad \text { and } \quad \pi_{2}(a, a+i)=a+i \quad \text { for all } a \in A, i \in I
$$

For an additive map $d: A \bowtie I \rightarrow A \bowtie I$, we consider the maps $d_{i=1,2}: A \rightarrow A$ and $s_{i=1,2}: I \rightarrow A$ defined by

$$
d_{1}(a)=\pi_{1} \circ d(a, a), \quad d_{2}(a)=\pi_{2} \circ d(a, a), \quad s_{1}(i)=\pi_{1} \circ d(0, i), s_{2}(i)=\pi_{2} \circ d(i, 0)
$$

for all $a \in A$ and $i \in I$. It is clear that d_{1}, d_{2}, s_{1}, and s_{2} are all additive.

2. Semiprime amalgamated duplication of a ring along an ideal with prime ideals invariant under derivations

In this section, we characterize the derivations of $A \bowtie I$, specially when A is a semiprime ring. Our aim is to see when every (minimal) prime ideal of $A \bowtie I$ is invariant under any derivation on $A \bowtie I$.

Let R and T be rings and let θ and ϕ be homomorphisms of T into R. Let X be an R-bimodule. Following [6], an additive mapping $d: T \rightarrow X$ is called a (θ, ϕ)-derivation (resp. a Jordan (θ, ϕ) derivation) if $d(x y)=d(x) \phi(y)+\theta(x) d(y)$, for all $x, y \in T$ (resp. if $d\left(x^{2}\right)=d(x) \phi(x)+\theta(x) d(x)$, for all $x \in T)$.
Suppose that $d: T \rightarrow T$ is a (resp. Jordan) derivation. Then, $\theta \circ d$ is a (resp. Jordan) (θ, θ)-derivation. Indeed, $\theta \circ d$ is clearly additive, and for all $x, y \in T$, we have

$$
\begin{gathered}
\theta \circ d(x y)=\theta(d(x) y+x d(y))=\theta \circ d(x) \theta(y)+\theta(x) \theta \circ d(y) \\
\left(\operatorname{resp} . \theta \circ d\left(x^{2}\right)=\theta(d(x) x+x d(x))=\theta \circ d(x) \theta(x)+\theta(x) \theta \circ d(x)\right) .
\end{gathered}
$$

We start with the following lemma.
Lemma 2.1. Let A be a ring and I be an ideal of A. $A \operatorname{map} d: A \bowtie I \rightarrow A \bowtie I$ is a (resp. Jordan) derivation if and only if $\pi_{1} \circ d$ is a (resp. Jordan) $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a (resp. Jordan) $\left(\pi_{2}, \pi_{2}\right)$-derivation.

Proof: (\Rightarrow) Clear.
(\Leftarrow) It is clear that, for all $a \in A$ and $i \in I$, we have

$$
d(a, a+i)=\left(\pi_{1} \circ d(a, a+i), \pi_{2} \circ d(a, a+i)\right)
$$

Hence, if $\pi_{1} \circ d$ and $\pi_{2} \circ d$ are additive then so is d.
Suppose that $\pi_{1} \circ d$ is a $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a $\left(\pi_{2}, \pi_{2}\right)$-derivation. For all $a, b \in A$ and $i, j \in I$ we have

$$
\begin{aligned}
d((a, a+i)(b, b+j))= & \left(\pi_{1} \circ d((a, a+i)(b, b+j)), \pi_{2} \circ d((a, a+i)(b, b+j))\right) \\
= & \left(\pi_{1} \circ d(a, a+i) \pi_{1}(b, b+j)+\pi_{1}(a, a+i) \pi_{1} \circ d(b, b+j),\right. \\
& \left.\pi_{2} \circ d(a, a+i) \pi_{2}(b, b+j)+\pi_{2}(a, a+i) \pi_{2} \circ d(b, b+j)\right) \\
= & \left(\pi_{1} \circ d(a, a+i) b+a \pi_{1} \circ d(b, b+j), \pi_{2} \circ d(a, a+i)(b+j)\right. \\
& \left.+(a+i) \pi_{2} \circ d(b, b+j)\right) \\
= & \left(\pi_{1} \circ d(a, a+i), \pi_{2} \circ d(a, a+i)\right)(b, b+j) \\
& +(a, a+i)\left(\pi_{1} \circ d(b, b+j), \pi_{2} \circ d(b, b+j)\right) \\
= & d(a, a+i)(b, b+j)+(a, a+i) d(b, b+j) .
\end{aligned}
$$

Hence, d is a derivation.
By the same way, we show that if $\pi_{1} \circ d$ is a Jordan $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a Jordan $\left(\pi_{2}, \pi_{2}\right)$ derivation then d is a Jordan derivation.

The next result gives the necessary and sufficient conditions for an additive map d from $A \bowtie I$ into itself to be a derivation.

Proposition 2.2. Let A be a ring, I be an ideal of A, and $d: A \bowtie I \rightarrow A \bowtie I$ be an additive map. Then, d is a derivation if and only if

1. d_{1} and d_{2} are derivations.
2. $s_{k}(a i)=a s_{k}(i), s_{k}(i a)=s_{k}(i) a$, and $s_{k}(i j)=0$ for $k=1,2$ and for all $a \in A$ and $i, j \in I$.

Proof: (\Rightarrow) From Lemma 2.1, $\pi_{1} \circ d$ is a $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a $\left(\pi_{2}, \pi_{2}\right)$-derivation. Hence, for all $a \in A$, we have

$$
\begin{aligned}
d_{1}(a b) & =\pi_{1} \circ d(a b, a b) \\
& =\pi_{1} \circ d((a, a)(b, b)) \\
& =\pi_{1} \circ d(a, a) b+a \pi_{1} \circ d(b, b) \\
& =d_{1}(a) b+a d_{1}(b) .
\end{aligned}
$$

Hence, d_{1} is derivation. Similarly, we obtain that d_{2} is a derivation.
Let $a \in A$ and $i \in I$. We have

$$
\begin{aligned}
s_{1}(a i) & =\pi_{1} \circ d(0, a i) \\
& =\pi_{1} \circ d((a, a)(0, i)) \\
& =\pi_{1} \circ d(a, a) \pi_{1}(0, i)+\pi_{1}(a, a) \pi_{1} \circ d(0, i) \\
& =a s_{1}(i)
\end{aligned}
$$

Similarly, $s_{1}(i a)=s_{1}(i) a$. Now, for all $i, j \in I$, we have

$$
\begin{aligned}
s_{1}(i j) & =\pi_{1} \circ d(0, i j) \\
& =\pi_{1} \circ d((0, i)(0, j)) \\
& =\pi_{1} \circ d(0, i) \pi_{1}(0, j)+\pi_{1}(0, i) \pi_{1} \circ d(0, j) \\
& =0
\end{aligned}
$$

By the same argument, we prove that s_{2} satisfies the same conditions.
(\Leftarrow) For all $a \in A$ and $i \in I$ we have

$$
\pi_{1} \circ d(a, a+i)=\pi_{1} \circ d(a, a)+\pi_{1} \circ d(0, i)=d_{1}(a)+s_{1}(i)
$$

and

$$
\pi_{2} \circ d(a, a+i)=\pi_{2} \circ d(a+i, a+i)-\pi_{2} \circ d(i, 0)=d_{2}(a+i)-s_{2}(i)
$$

By Lemma 2.1, we have to prove that $\pi_{1} \circ d$ is a $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a $\left(\pi_{2}, \pi_{2}\right)$-derivation. Let $a, b \in A$ and $i, j \in I$. We have

$$
\begin{aligned}
\pi_{1} \circ d((a, a+i)(b, b+j))= & \pi_{1} \circ d(a b, a b+a j+i b+i j) \\
= & d_{1}(a b)+s_{1}(a j+i b+i j) \\
= & d_{1}(a) b+a d_{1}(b)+a s_{1}(j)+s_{1}(i) b \\
= & \left(d_{1}(a)+s_{1}(i)\right) b+a\left(d_{1}(b)+s_{1}(j)\right) \\
= & \pi_{1} \circ d(a, a+i) \pi_{1}(b, b+j) \\
& +\pi_{1}(a, a+i) \pi_{1} \circ d(b, b+j)
\end{aligned}
$$

and, since $0=s_{2}(i j)=s_{2}(i) j=i s_{2}(j)$, we get

$$
\begin{aligned}
\pi_{2} \circ d((a, a+i)(b, b+j))= & \pi_{2} \circ d(a b, a b+a j+i b+i j) \\
= & d_{2}((a+i)(b+j))-s_{2}(a j+i b+i j) \\
= & d_{2}(a+i)(b+j)+(a+i) d_{2}(b+j) \\
& -a s_{2}(j)-s_{2}(i) b \\
= & \left(d_{2}(a+i)-s_{2}(i)\right)(b+j) \\
& +(a+i)\left(d_{2}(b+j)-s_{2}(j)\right) \\
= & \pi_{2} \circ d(a, a+i) \pi_{2}(b, b+j) \\
& +\pi_{2}(a, a+i) \pi_{2} \circ d(b, b+j)
\end{aligned}
$$

Hence, we have the desired result.
Next, we characterize the derivations of $A \bowtie I$ when A is a semiprime ring.
Proposition 2.3. Let A be a semiprime ring, I be an ideal of A, and $d: A \bowtie I \rightarrow A \bowtie I$ be an additive map. Then, the following are equivalent:

1. d is a derivation
2. d_{1} and d_{2} are derivations and the ideals $0 \times I$ and $I \times 0$ of $A \bowtie I$ are d-invariant.
3. there exist a derivation $\delta_{1}: A \rightarrow A$ keeping I invariant and a derivation $\delta_{2}: A \rightarrow I$ such that

$$
d(a, a+i)=\left(\delta_{1}(a), \delta_{1}(a+i)+\delta_{2}(a+i)\right) \quad \text { for all } a \in A, i \in I
$$

Proof: $(1) \Rightarrow(2)$ From Proposition 2.2, we have $s_{k}(a i)=a s_{k}(i), s_{k}(i a)=s_{k}(i) a$, and $s_{k}(i j)=0$ for $k=1,2$ and for all $a \in A$ and $i, j \in I$. Then, for any $i \in I$, we have

$$
s_{k}(i) a s_{k}(i)=s_{k}(i) s_{k}(a i)=s_{k}\left(i s_{k}(a i)\right)=s_{k}\left(s_{k}(i a i)\right)=0 \quad \text { for all } a \in A
$$

Thus, since A is semiprime, we have that $s_{k}(i)=0$ for all $i \in I$. Hence, for all $i \in I$, we have $\pi_{1} \circ d(0, i)=0$ and $\pi_{2} \circ d(i, 0)=0$. So, $d(0, i)=(0, r) \in A \bowtie I$ and $d(i, 0)=\left(r^{\prime}, 0\right) \in A \bowtie I$. Consequently, $r, r^{\prime} \in I$, $d(0, i) \in 0 \times I$, and $d(i, 0) \in I \times 0$.
$(2) \Rightarrow(3)$ Since $0 \times I$ and $I \times 0$ are d-invariant, we have clearly $s_{1}=s_{2}=0$. Thus, for all $a \in A$ and $i \in I$, we have

$$
d(a, a+i)=\left(d_{1}(a), d_{2}(a+i)\right)
$$

Set $\delta_{1}=d_{1}$ and $\delta_{2}=d_{2}-d_{1}$. For all $i \in I$, we have $\delta_{1}(i)=\pi_{1} \circ d(i, i)=\pi_{1} \circ d(i, 0)+\pi_{1} \circ d(0, i)=$ $\pi_{1} \circ d(i, 0) \in I$. Hence, I is δ_{1}-invariant. Set $d(a, a)=(b, b+j)$ for some $b \in A$ and $j \in I$. We have

$$
\delta_{2}(a)=d_{2}(a)-d_{1}(a)=\pi_{2} \circ d(a, a)-\pi_{1} \circ d(a, a)=(b+j)-b=j \in I
$$

Then, $\delta_{2}(A) \subseteq I$.
$(3) \Rightarrow(1)$ Suppose that

$$
d(a, a+i)=\left(\delta_{1}(a), \delta_{1}(a+i)+\delta_{2}(a+i)\right) \quad \text { for all } a \in A, i \in I
$$

with $\delta_{1}: A \rightarrow A$ is a derivation keeping I invariant and $\delta_{2}: A \rightarrow I$ is a derivation. Firstly, d is well defined. Indeed, for all $a \in A$ and $i \in I$, we have

$$
\left(\delta_{1}(a+i)+\delta_{2}(a+i)\right)-\delta_{1}(a)=\delta_{1}(i)+\delta_{2}(a+i) \in I
$$

A simple check shows that such d is a derivation.
We need the following lemmas.
Lemma 2.4. Let p be a prime ideal of A. Then,

$$
p \bowtie I:=\{(a, a+i) \mid a \in p, i \in I\}
$$

and

$$
\bar{p}:=\{(a+i, a) \mid a \in p, i \in I\}
$$

are prime ideals of $A \bowtie I$.
Proof: Clearly $p \bowtie I$ and \bar{p} are ideals of $A \bowtie I$. Moreover, the mappings $\psi: \frac{A \bowtie I}{p \bowtie I} \rightarrow \frac{A}{p}$ and $\varphi: \frac{A \bowtie I}{\bar{p}} \rightarrow \frac{A}{p}$ defined by $\psi(\overline{(a, a+i)})=\bar{a}$ and $\varphi(\overline{(a, a+i)})=\overline{a+i}$ are a well defined isomorphisms of rings. Then, since p is prime, $\frac{A}{p}$ is a prime ring and so are $\frac{A \bowtie I}{p \bowtie I}$ and $\frac{A \bowtie I}{\bar{p}}$. Then, $p \bowtie I$ and \bar{p} are prime ideals of $A \bowtie I$.

Lemma 2.5. Let P be a prime ideal of $A \bowtie I$. Then, $0 \times I \subseteq P$ or $I \times 0 \subseteq P$. Moreover,

1. If $0 \times I \subseteq P$ then there exists a prime ideal p of A such that

$$
P=p \bowtie I:=\{(a, a+i) \mid a \in p, i \in I\} .
$$

2. If $I \times 0 \subseteq P$ then there exists a prime ideal p of A such that

$$
P=\bar{p}:=\{(a+i, a) \mid a \in p, i \in I\}
$$

In the both cases, P is minimal if and only if p is minimal.
Proof: Suppose that $0 \times I \nsubseteq P$. Then, there exists $i_{0} \in I$ such that $\left(0, i_{0}\right) \notin P$. However, for any $i, j \in I$ and $a \in A$, we have $(i, 0)(a, a+j)\left(0, i_{0}\right)=(0,0) \in P$. Hence, $(i, 0) \in P$ for all $i \in I$. Thus, $I \times 0 \subseteq P$.
(1) Set $p=\pi_{1}(P)$. It is clear that p is an ideal of A (since π_{1} is surjective). Let $a, b \in A$ with arb $\in p$ for all $r \in A$. Then, for each r there exists $i_{r} \in I$ such that $\left(a r b, a r b+i_{r}\right) \in P$. Then, for all $j \in I$, $(a r b, a(r+j) b)=\left(a r b, a r b+i_{r}\right)+\left(0, a j b-i_{r}\right) \in P$ since $0 \times I \subseteq P$. Thus, $(a, a)(r, r+j)(b, b) \in P$. Hence, $(a, a) \in P$ or $(b, b) \in P$. Then, $a \in p$ or $b \in p$. So, p is prime.
Clearly, we have $P \subseteq p \bowtie I$. For the reverse inclusion, let $a \in p$. There exists $i \in I$ such that $(a, a+i) \in P$.

Hence, for all $j \in I$, we have $(a, a+j)=(a, a+i)+(0, j-i) \in P$. Then, $P=p \bowtie I$.
(2) Set $p=\pi_{2}(P)$. It is clear that p is an ideal of A (since π_{2} is surjective). Let $a, b \in A$ with $a r b \in p$ for all $r \in A$. Then, for each r there exists $i_{r} \in I$ such that $\left(a r b+i_{r}, a r b\right) \in P$. Then, for all $j \in I,(a r b, a(r+j) b)=\left(a(r+j) b+i_{r+j}, a(r+j) b\right)-\left(i_{r+j}+a j b, 0\right) \in P$ since $I \times 0 \subseteq P$. Thus, $(a, a)(r, r+j)(b, b) \in P$. Then, $(a, a) \in P$ or $(b, b) \in P$. Hence, $a \in p$ or $b \in p$. So, p is prime.
Clearly, $P \subseteq \bar{p}$. Now, let $a \in p$. There exists $i \in i$ such that $(a+i, a) \in P$. Hence, for all $j \in I$, we have $(a+j, a)=(a+i, a)+(j-i, 0) \in P$. Then, $P=\bar{p}$.
For the last statement, Let p be a prime ideal of A.
Suppose that $P=p \bowtie I$ is minimal prime and let q be a prime ideal of A with $q \subseteq p$. Easily, we can see that $q \bowtie I \subseteq p \bowtie I=P$. Since $q \bowtie I$ is prime (by Lemma 2.4), we have $P=q \bowtie I$, and so $p=\pi_{1}(q \bowtie I)=q$.
Conversely, suppose that p is minimal prime, and let Q be a prime ideal of $A \bowtie I$ with $Q \subseteq P$. If $0 \times I \subseteq Q$ then $Q=q \bowtie I$ for some prime ideal q of A, and so we get $q \subseteq p$ which means that $q=p$, and then $Q=P$. Now, if $I \times 0 \subseteq Q$ then $Q=\bar{q}$ for some prime ideal q of A. Hence, $q \subseteq q+I=\pi_{1}(Q) \subseteq \pi_{1}(P)=p$, and then $I \subseteq q=p$. Hence,

$$
Q=\bar{q}=\{(a+i, a) \mid a \in q, i \in I\}=\{(a, a+i) \mid a \in q, i \in I\}=q \bowtie I=P
$$

Now, suppose that $P=\bar{p}$ is minimal prime, and let q be a prime ideal of A such that $q \subseteq p$. Then, $\bar{q} \subseteq \bar{p}=P$. Then, $\bar{q}=\bar{p}$. Hence, $p=q$. Therefore, p is minimal.
Conversely, suppose that p is minimal and and let Q be a prime ideal of $A \bowtie I$ with $Q \subseteq P=\bar{p}$. If $0 \times I \subseteq Q$ then $Q=q \bowtie I$ for some prime ideal q of A. Then, $\pi_{2}(Q) \subseteq \pi_{2}(P)$ means that $q+I \subseteq p$. Hence, $I \subseteq q=p$. So,

$$
Q=\{(a, a+i) \mid a \in q, i \in I\}=\{(a+i, a) \mid a \in q, i \in I\}=\bar{q}=P
$$

If $I \times 0 \subseteq Q$ then $Q=\bar{q}$ for some prime ideal q of A. Hence, $q \subseteq p$, and so $q=p$. Then, $Q=P$.
The main result of this section is as follows:
Theorem 2.6. Let A be a semiprime ring and I be an ideal of A. The following are equivalent:

1. $d(P) \subseteq P$ holds for any (resp. minimal) prime ideal P of $A \bowtie I$ and for any derivation d of $A \bowtie I$.
2. $\delta(p) \subseteq p$ holds for any (resp. minimal) prime ideal p of A and for any derivation δ of A keeping I invariant.

Proof: (\Rightarrow) Let δ be a derivation on A with $\delta(I) \subseteq I$. Then, by Proposition 2.3 , the additive map $d: A \bowtie I \rightarrow A \bowtie I$ defined by $d(a, a+i)=(\delta(a), \delta(a+i))$ is a derivation on $A \bowtie I$. Let p be a (resp. minimal) prime ideal of A. By Lemmas 2.4 and $2.5, p \bowtie I$ is a (resp. minimal) prime ideal of $A \bowtie I$. Hence, $d(p \bowtie I) \subseteq p \bowtie I$. Let $a \in p$. Then, $(a, a) \in p \bowtie I$. Thus, $(\delta(a), \delta(a))=d(a, a) \in p \bowtie I$, and so $\delta(a) \in p$. Hence, $\delta(p) \subseteq p$.
(\Leftarrow) Let d be a derivation on $A \bowtie I$. Following Proposition 2.3 , there exist a derivation $\delta_{1}: A \rightarrow A$ keeping I invariant and a derivation $\delta_{2}: A \rightarrow I$ such that

$$
d(a, a+i)=\left(\delta_{1}(a), \delta_{1}(a+i)+\delta_{2}(a+i)\right) \quad \text { for all } a \in A, i \in I
$$

Let P be a (resp. minimal) prime ideal of $A \bowtie I$. Then, using Lemma 2.5, $P=p \bowtie I$ or $P=\bar{p}$ for some (resp. minimal) prime ideal p of A. By hypothesis, $\delta_{1}(p) \subseteq p$ and $\delta_{2}(p) \subseteq p$ (see that I is also invariant under δ_{2}).
Suppose that $P=p \bowtie I$. Then, the elements of P have the form $(a, a+i)$ with $a \in p$ and $i \in I$, and we have

$$
d(a, a+i)=\left(\delta_{1}(a), \delta_{1}(a+i)+\delta_{2}(a+i)\right)=\left(\delta_{1}(a), \delta_{1}(a)+\left(\delta_{1}(i)+\delta_{2}(a+i)\right)\right) \in P
$$

since $\delta_{1}(a) \in p$ and $\delta_{1}(i)+\delta_{2}(a+i) \in I$. Thus, $d(P) \subseteq P$.
Now, suppose that $P=\bar{p}$. The elements of P in this case have the form $(a+i, a)$ with $a \in p$ and $i \in I$,
and we have

$$
\begin{aligned}
d(a+i, a) & =\left(\delta_{1}(a+i), \delta_{1}(a)+\delta_{2}(a)\right) \\
& =\left(\delta_{1}(a)+\delta_{2}(a)+\left(\delta_{1}(i)-\delta_{2}(a)\right), \delta_{1}(a)+\delta_{2}(a)\right) \in P
\end{aligned}
$$

since $\delta_{1}(a)+\delta_{2}(a) \in p$ and $\delta_{1}(i)-\delta_{2}(a) \in I$. Again, $d(P) \subseteq P$.
As consequences of the above theorem, we have the following corollaries.
Corollary 2.7. Let A be a semiprime ring and I be a prime ideal of A. The following are equivalent:

1. $d(P) \subseteq P$ holds for any prime ideal P of $A \bowtie I$ and for any derivation d of $A \bowtie I$.
2. $\delta(p) \subseteq p$ holds for any prime ideal p of A and for any derivation δ.

Corollary 2.8. Let A be a semiprime ring and I be a minimal prime ideal of A. The following are equivalent:

1. $d(P) \subseteq P$ holds for any minimal prime ideal P of $A \bowtie I$ and for any derivation d of $A \bowtie I$.
2. $\delta(p) \subseteq p$ holds for any minimal prime ideal p of A and for any derivation δ.

Corollary 2.9. Let A be a prime ring and I an ideal of A. Then, $d(P) \subseteq P$ holds for any minimal prime ideal P of $A \bowtie I$ and for any derivation d of $A \bowtie I$.

Proof: Follows immediately from Theorem 2.6 since the only minimal prime ideal of A is (0) which is always invariant under any derivation on A (in particular under those keeping I invariant).

3. (Jordan) derivations on amalgamated duplication of a ring along an ideal

Proposition 3.1. Let A be a ring, I be an ideal of A, and $d: A \bowtie I \rightarrow A \bowtie I$ be an additive map. Then, d is a Jordan derivation if and only if

1. d_{1} and d_{2} are Jordan derivations.
2. $s_{k}(a \circ i)=a \circ s_{k}(i)$ and $s_{k}\left(i^{2}\right)=0$ for all $k=1,2, a \in A$ and $i, j \in I$.

Proof: Let R and T be rings and let θ be a homomorphism of T into R. it's easy to check that if $d: T \rightarrow R$ is a Jordan (θ, θ)-derivation then for all $x, y \in T$ we have

$$
d(x \circ y)=d(x) \circ \theta(y)+\theta(x) \circ d(y)
$$

(\Rightarrow) From Lemma 2.1, $\pi_{1} \circ d$ is a Jordan $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a Jordan $\left(\pi_{2}, \pi_{2}\right)$-derivation. Hence, for all $a \in A$, we have

$$
\begin{aligned}
d_{1}\left(a^{2}\right) & =\pi_{1} \circ d\left(a^{2}, a^{2}\right) \\
& =\pi_{1} \circ d((a, a)(a, a)) \\
& =\pi_{1} \circ d(a, a) a+a \pi_{1} \circ d(a, a) \\
& =d_{1}(a) a+a d_{1}(a)
\end{aligned}
$$

Hence, d_{1} is Jordan derivation. Similarly, we obtain that d_{2} is a Jordan derivation.
Let $a \in A$ and $i \in I$. We have

$$
\begin{aligned}
s_{1}(a \circ i) & =\pi_{1}(d(0, a \circ i)) \\
& =\pi_{1}(d((a, a) \circ(0, i))) \\
& =\pi_{1}(d(a, a)) \circ \pi_{1}(0, i)+\pi_{1}(a, a) \circ \pi_{1}(d(0, i)) \\
& =a \circ s_{1}(i)
\end{aligned}
$$

Moreover, for all $i \in I$, we have

$$
\begin{aligned}
s_{1}\left(i^{2}\right) & =\pi_{1} \circ d\left(0, i^{2}\right) \\
& =\pi_{1} \circ d((0, i)(0, i)) \\
& =\pi_{1} \circ d(0, i) \pi_{1}(0, i)+\pi_{1}(0, i) \pi_{1} \circ d(0, i) \\
& =0
\end{aligned}
$$

Similarly, s_{2} satisfies the same conditions.
(\Leftarrow) As in the proof of Proposition 2.2, for all $a \in A$ and $i \in I$, we have

$$
\pi_{1} \circ d(a, a+i)=d_{1}(a)+s_{1}(i) \quad \text { and } \quad \pi_{2} \circ d(a, a+i)=d_{2}(a+i)-s_{2}(i)
$$

Using Lemma 2.1, we have to prove that $\pi_{1} \circ d$ is a Jordan $\left(\pi_{1}, \pi_{1}\right)$-derivation and $\pi_{2} \circ d$ is a Jordan $\left(\pi_{2}, \pi_{2}\right)$-derivation. Let $a \in A$ and $i \in I$. We have

$$
\begin{aligned}
\pi_{1} \circ d\left((a, a+i)^{2}\right) & =\pi_{1} \circ d\left(a^{2}, a^{2}+a i+i a+i^{2}\right) \\
& =d_{1}\left(a^{2}\right)+s_{1}\left(a \circ i+i^{2}\right) \\
& =d_{1}(a) \circ a+a \circ s_{1}(i) \\
& =\left(d_{1}(a)+s_{1}(i)\right) \circ a \\
& =\pi_{1} \circ d(a, a+i) \pi_{1}(a, a+i)+\pi_{1}(a, a+i) \pi_{1} \circ d(a, a+i)
\end{aligned}
$$

and, since $0=2 s_{2}\left(i^{2}\right)=s_{2}(i \circ i)=s_{2}(i) \circ i=i s_{2}(i)+s_{2}(i) i$, we get

$$
\begin{aligned}
\pi_{2} \circ d\left((a, a+i)^{2}\right) & =\pi_{2} \circ d\left(a^{2},(a+i)^{2}\right) \\
& =d_{2}\left((a+i)^{2}\right)-s_{2}\left(a \circ i+i^{2}\right) \\
& =d_{2}(a+i)(a+i)+(a+i) d_{2}(a+i)-a \circ s_{2}(i) \\
& =\left(d_{2}(a+i)-s_{2}(i)\right)(a+i)+(a+i)\left(d_{2}(a+i)-s_{2}(i)\right) \\
& =\pi_{2} \circ d(a, a+i) \pi_{2}(a, a+i)+\pi_{2}(a, a+i) \pi_{2} \circ d(a, a+i) .
\end{aligned}
$$

Hence, we have the desired result.

Lemma 3.2. Let A be a ring and I be an ideal of A. Then,

1. $A \bowtie I$ is prime if and only if $I=(0)$ and A is prime.
2. $A \bowtie I$ is semiprime if and only if A is semiprime.
3. $A \bowtie I$ is 2-torsion free if and only if A is 2-torsion free.

Proof: (1) Suppose that $A \bowtie I$ is prime. Hence, $\{(0,0)\}$ is a prime ideal of $A \bowtie I$. Thus, by Lemma $2.5,0 \times I \subseteq\{(0,0)\}$ or $I \times 0 \subseteq\{(0,0)\}$. In the both cases, $I=(0)$. By Lemma 2.5, $\{(0,0)\}=p \bowtie(0)$ for some prime ideal of A. Hence, $p=(0)$ is a prime ideal of A, and so A prime. Conversely, if $I=(0)$ and A is prime then $\{(0,0)\}=(0) \bowtie(0)$ is a prime ideal of $A \bowtie I$, and then $A \bowtie I$ is prime.
(2) Suppose that $A \bowtie I$ is semiprime and let $a \in A$ with $a r a=0$ for all $r \in A$. Then, $(a, a)(r, r+j)(a, a)=$ $(0,0)$ for all $r \in A$ and all $j \in I$. Hence, $(a, a)=(0,0)$, and so $a=0$. Thus, A is semiprime.
Conversely, suppose that A is semiprime and let $a \in A$ and $i \in I$ with $(a, a+i)(r, r+j)(a, a+i)=(0,0)$ for all $r \in A$ and $j \in I$. Then, ara $=0$ for all $r \in A$, and then $a=0$. Now, we have $i(r+j) i=0$ for all $r \in A$ and $j \in I$. Which means that $i r i=0$ for all $r \in A$. Then, $i=0$. Hence, $A \bowtie I$ is prime.
(3) Trivial.

Corollary 3.3. Let A be a 2-torsion free semiprime ring, I be an ideal of A, and $s: I \rightarrow A$ be an additive map. Then,

1. if $s(a \circ i)=a \circ s(i)$ and $s\left(i^{2}\right)=0$ for all $a \in A$ and $i \in I$ then $s=0$.
2. if there exists a derivation d on A such that $s(a \circ i)=d(a) \circ i+a \circ s(i)$ and $s\left(i^{2}\right)=s(i) \circ i$ for all $a \in A$ and $i \in I$ then d and s coincide on I.

Proof: (1) Consider the additive map $d: A \bowtie I \rightarrow A \bowtie I$ defined by $d(a, a+i)=(s(i), s(i))$. For all $a \in A$ and $i \in I$, we have

$$
\begin{aligned}
d\left((a, a+i)^{2}\right) & =\left(s\left(a \circ i+i^{2}\right), s\left(a \circ i+i^{2}\right)\right) \\
& =(a \circ s(i), a \circ s(i)) \\
& =(s(i), s(i))(a, a+i)+(a, a+i)(s(i), s(i)) \\
& =d(a, a+i)(a, a+i)+(a, a+i) d(a, a+i)
\end{aligned}
$$

since $s(i) \circ i=s\left(2 i^{2}\right)=0$. Hence, d is a Jordan derivation on $A \bowtie I$. But $A \bowtie I$ is a 2 -torsion free semiprime ring (by Lemma 3.2). Thus, by [4, Theorem 1], d is a derivation. So, by Proposition $2.3,0 \times I$ is d-invariant. Hence, for all $i \in I, d(0, i)=(s(i), s(i)) \in 0 \times I$, and so $s=0$.
(2) Set $s^{\prime}:=s-d: I \rightarrow A$. For all $a \in A$ and $i \in I$, we have

$$
\begin{aligned}
s^{\prime}(a \circ i) & =s(a \circ i)-d(a \circ i)=d(a) \circ i+a \circ s(i)-d(a) \circ i-a \circ d(i) \\
& =a \circ s(i)-a \circ d(i)=a \circ s^{\prime}(i)
\end{aligned}
$$

and

$$
s^{\prime}\left(i^{2}\right)=s\left(i^{2}\right)-d\left(i^{2}\right)=s\left(2 i^{2}\right)-s\left(i^{2}\right)-d\left(i^{2}\right)=s(i \circ i)-i \circ s(i)-d(i) \circ i=0
$$

Hence, from (1), $s^{\prime}=0$, and so $s(i)=d(i)$ for all $i \in I$.
Theorem 3.4. Let A be a non commutative prime ring and I be a nonzero ideal. If d is both a Jordan derivation and a Jordan triple derivation of $A \bowtie I$ then d is a derivation.

Proof: When the characteristic of A is different of 2 , the result follows from by [4, Theorem 1] and Lemma 3.2. Hence, suppose that A is of characteristic two. Also, if $I=(0)$, then $A \bowtie(0) \cong A$ (following the isomorphism $(a, a) \mapsto a)$. In this case, the result follows immediately from [12, Theorem 4.1]. Thus, we may suppose $I \neq(0)$. From Proposition 3.1, d_{1} and d_{2} are Jordan derivations and, for $k=1,2$ and for all $a \in A$ and $i \in I$, we have $s_{k}(a \circ i)=a \circ s_{k}(i)$ and $s_{k}\left(i^{2}\right)=0$. Now, let $a, b \in A$, we have

$$
\begin{aligned}
d_{1}(a b a) & =\pi_{1} \circ d(a b a, a b a) \\
& =\pi_{1} \circ d((a, a)(b, b)(a, a)) \\
& =\pi_{1}(d(a, a)(b a, b a)+(a, a) d(b, b)(a, a)+(a, a)(b, b) d(a, a)) \\
& =\pi_{1} \circ d(a, a) b a+a \pi_{1} \circ d(b, b) a+a b \pi_{1} \circ d(a, a) \\
& =d_{1}(a) b a+a d_{1}(b) a+a b d_{1}(a)
\end{aligned}
$$

Hence, d_{1} is also a Jordan triple derivation. Similarly, d_{2} is a Jordan triple derivation. Hence, since A is non commutative prime, d_{1} and d_{2} are derivations (by [12, Theorem 4.1]).
Let $i, j \in I$. We have

$$
\begin{aligned}
s_{1}(i j i) & =\pi_{1} \circ d(0, i j i) \\
& =\pi_{1} \circ d((0, i)(0, j)(0, i)) \\
& =\pi_{1}(d(0, i)(0, j i)+(0, i) d(0, j)(0, i)+(0, i j) d(0, i)) \\
& =0
\end{aligned}
$$

Also,

$$
\begin{aligned}
s_{1}(i j i) & =\pi_{1} \circ d(0, i j i) \\
& =\pi_{1} \circ d((i, i)(0, j)(i, i)) \\
& =\pi_{1}(d(i, i)(0, j i)+(i, i) d(0, j)(i, i)+(0, i j) d(i, i)) \\
& =i \pi_{1}(d(0, j)) i \\
& =i s_{1}(j) i
\end{aligned}
$$

Hence,

$$
\begin{equation*}
0=s_{1}(i j i)=i s_{1}(j) i \quad \text { for all } i, j \in I \tag{3.1}
\end{equation*}
$$

By analogy s_{2} satisfies the same condition.
For $k=1,2$, by linearizing the condition " $s_{k}\left(i^{2}\right)=0$ for all $i \in I$ ", we obtain

$$
\begin{equation*}
s_{k}(i \circ j)=0 \quad \text { for all } i, j \in I \tag{3.2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
i a s_{k}(j)+s_{k}(j) i a=i a \circ s_{k}(j)=s_{k}(i a \circ j)=0 \quad \text { for all } i, j \in I, a \in A \tag{3.3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
i\left(a \circ s_{k}(j)\right)+\left(i \circ s_{k}(j)\right) a=0 \quad \text { for all } i, j \in I, a \in A \tag{3.4}
\end{equation*}
$$

But $i \circ s_{k}(j)=s_{k}(i \circ j)=0$. Hence,

$$
\begin{equation*}
i\left(a \circ s_{k}(j)\right)=0 \quad \text { for all } i, j \in I, a \in A \tag{3.5}
\end{equation*}
$$

So,

$$
\begin{equation*}
\operatorname{ir}\left(a \circ s_{k}(j)\right)=0 \quad \text { for all } i, j \in I, a, r \in A \tag{3.6}
\end{equation*}
$$

Since A is prime, we get that

$$
\begin{equation*}
i=0 \quad \text { or } \quad a \circ s_{k}(j)=0 \quad \text { for all } i, j \in I, a \in A \tag{3.7}
\end{equation*}
$$

But $I \neq(0)$, and then

$$
\begin{equation*}
a \circ s_{k}(j)=0 \quad \text { for all } j \in I, a \in A \tag{3.8}
\end{equation*}
$$

which means that $s(j) \in Z(A)$ for all $j \in I$ since A is of characteristic two.
Thus, (3.1) means that

$$
\begin{equation*}
s_{k}(j) i^{2}=0 \quad \text { for all } i, j \in I \tag{3.9}
\end{equation*}
$$

Thus, since $s(j) \in Z(A)$ for all $j \in I$, we have

$$
\begin{equation*}
s_{k}(j)=0 \quad \text { or } \quad i^{2}=0 \quad \text { for all } i, j \in I \tag{3.10}
\end{equation*}
$$

If $i^{2}=0$ for all $i \in I$, then $0=i j+j i=i j-j i$ for all $i, j \in I$. Hence, for all $i \in I$ and $r \in A$, we have $i r i=i(r i)=(r i) i=r i^{2}=0$. Thus, $i=0$ for all $i \in I$ since A is prime. But $I \neq 0$, and so there exists $i \in I$ such that $i^{2} \neq 0$. Consequently, by (3.10), $s_{k}(j)=0$ for all $j \in I$. Seen Proposition 2.2 , d is a derivation.

Acknowledgments

The authors thank the referees for a careful reading of the manuscript.

References

1. Beidar, K. I. and Mikhalëv, A. V., Orthogonal completeness and minimal prime ideals, Trudy Sem. Petrovski 10, 227-234, (1984).
2. Beidar, K. I. and Mikhalëv, A. V., Orthogonal completeness and algebraic systems, Uspekhi Mat. Nauk 40(6), 79-115, (1985). (in Russian)
3. Bergen, J., Automorphic-differential identities in rings, Proc. Amer. Math. Soc. 106, 297-305, (1989).
4. Bres̆ar, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104(4), 1003-1006, (1988).
5. Bres̆ar, M., Jordan mappings of semiprime rings, J. Algebra 127, 218-228, (1989).
6. Bres̆ar, M. and Vukman, J., Jordan (θ, ϕ)-derivations, Glasnik Matematicki 26(46), 13-17, (1991).
7. Chuang, C. L. and Lee, T. K., Invariance of minimal prime ideals under derivations, Proc. Amer. Math. Soc. 113, 613-616, (1991).
8. D'Anna, M., A construction of Gorenstein rings, J. Algebra 306(6), 507-519, (2006).
9. D'Anna, M. and Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3), 443-459, (2007).
10. D'Anna, M. and Fontana, M., The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45(2), 241-252, (2007).
11. Goodearl, K. R. and Warfield Jr., R. B., Primitivity in differential operator rings, Math. Z.180, 503-523, (1982).
12. Herstein, I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104-1110, (1957).
13. Letzter, G., Derivations and nil ideals, Rend. Circ. Mat. Palermo 37(2), 174-176, (1988).
K. Louartiti,

Department of Mathematics,
Faculty of Sciences Ben M'sik
Hassan II University,
P.O Box 7955 Sidi Othman, Casablanca,

Morocco.
E-mail address: khalid.louartiti@usmba.ac.ma
and
A. Mamouni,

Department of Mathematics,
Faculty of Science and Technology Errachidia, Moulay Ismail University,
P.O Box 509 Boutalamine, Errachidia,

Morocco.
E-mail address: a.mamouni.fste@gmail.com
and
M. Tamekkante,

ATOA Team,
Faculty of Sciences,
Moulay Ismail University,
P.O Box 11201 Zitoune, Meknes,

Morocco.
E-mail address: tamekkante@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: 47B47, 16N60, 16S70.
 Submitted May 11, 2018. Published September 29, 2018

