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abstract: In this paper, we introduce and study a system of set-valued Cayley type inclusions involving
Cayley operator and (H,ψ)-monotone operator in real Banach spaces. We show that Cayley operator asso-
ciated with the (H,ψ)-monotone operator is Lipschitz type continuous. Using the proximal point operator
technique, we establish a fixed point formulation for the system of set-valued Cayley type inclusions. Further,
the existence and uniqueness of the approximate solution is proved. Moreover, we suggest an iterative algo-
rithm for the system of set-valued Cayley type inclusions and discuss the strong convergence of the sequences
generated by the proposed algorithm. Some examples are constructed to illustrate some concepts used in this
paper.
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1. Introduction

It is well known that variational inequalities, complementarity problems and equilibrium problems
are among most important and interesting problems in mathematical analysis. Inclusion problems were
introduced and studied as a generalization of equilibrium problems. Many nonlinear problems arising in
applied sciences such as signal processing, image recovery and machine learning, etc., can be modelled
as an inclusion problem. In recent past, variational inclusion problems have been studied extensively
by number of researchers due to their wide ranging applications to convex analysis, partial differential
equations, optimization, game theory, industry, transportation, mathematical finance, nonlinear program-
ming, economics, ecology, engineering sciences, etc., see; for example, [4,5,6,8,10,11,12,14,19,20,21,22] and
references cited therein. Recently, Luo and Huang [16] and Kim et al. [15] introduced a new class of
(H,φ) − η and (H,φ, ψ)-η-monotone operators, respectively in Banach spaces. These operators provide a
unified framework for class of maximal monotone operators, maximal η-monotone operators, H-monotone
operators and (H, η)-monotone operators. Using proximal point operator technique, they studied the con-
vergence analysis of the iterative algorithms for some classes of variational inclusions. Very recently, Ali
et al. [2] studied a Cayley inclusion problem involving XOR-operation. They defined a Cayley opera-
tor associated with a resolvent operator of a rectangular multi-valued mapping and studied convergence
analysis of Cayley inclusion problem.

On the other hand, iterative computation of zeros or fixed points of nonlinear operators have been
studied extensively in the literature, see; for example, [1,3,7,13,23,24,25,27]. Zhang et al. [26] introduced
an iterative procedure for approaching a solution of the inclusion problem and a fixed point of a non
expansive mapping in Hilbert spaces. Peng et al. [18] presented a viscosity algorithm for finding a solution
of a variational inclusion with set-valued maximal monotone mapping and inverse strongly monotone
mappings, the set of solutions of an equilibrium problem and a fixed point of a non expansive mapping.
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Motivated by the facts mentioned above, in this paper, we introduce and study an interesting class
of inclusions, namely, system of set-valued Cayley type inclusions involving Cayley operator and (H,ψ)-
monotone operator in real Banach spaces. We show that Cayley operator associated with the (H,ψ)-
monotone operator is Lipschitz type continuous. Using proximal point operator technique, we establish
a fixed point formulation for the system of set-valued Cayley type inclusions. Further, existence and
uniqueness of the approximate solution is proved. Moreover, an iterative algorithm for the system of set-
valued Cayley type inclusions is suggested to discuss the strong convergence of the sequences generated
by the proposed algorithm.

2. Preliminaries

Now, we mention some definitions, notations and conclusions which are needed in the sequel.
Let E be a real Banach space, E∗ be the topological dual of E, with its norm ‖ · ‖ and d be a metric

induced by the norm ‖ · ‖. Let 〈·, ·〉 be the dual pair between E and E∗ and CB(E)(respectively, 2E)
be the family of all nonempty closed and bounded subsets (respectively, all nonempty subsets) of E and
D(·, ·) be the Hausdorff metric on CB(E) defined by

D(P,Q) = max{sup
x∈P

d(x,Q), sup
y∈Q

d(P, y)},

where P,Q ∈ CB(E), d(x,Q) = inf
y∈Q

d(x, y) and d(P, y) = inf
x∈P

d(x, y).

The normalized duality mapping J2 : E → 2E
∗

is defined by

J2(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2, ‖f∗‖ = ‖x‖}, ∀x ∈ E.

If E ≡ H , a real Hilbert space, then J2 becomes the identity mapping on E.
Let S = {x ∈ E : ‖x‖ = 1}. A Banach space E is called uniformly convex, if for each ǫ ∈ (0, 2], there
exists δ > 0 such that

‖x− y‖ ≥ ǫ implies ‖
x+ y

2
‖ ≤ 1 − δ, ∀x, y ∈ S.

It is known that uniformly convex Banach spaces are reflexive and strictly convex.
A function ρE : [0,∞) → [0,∞) is called the modulus of smoothness of E and defined by

ρE(t) = sup
{‖x+ y‖ + ‖x− y‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}

.

A Banach space E is called uniformly smooth, if

lim
t→0

ρE(t)

t
= 0.

A Banach space E is called q-uniformly smooth, if there exists a constant c > 0 such that

ρE(t) ≤ ctq, ∀t > 0, q > 1.

Lemma 2.1. [9] Let E be a uniformly smooth Banach space and J : E → 2E
∗

be a normalized duality
mapping. Then

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x + y) ∈ J(x+ y), ∀x, y ∈ E;

(ii) 〈x− y, j(x) − j(y)〉 ≤ 2τ2ρE

(4‖x− y‖

τ

)

, where τ =

√

‖x‖2 + ‖y‖2

2
, ∀x, y ∈ E.

Lemma 2.2. [17] Let E be a complete metric space with metric d and T : E → CB(E) be a multi-valued
mapping. Then for any ǫ > 0 and for any x, y ∈ E, u ∈ T (x); there exists v ∈ T (y) such that

d(u, v) ≤ (1 + ǫ)D(T (x), T (y)).
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Definition 2.3. A single-valued mapping g : E → E∗ is said to be

(i) monotone, if
〈g(x) − g(y), x− y〉 ≥ 0, ∀x, y ∈ E;

(ii) strictly monotone, if
〈g(x) − g(y), x− y〉 > 0, ∀x, y ∈ E,

and the equality holds if and only if x = y;

(iii) δg-strongly monotone, if there exists a constant δg > 0 such that

〈g(x) − g(y), x− y〉 ≥ δg‖x− y‖2, ∀x, y ∈ E;

(iv) Lipschitz continuous, if there exists a constant λg > 0 such that

‖g(x) − g(y)‖ ≤ λg‖x− y‖, ∀x, y ∈ E;

(v) k-strongly accretive, if there exists a constant k > 0 such that

〈g(x) − g(y), j(x− y)〉 ≥ k‖x− y‖2, ∀x, y ∈ E, j(x− y) ∈ J(x − y).

Definition 2.4. Let H : E → E∗, ψ : E∗ → E∗, N : E × E → E∗ be the single-valued mappings and
M : E ⇒ 2E

∗

be a multi-valued mapping. Then

(i) M is said to be monotone, if

〈u − v, x− y〉 ≥ 0, ∀x, y ∈ E and ∀u ∈ M(x), v ∈ M(y);

(ii) M is said to be H-monotone, if M is monotone and

(H + λM)(E) = E∗, ∀λ > 0;

(iii) N is said to be Lipschitz continuous in the first argument, if there exists a constant α1 > 0 such
that

‖N(x, ·) −N(y, ·)‖ ≤ α1‖x− y‖, ∀x, y ∈ E;

(iv) N is said to be Lipschitz continuous in the second argument, if there exists a constant α2 > 0 such
that

‖N(·, x) −N(·, y)‖ ≤ α2‖x− y‖, ∀x, y ∈ E.

Definition 2.5. Let E be a Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be the
single-valued mappings. A multi-valued mapping M : E ⇒ 2E

∗

is said to be (H,ψ)-monotone, if (ψ ◦M)
is monotone and

[H + λ(ψ ◦M)](E) = E∗.

Theorem 2.6. Let E be a Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be the single-
valued mappings such that H is strictly monotone and M : E ⇒ 2E

∗

be an (H,ψ)-monotone mapping.
Then the mapping [H + λ(ψ ◦M)]−1 : E∗ → E is single-valued.

Proof. For any given x∗ ∈ E∗, let u, v ∈ (H + λψ ◦M)−1(x∗). Then, we have

1

λ
[x∗ −H(u)] ∈ (ψ ◦M)(u)]

and
1

λ
[x∗ −H(v)] ∈ (ψ ◦M)(v)].
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It follows from monotonicity of (ψ ◦M) that

1

λ
〈x∗ −H(u) − (x∗ −H(v)), u − v〉 ≥ 0

which implies that
1

λ
〈−H(u) +H(v), u − v〉 ≥ 0. (2.1)

Since H is strictly monotone, we have

1

λ
〈H(u) −H(v), u − v〉 > 0. (2.2)

It follows from (2.1) and (2.2) that u = v. Thus, [H + λ(ψ ◦M)]−1 is single-valued. �

Definition 2.7. Let E be a reflexive Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be
the single-valued mappings such that H is γ-strongly monotone and M : E ⇒ 2E

∗

be an (H,ψ)-monotone

mapping. Then the operator RH,λM,ψ : E∗ → E defined by

R
H,λ
M,ψ(x∗) = [H + λ(ψ ◦M)]−1(x∗), ∀x∗ ∈ E∗ (2.3)

is called proximal point operator associated with (H,ψ)-monotone mapping, where λ > 0 is a constant.

Theorem 2.8. Let E be a reflexive Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be the
single-valued mappings such that H is γ-strongly monotone and M : E ⇒ 2E

∗

be an (H,ψ)-monotone

mapping. Then the operator RH,λM,ψ : E∗ → E defined by (2.3) is
1

γ
-Lipschitz continuous, i.e.,

‖RH,λM,ψ(x∗) −R
H,λ
M,ψ(y∗)‖ ≤

1

γ
‖x∗ − y∗‖, ∀x∗, y∗ ∈ E∗.

Proof. Let x∗, y∗ ∈ E∗, then it follows from (2.3) that

R
H,λ
M,ψ(x∗) = [H + λ(ψ ◦M)]−1(x∗)

and
R
H,λ
M,ψ(y∗) = [H + λ(ψ ◦M)]−1(y∗),

which implies that
1

λ
[x∗ −H(RH,λM,ψ(x∗))] ∈ (ψ ◦M)(RH,λM,ψ(x∗))]

and
1

λ
[y∗ −H(RH,λM,ψ(y∗))] ∈ (ψ ◦M)(RH,λM,ψ(y∗))].

Since (ψ ◦M) is monotone, we have

1

λ
〈x∗ −H(RH,λM,ψ(x∗)) − (y∗ −H(RH,λM,ψ(y∗))), RH,λM,ψ(x∗) −R

H,λ
M,ψ(y∗)〉 ≥ 0,

which implies that

〈x∗ − y∗, R
H,λ
M,ψ(x∗) −R

H,λ
M,ψ(y∗)〉 ≥ 〈H(RH,λM,ψ(x∗)) − H(RH,λM,ψ(y∗)), RH,λM,ψ(x∗) −R

H,λ
M,ψ(y∗)〉.

Since H is γ-strongly monotone, we have

‖x∗ − y∗‖‖RH,λM,ψ(x∗) −R
H,λ
M,ψ(y∗)‖ ≥ 〈H(RH,λM,ψ(x∗)) −H(RH,λM,ψ(y∗)), RH,λM,ψ(x∗) −R

H,λ
M,ψ(y∗)〉

≥ γ‖RH,λM,ψ(x∗) −R
H,λ
M,ψ(y∗)‖2.

Thus, we have

‖RH,λM,ψ(x∗) −R
H,λ
M,ψ(y∗)‖ ≤

1

γ
‖x∗ − y∗‖, ∀x∗, y∗ ∈ E∗.

This completes the proof. �
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Now, based on proximal point operator RH,λM,ψ defined by (2.3), we define a Cayley operator.

Definition 2.9. Let E be a reflexive Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be
the single-valued mappings such that H is γ-strongly monotone and M : E ⇒ 2E

∗

be an (H,ψ)-monotone

mapping. Then the operator CH,λM,ψ : E∗ → E defined by

C
H,λ
M,ψ(x∗) = [2RH,λM,ψ − I](x∗), ∀x∗ ∈ E∗, (2.4)

is called Cayley operator.

Lemma 2.10. Let E be a reflexive Banach space with its dual E∗. Let H : E → E∗, ψ : E∗ → E∗ be the
single-valued mappings such that H is γ-strongly monotone and M : E ⇒ 2E

∗

be an (H,ψ)-monotone

mapping. Then, the Cayley operator CH,λM,ψ defined by (2.4) is
(2 + γ

γ

)

-Lipschitz continuous, i.e.,

‖CH,λM,ψ(x∗) − C
H,λ
M,ψ(y∗)‖ ≤

(2 + γ

γ

)

‖x∗ − y∗‖, ∀x∗, y∗ ∈ E∗.

Proof. Let x∗, y∗ ∈ E∗, then it follows from (2.4) and
1

γ
–Lipschitz continuity of proximal point operator

R
H,λ
M,ψ that

‖CH,λM,ψ(x∗) − C
H,λ
M,ψ(y∗)‖ = ‖[2RH,λM,ψ − I](x∗) − [2RH,λM,ψ − I](y∗)‖

≤ 2‖RH,λM,ψ(x∗) −R
H,λ
M,ψ(y∗)‖ + ‖x∗ − y∗‖

≤
2

γ
‖x∗ − y∗‖ + ‖x∗ − y∗‖,

which gives

‖CH,λM,ψ(x∗) − C
H,λ
M,ψ(y∗)‖ ≤

(2 + γ

γ

)

‖x∗ − y∗‖.

Thus, the Cayley operator CH,λM,ψ is
(2 + γ

γ

)

-Lipschitz continuous. �

Example 2.11. Let E = R = (−∞,∞),M(x) = 2x,H(x) = x+
1

2
, ψ(x) = x+ 1, ∀x ∈ R. Then

〈ψ ◦M(x) − ψ ◦M(y), x− y〉 = 〈(2x+ 1) − (2y + 1), x− y〉
= 2〈x− y, x− y〉 = 2(x− y)2 ≥ 0.

Thus, ψ ◦M is a monotone mapping. It is easy to see that

(H + ψ ◦M)(x) = 3x+
3

2
, ∀x ∈ R,

i.e., (H + ψ ◦M) is surjective. Hence, M is (H,ψ)-monotone.
For λ = 1, the proximal point operator associated to (H,ψ)-monotone mapping defined by (2.3) is

given by

R
H,λ
M,ψ(x) = (H + λψ ◦M)−1(x) =

x

3
−

1

2
, ∀x ∈ R.

Now,

‖RH,λM,ψ(x) −R
H,λ
M,ψ(y)‖ =

1

3
‖x− y‖ ≤

1

n
‖x− y‖, ∀x ∈ R, n = 1, 2, 3.

Thus, the proximal point operator RH,λM,ψ is
1

n
–Lipschitz continuous, for n = 1, 2, 3.

The Cayley operator CH,λM,ψ defined by (2.4) is given by

C
H,λ
M,ψ(x) =

−x− 1

3
, ∀x ∈ R.
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Also, ‖CH,λM,ψ(x) − C
H,λ
M,ψ(y)‖ =

1

3
‖x− y‖ ≤

( 2

n
+ 1

)

‖x− y‖, ∀x ∈ R, n = 1, 2, 3.

Thus, the Cayley operator CH,λM,ψ is
( 2

n
+ 1

)

–Lipschitz continuous.

Example 2.12. Let E = M2
S, the space of all 2 × 2 symmetric matrices. The inner product is defined

as 〈M2
S1
,M2

S2
〉 = trace(M2

S1
M2
S2

), ∀M2
S1
,M2

S2
∈ E.

Let H
(

[

x1 a

a x2

]

)

=

[

x1 −a
2

−a
2 x2

]

, M
(

[

x1 a

a x2

]

)

=

[

6x1
a
6

a
6 6x2

]

and ψ
(

[

x1 a

a x2

]

)

=

[

x1

2 3a
3a x2

2

]

. Then

〈ψ ◦M(x) − ψ ◦M(y), x− y〉 = trace[(ψ ◦M(x) − ψ ◦M(y))(x− y)]

= trace

([

3(x1 − y1) a−b
2

a−b
2 3(x2 − y2)

] [

x1 − y1 a− b

a− b x2 − y2

])

= 3(x1 − y1)2 + (a− b)2 + 3(x2 − y2)2 ≥ 0.

Thus, (ψ ◦M) is a monotone mapping. It is easy to see that

(H + ψ ◦M)(x) =

[

x1 −a
2

−a
2 x2

]

+

[

3x1
a
2

a
2 3x2

]

=

[

4x1 0
0 4x2

]

,

i.e., (H+ψ◦M)(E) 6= E. Thus, it is clear that (ψ◦M)-monotone mapping need not be (H,ψ)-monotone.

3. Formulation of the System of Set-valued Cayley Type Inclusions and Convergence

Result

This section begins with the formulation of a system of set-valued Cayley type inclusions and we
discuss the existence of unique solution.

Let E be a uniformly smooth Banach space with its dual E∗, for each i = {1, 2}; let Ni : E × E →
E∗, ψi : E∗ → E∗, g : E → E be the single-valued mappings and Pi, Qi, Ti, Gi : E → CB(E) be the
set-valued mappings. Let H : E → E∗ be a strongly monotone mapping and M : E ⇒ 2E

∗

be an
(H,ψ)-monotone mapping. We consider the following system of set-valued inclusions.

Find (xi, ui, vi, wi, zi), xi ∈ E, ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1) and zi ∈ Gi(x1) such that

{

0 ∈ H(g(x1)) −H(g(x2)) + λ1[N1(u1, v1) +M(g(x1), w1) + C
H,λ1

M,ψ
1

(z1)],

0 ∈ H(g(x2)) −H(g(x1)) + λ2[N2(u2, v2) +M(g(x2), w2) + C
H,λ2

M,ψ
2

(z2)].
(3.1)

We call the system (3.1), the system of set-valued Cayley type inclusions.

Remark 3.1. For each i = {1, 2}, if we consider xi = x, ui = u, vi = v, wi = w and zi = z, then the
system of set-valued Cayley type inclusions (3.1) reduces to the following Cayley type inclusion problem:

Find x ∈ E, u ∈ P (x), v ∈ Q(x), w ∈ T (x) and z ∈ G(x) such that

0 ∈ H(g(x)) −H(g(y)) + λ[N(u, v) +M(g(x), w) + C
H,λ
M,ψ(z)], ∀y ∈ E, λ > 0. (3.2)

If g = I, the identity mapping, H,N ≡ 0,M(·, ·) = M(·), and G is a single-valued mapping, then the
Cayley type inclusion problem (3.2) reduces to an equivalent problem of finding x ∈ H such that

0 ∈ M(x) + CMI,λ(x). (3.3)

Problem (3.3) was studied by Ali et al. [2] using XOR-operation.

Theorem 3.2. Let E be a uniformly smooth Banach space with its dual E∗, for each i = {1, 2}; let
Ni : E × E → E∗ and g : E → E be the single-valued mappings; let ψi : E∗ → E∗ be a single-valued
mapping such that ψi(x+y) = ψi(x)+ψi(y) and Ker(ψi) = {0}, where Ker(ψi) = {x ∈ E∗ : ψi(x) = 0}.
Let H : E → E∗ be a strongly monotone mapping and M : E ⇒ 2E

∗

be an (H,ψ)-monotone mapping.
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Then the system of set-valued Cayley type inclusions (3.1) has a solution (xi, ui, vi, wi, zi), where xi ∈
E, ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1), zi ∈ Gi(x1) if and only if it satisfies following fixed point problem:

g(x1) = R
H,λ1

M(·,w1),ψ
1

[H(g(x2)) − λ1ψ1 ◦N1(u1, v1) − λ1C
H,λ1

M,ψ
1

(z1)]; (3.4)

where,
g(x2) = R

H,λ2

M(·,w2),ψ
2

[H(g(x1)) − λ2ψ2 ◦N2(u2, v2) − λ2C
H,λ2

M,ψ
2

(z2)], (3.5)

λi > 0 is a constant, RH,λi

M(.,wi),ψ
i

= [H + λiψi ◦ M(·, wi)]
−1 is proximal point operator and C

H,λi

M,ψ
i

=

[2RH,λi

M,ψ
i

− I] is a Cayley operator.

Proof. It follows from the definition of proximal point operator RH,λ1

M(.,wi),ψ
i

that

H(g(x2)) − λ1ψ1 ◦N1(u1, v1) − λ1C
H,λ1

M,ψ
1

(z1) ∈ [H + λ1ψ1 ◦M(·, w1)]g(x1)

⇔ H(g(x2)) − λ1ψ1 ◦N1(u1, v1) − λ1C
H,λ1

M,ψ
1

(z1) ∈ [H(g(x1)) + λ1ψ1 ◦M(g(x1), w1)]

⇔ 0 ∈ H(g(x1)) −H(g(x2)) + λ1ψ1[N1(u1, v1) +M(g(x1), w1)] + λ1C
H,λ1

M,ψ
1

(z1).

Since ψ1(x+ y) = ψ1(x) + ψ1(y) and Ker(ψ1) = {0}, we have

0 ∈ H(g(x1)) −H(g(x2)) + λ1[N1(u1, v1) +M(g(x1), w1)] + λ1C
H,λ1

M,ψ
1

(z1), λ1 > 0.

Similarly, we can prove that

0 ∈ H(g(x2)) −H(g(x1)) + λ2[N2(u2, v2) +M(g(x2), w2)] + λ2C
H,λ2

M,ψ
2

(z2), λ2 > 0.

This completes the proof. �

Algorithm 1. For any arbitrary x0
1 ∈ E, u0

1 ∈ P1(x0
1), v0

1 ∈ Q1(x0
1), w0

1 ∈ T1(x0
1), z0

1 ∈ G1(x0
1), compute

the sequences {xn1 }, {un1 }, {vn1 }, {wn1 }, {zn1 } by the following iterative scheme:

xn+1
1 = xn1 − g(xn1 ) +R

H,λ1

M(·,wn

1
),ψ

1

[H(g(xn2 )) − λ1ψ1 ◦N1(un1 , v
n
1 ) − λ1C

H,λ1

M,ψ
1

(zn1 )], λ1 > 0;

where,
g(xn2 ) = R

H,λ2

M(·,wn

2
),ψ

2

[H(g(xn1 )) − λ2ψ2 ◦N2(un2 , v
n
2 ) − λ2C

H,λ2

M,ψ
2

(zn2 )], λ2 > 0;

and
uni ∈ Pi(x

n
1 ) : ‖un+1

i − uni ‖ ≤ (1 + (1 + n)−1)D(Pi(x
n+1
1 ), Pi(x

n
1 ));

vni ∈ Qi(x
n
1 ) : ‖vn+1

i − vni ‖ ≤ (1 + (1 + n)−1)D(Qi(x
n+1
1 ), Qi(x

n
1 ));

wni ∈ Ti(x
n
1 ) : ‖wn+1

i − wni ‖ ≤ (1 + (1 + n)−1)D(Ti(x
n+1
1 ), Ti(x

n
1 ));

zni ∈ Gi(x
n
1 ) : ‖zn+1

i − zni ‖ ≤ (1 + (1 + n)−1)D(Gi(x
n+1
1 ), Gi(x

n
1 )).

Algorithm 2. For any arbitrary x0 ∈ E, u0 ∈ P (x0), v0 ∈ Q(x0), w0 ∈ T (x0) and z0 ∈ G(x0), compute
the sequences {xn}, {un}, {vn}, {wn}, {zn} by the following iterative scheme:

xn+1 = xn − g(xn) +R
H,λ

M(·,wn),ψ[H(g(xn)) − λψ ◦N(un, vn) − λC
H,λ
M,ψ(zn), λ > 0;

and
un ∈ P (xn) : ‖un+1 − un‖ ≤ (1 + (1 + n)−1)D(P (xn+1), P (xn));

vn ∈ Q(xn) : ‖vn+1 − vn‖ ≤ (1 + (1 + n)−1)D(Q(xn+1), Q(xn));

wn ∈ T (xn) : ‖wn+1 − wn‖ ≤ (1 + (1 + n)−1)D(T (xn+1), T (xn));

zn ∈ G(xn) : ‖zn+1 − zn‖ ≤ (1 + (1 + n)−1)D(G(xn+1), G(xn)).
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Theorem 3.3. Let E be a uniformly smooth Banach space with its dual E∗ and modulus of smoothness
ρE(t) ≤ ct2, for some c > 0. Let g : E → E be k-strongly accretive and Lipschitz continuous with constant
µ and H : E → E∗ be Lipschitz continuous with constant s with respect to g. For each i = {1, 2}; let
Ni : E × E → E∗ be (αi, βi)-Lipschitz continuous in the first and second argument, respectively. Let
Pi, Qi, Ti, Gi : E → CB(E∗) be D-Lipschitz continuous with constants δPi

, δQi
, δTi

and δGi
, respectively.

Let ψi : E∗ → E∗ be a Lipschitz continuous mapping with respect to Ni(·, ·) with constant ζi satisfying
ψi(x+ y) = ψi(x) +ψi(y) with Ker(ψi) = {0}. Let M : E ×E ⇒ 2E

∗

be an (H,ψi)-monotone mapping.
Assume that there exist constants λ1, λ2 > 0 satisfying

0 < Θ(P ) = ∆ + l1 + l2 +
ξ2

k
δT2

< 1, (3.6)

where,

l1 =
[λ1

γ
[ζ1(α1δP1

+ β1δQ1
) +

(2 + γ

γ

)

δG1

]

; l2 =
sδ

γ

[λ2

kγ
(ζ2(α2δP2

+ β2δQ2
) +

(

2 + γ

γ

)

δG2
)
]

and

∆ =
√

1 − 2k + 64cδ2 +
s2µ2

kγ2
+ ξ1δT1

. In addition the following condition holds:

‖RH,λi

M(·,wn

i
),ψ

i

(u) −R
H,λi

M(·,w
n−1

i
),ψ

i

(u)‖ ≤ ξi‖w
n
i − wn−1

i ‖, ξi > 0. (3.7)

Then (xi, ui, vi, wi, zi), xi ∈ E, ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1) and zi ∈ Gi(x1) is unique solution of
the system of set-valued Cayley type inclusions (3.1). Moreover, the iterative sequences {xni }, {uni }, {vni }, {wni }, {zni }
generated by Algorithm 1 converge strogly to (xi, ui, vi, wi, zi).

Proof. It follows from Algorithm 1, Theorem 2.8 and Condition (3.7) that

‖xn+1
1 − xn1 ‖ = ‖xn1 − g(xn1 ) +R

H,λ1

M(·,wn

1
),ψ

1

[H(g(xn2 )) − λ1ψ1 ◦N1(un1 , v
n
1 ) − λ1C

H,λ1

M,ψ
1

(zn1 )]

−xn−1
1 + g(xn−1

1 ) −R
H,λ1

M(·,w
n−1

1
),ψ

1

[H(g(xn−1
2 )) − λ1ψ1 ◦N1(un−1

1, vn−1
1 )

−λ1C
H,λ1

M,ψ
1

(zn−1
1 )]‖

≤ ‖xn1 − xn−1
1 − (g(xn1 ) − g(xn−1

1 ))‖

+‖RH,λ1

M(·,wn

1
),ψ

1

[H(g(xn2 )) − λ1ψ1 ◦N1(un1 , v
n
1 ) − λ1C

H,λ1

M,ψ
1

(zn1 )]

−RH,λ1

M(·,wn

1
),ψ

1

[H(g(xn−1
2 )) − λ1ψ1 ◦N1(un−1

1, vn−1
1 ) − λ1C

H,λ1

M,ψ
1

(zn−1
1 )]‖

+RH,λ1

M(·,wn

1
),ψ

1

[H(g(xn−1
2 )) − λ1ψ1 ◦N1(un−1

1, vn−1
1 ) − λ1C

H,λ1

M,ψ
1

(zn−1
1 )]‖

−RH,λ1

M(·,w
n−1

1
),ψ

1

[H(g(xn−1
2 )) − λ1ψ1 ◦N1(un−1

1, vn−1
1 ) − λ1C

H,λ1

M,ψ
1

(zn−1
1 )]‖

≤ ‖xn1 − xn−1
1 − (g(xn1 ) − g(xn−1

1 ))‖

+
1

γ
‖H(g(xn2 )) − λ1ψ1 ◦N1(un1 , v

n
1 ) − λ1C

H,λ1

M,ψ
1

(zn1 )

−[H(g(xn−1
2 )) − λ1ψ1 ◦N1(un−1

1, vn−1
1 ) − λ1C

H,λ1

M,ψ
1

(zn−1
1 )]‖ + ξ1‖wn1 − wn−1

1 ‖

≤ ‖xn1 − xn−1
1 − (g(xn1 ) − g(xn−1

1 ))‖ +
1

γ
‖H(g(xn2 )) −H(g(xn−1

2 ))‖

+
λ1

γ
‖ψ1 ◦N1(un1 , v

n
1 ) − ψ1 ◦N1(un−1

1 , vn−1
1 )‖

+
λ1

γ
‖CH,λ1

M,ψ
1

(zn1 ) − C
H,λ1

M,ψ
1

(zn−1
1 )‖ + ξ1‖wn1 − wn−1

1 ‖.

(3.8)

Since g is k-strongly accretive and Lipschitz continuous with constant µ, then from Lemma 2.1, we have

‖xn1 − xn−1
1 − (g(xn1 ) − g(xn−1

1 ))‖2

≤ ‖xn1 − xn−1
1 ‖2 + 2〈j((xn1 − xn−1

1 ) − g(xn1 ) + g(xn−1
1 )),−(g(xn1 ) − g(xn−1

1 ))〉
≤ ‖xn1 − xn−1

1 ‖2 − 2〈j(xn1 − xn−1
1 ), g(xn1 ) − g(xn−1

1 )〉
+2〈j(xn1 − xn−1

1 − g(xn1 ) + g(xn−1
1 )) − j(xn1 − xn−1

1 ),−(g(xn1 ) − g(xn−1
1 ))〉

≤ ‖xn1 − xn−1
1 ‖2 − 2k‖xn1 − xn−1

1 ‖2 + 4d2ρE

(

4‖g(xn1 ) − g(xn−1
1 )‖

d

)

≤ (1 − 2k + 64cµ2)‖xn1 − xn−1
1 ‖2,



Cayley Approximation Operator with an Application 9

which implies that

‖xn1 − xn−1
1 − (g(xn1 ) − g(xn−1

1 ))‖ ≤
√

1 − 2k + 64cµ2‖xn1 − xn−1
1 ‖. (3.9)

Using the Lipschitz continuities of H and g, we get

‖H(g(xn2 )) −H(g(xn−1
2 ))‖ ≤ sµ‖xn2 − xn−1

2 ‖. (3.10)

Since ψ1 is ζ1-Lipschitz continuous with respect to N1(·, ·) and N1(·, ·) is (α1, β1)-Lipschitz continuous
with respect to first and second argument, respectively, P1 and Q1 are D-Lipschitz continuous with
constants δP1

and δQ1
, respectively, then we have

‖ψ1 ◦N1(un1 , v
n
1 ) − ψ1 ◦N1(un−1

1 , vn−1
1 )‖ ≤ ζ1‖N1(un1 , v

n
1 ) −N1(un−1

1 , vn−1
1 )‖

≤ ζ1‖N1(un1 , v
n
1 ) −N1(un−1

1 , vn1 )‖
+ζ1‖N1(un−1

1 , vn1 ) −N1(un−1
1 , vn−1

1 )‖
≤ ζ1α1‖un1 − un−1

1 ‖ + ζ1β1‖vn1 − vn−1
1 ‖

≤ ζ1α1[1 + (1 + n)−1]D(P1(xn1 ), P1(xn−1
1 ))

+ζ1β1[1 + (1 + n)−1]D(Q1(xn1 ), Q1(xn−1
1 ))

≤ ζ1[1 + (1 + n)−1][α1δP1
+ β1δQ1

]‖xn1 − xn−1
1 ‖.

(3.11)

Since CH,λ1

M,ψ
1

is

(

2 + γ

γ

)

-Lipschitz continuous and G1 is D-Lipschitz continuous with constant δG1
, then

we have

‖CH,λ1

M,ψ
1

(zn1 ) − C
H,λ1

M,ψ
1

(zn−1
1 )‖ ≤

(2 + γ

γ

)

‖zn1 − zn−1
1 ‖

≤
(2 + γ

γ

)

[1 + (1 + n)−1]D(G1(xn1 ), G1(xn−1
1 ))

≤
(2 + γ

γ

)

[1 + (1 + n)−1]δG1
‖xn1 − xn−1

1 ‖.

(3.12)

Also, T1 is D-Lipschitz continuous with constant δT1
, then we have

‖wn1 − wn−1
1 ‖ ≤ [1 + (1 + n)−1]D(T1(xn1 ), T1(xn−1

1 ))
≤ [1 + (1 + n)−1]δT1

‖xn1 − xn−1
1 ‖.

(3.13)

Thus, from (3.8)–(3.13), we get

‖xn+1
1 − xn1 ‖ ≤

{

√

1 − 2k + 64cµ2 + [1 + (1 + n)−1][
λ1

γ
[ζ1(α1δP1

+ β1δQ1
)

+

(

2 + γ

γ

)

δG1
] + ξ1δT1

]
}

‖xn1 − xn−1
1 ‖ +

sµ

γ
‖xn2 − xn−1

2 ‖.

(3.14)

Again, using the fact that g is k-strongly accretive and Lipschitz continuous with constant µ, we have

‖g(xn2 ) − g(xn−1
2 )‖‖xn2 − xn−1

2 ‖ ≥ 〈g(xn2 ) − g(xn−1
2 ), j(xn2 − xn−1

2 )〉
≥ k‖xn2 − xn−1

2 ‖2,
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which implies that

‖xn2 − xn−1
2 ‖ ≤

1

k
‖g(xn2 ) − g(xn−1

2 )‖

=
1

k
‖RH,λ2

M(·,wn

2
),ψ

2

[H(g(xn1 )) − λ2ψ2 ◦N2(un2 , v
n
2 ) − λ2C

H,λ2

M,ψ
2

(zn2 )]

−RH,λ2

M(·,w
n−1

2
),ψ

2

[H(g(xn−1
1 )) − λ2ψ2 ◦N2(un−1

2 , vn−1
2 ) − λ2C

H,λ2

M,ψ
2

(zn−1
2 )]‖

≤
1

kγ
‖H(g(xn1 )) −H(g(xn−1

1 ))‖ +
λ2

kγ
‖ψ2 ◦N2(un2 , v

n
2 ) − ψ2 ◦N2(un−1

2 , vn−1
2 )‖

+
λ2

kγ
‖CH,λ2

M,ψ
2

(zn2 ) − C
H,λ2

M,ψ
2

(zn−1
2 )‖ +

ξ2

k
‖wn2 − wn−1

2 ‖.

(3.15)
Since ψ2 is Lipschitz continuous with constant ζ2 with respect to N2(·, ·) and N2(·, ·) is (α2, β2)-Lipschitz
continuous with respect to first and second argument, respectively, P2 and Q2 are D-Lipschitz continuous
with constant δP2

and δQ2
, respectively, then we have

‖ψ2 ◦N2(un2 , v
n
2 ) − ψ2 ◦N2(un−1

2 , vn−1
2 )‖ ≤ ζ2‖N2(un2 , v

n
2 ) −N2(un−1

2 , vn−1
2 )‖

≤ ζ2[1 + (1 + n)−1][α2δP2
+ β2δQ2

]‖xn1 − xn−1
1 ‖.

(3.16)

Since H and g are Lipschitz continuities with constant s and µ, respectively, then we have

‖H(g(xn1 )) −H(g(xn−1
1 ))‖ ≤ sµ‖xn1 − xn−1

1 ‖. (3.17)

Again, it follows from the fact that CH,λ2

M,ψ
2

is

(

2 + γ

γ

)

-Lipschitz continuous and G2 is D-Lipschitz con-

tinuous with constant δG2
, then we have

‖CH,λ1

M,ψ
2

(zn2 ) − C
H,λ1

M,ψ
2

(zn−1
2 )‖ ≤

(2 + γ

γ

)

‖zn2 − zn−1
2 ‖

≤
(2 + γ

γ

)

[1 + (1 + n)−1]δG2
‖xn1 − xn−1

1 ‖.
(3.18)

Also, T2 is D-Lipschitz continuous with constant δT2
, then we have

‖wn2 − wn−1
2 ‖ ≤ [1 + (1 + n)−1]D(T2(xn1 ), T2(xn−1

1 ))
≤ [1 + (1 + n)−1]δT2

‖xn1 − xn−1
1 ‖.

(3.19)

Thus, from (3.15)–(3.19), we have

‖xn2 − xn−1
2 ‖ ≤

{sµ

kγ
+ [1 + (1 + n)−1]

[λ2

kγ

[

ζ2(α2δP2
+ β2δQ2

) +
(2 + γ

γ

)

δG2

]

+
ξ2

k
δT2

]}

‖xn1 − xn−1
1 ‖.

(3.20)

It follows from (3.14) and (3.20) that

‖xn+1
1 − xn1 ‖ ≤

{

√

1 − 2k + 64cµ2 + [1 + (1 + n)−1][
λ1

γ
[ζ1(α1δP1

+ β1δQ1
)

+

(

2 + γ

γ

)

δG1
] + ξ1δT1

]
}

‖xn1 − xn−1
1 ‖

+
sµ

γ

{ sµ

kγ
+ [1 + (1 + n)−1]

[λ2

kγ

[

ζ2(α2δP2
+ β2δQ2

)

+
(2 + γ

γ

)

δG2

]

+
ξ2

k
δT2

]}

‖xn1 − xn−1
1 ‖.

(3.21)
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Thus, we have
‖xn+1

1 − xn1 ‖ ≤ Θ(Pn)‖xn1 − xn−1
1 ‖, (3.22)

where,

Θ(Pn) = ∆n + [1 + (1 + n)−1]
{λ1

γ
[ζ1(α1δP1

+ β1δQ1
) +

(2 + γ

γ

)

δG1
]

+
sµ

γ

[λ2

kγ
[ζ2(α2δP2

+ β2δQ2
) +

(2 + γ

γ

)

δG2
] +

ξ2

k
δT2

]}

,
(3.23)

∆n =
√

1 − 2k + 64cµ2 +
s2µ2

kγ2
+ [1 + (1 + n)−1]ξ1δT1

.

We see that Θ(Pn) → Θ(P ) as n → ∞, where Θ(P ) = ∆+ l1 + l2 +
ξ2

k
δT2

and ∆ =
√

1 − 2k + 64cδ2 +

s2µ2

kγ2
+ ξ1δT1

; l1 =
λ1

γ
[ζ1(α1δP1

+β1δQ1
) +

(2 + γ

γ

)

δG1
]; l2 =

sµ

γ

[λ2

kγ
[ζ2(α2δP2

+β2δQ2
) +

(2 + γ

γ

)

δG2
].

It follows from the condition (3.6) that 0 < Θ(P ) < 1, and consequently by (3.22), {xn1 } is a Cauchy
sequence in E. Similarly by (3.20) and (3.22), it follows that {xn2 } is also a Cauchy sequence in E. Since
E is complete, then there exist x1, x2 ∈ E such that xn1 → x1 and xn2 → x2 as n → ∞. It follows from
Algorithm 1 that

‖un+1
i − uni ‖ ≤ (1 + (1 + n)−1)D(Pi(x

n+1
1 ), Pi(x

n
1 ))

≤ (1 + (1 + n)−1)δPi
‖xn1 − xn−1

1 ‖.
(3.24)

‖vn+1
i − vni ‖ ≤ (1 + (1 + n)−1)D(Qi(x

n+1
1 ), Qi(x

n
1 ))

≤ (1 + (1 + n)−1)δQi
‖xn1 − xn−1

1 ‖.
(3.25)

‖wn+1
i − wni ‖ ≤ (1 + (1 + n)−1)D(Ti(x

n+1
1 ), Ti(x

n
1 ))

≤ (1 + (1 + n)−1)δTi
‖xn1 − xn−1

1 ‖.
(3.26)

‖zn+1
i − zni ‖ ≤ (1 + (1 + n)−1)D(Gi(x

n+1
1 ), Gi(x

n
1 ))

≤ (1 + (1 + n)−1)δGi
‖xn1 − xn−1

1 ‖.
(3.27)

Clearly, from (3.24)–(3.27), we know that {uni }, {vni }, {wni } and {zni } are also Cauchy sequences in E.
Let uni → ui, v

n
i → vi, w

n
i → wi and zni → zi as n → ∞. Thus, by Theorem 3.2, we conclude that

(xi, ui, vi, wi, zi), xi ∈ E, ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1) and zi ∈ Gi(x1) is a solution of the system
of set-valued Cayley type inclusions (3.1). Next, we show that ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1) and
zi ∈ Gi(x1). Since,

d(ui, Pi(x1)) ≤ ‖ui − uni ‖ + d(uni , Pi(x1))
≤ ‖ui − uni ‖ + D(Pi(x

n
1 ), Pi(x1))

≤ ‖ui − uni ‖ + δPi
‖xn1 − x1‖ → 0 as n → ∞,

(3.28)

which shows that d(ui, Pi(x1)) = 0, and hence ui ∈ Pi(x1). Similarly, one can show that vi ∈ Qi(x1), wi ∈
Ti(x1) and zi ∈ Gi(x1), respectively. Now, we prove the uniqueness of the solution (xi, ui, vi, wi, zi). Let
(x

′

i, u
′

i, v
′

i, w
′

i, z
′

i), x
′

i ∈ E, u
′

i ∈ Pi(x
′

1), v
′

i ∈ Qi(x
′

1), w
′

i ∈ Ti(x
′

1) and z
′

i ∈ Gi(x
′

1) be another solution of the
system of set-valued Cayley type inclusions (3.1), then it follows from Theorem 3.2 that

g(x
′

1) = R
H,λ1

M(·,w
′

1
),ψ

1

[H(g(x
′

2)) − λ1ψ1 ◦N1(u
′

1, v
′

1) − λ1C
H,λ1

M,ψ
1

(z
′

1)];

where,
g(x

′

2) = R
H,λ2

M(·,w
′

2
),ψ

2

[H(g(x
′

1)) − λ2ψ2 ◦N2(u
′

2, v
′

2) − λ2C
H,λ2

M,ψ
2

(z
′

2)].

Now following the same arguments as mentioned from (3.8)–(3.22), we have

‖x1 − x
′

1‖ ≤ ‖x1 − g(x1) +R
H,λ1

M(·,w1),ψ
1

[H(g(x2)) − λ1ψ1 ◦N1(u1, v1) − λ1C
H,λ1

M,ψ
1

(z1)]

−x
′

1 + g(x
′

1) −R
H,λ1

M(·,w
′

1
),ψ

1

[H(g(x
′

2)) − λ1ψ1 ◦N1(u
′

1, v
′

1) − λ1C
H,λ1

M,ψ
1

(z
′

1)]‖

≤ Θ(P )‖x1 − x
′

1‖.

(3.29)
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Since 0 < Θ(P ) < 1, thus we have x1 = x
′

1. Similarly, one can show that x2 = x
′

2, ui = u
′

i, vi = v
′

i, wi = w
′

i

and zi = z
′

i. Therefore (xi, ui, vi, wi, zi), xi ∈ E, ui ∈ Pi(x1), vi ∈ Qi(x1), wi ∈ Ti(x1) and zi ∈ Gi(x1) is
unique solution of the system of set-valued Cayley type inclusions (3.1). �

Corollary 3.4. Let E be a uniformly smooth Banach space with its dual E∗ and modulus of smoothness
ρE(t) ≤ ct2, for some c > 0. Let g : E → E be k-strongly accretive and Lipschitz continuous with constant
µ and H : E → E∗ be Lipschitz continuous with constant s with respect to g. Let N : E × E → E∗ be
(α, β)-Lipschitz continuous in the first and second argument, respectively. Let P,Q, T,G : E → CB(E∗)
be D-Lipschitz continuous with constants δP , δQ, δT and δG, respectively. Let ψ : E∗ → E∗ be a Lipschitz
continuous mapping with respect to N(·, ·) with constant ζ satisfying ψ(x+y) = ψ(x)+ψ(y) with Ker(ψ) =
{0} and M : E × E ⇒ 2E

∗

be an (H,ψ)-monotone mapping. Assume that there exists a constant λ > 0
satisfying

0 < Θ(P ) = ∆ + l < 1, (3.30)

where,

∆ =
√

1 − 2k + 64cµ2 + ξδT ; l =
1

γ

[

sµ+
λ

γ
[ζ(αδP + βδQ) +

(2 + γ

γ

)

δG

]

.

In addition the following condition holds:

‖RH,λ
M(·,wn),ψ(u) −R

H,λ

M(·,wn−1),ψ(u)‖ ≤ ξ‖wn − wn−1‖, ξ > 0. (3.31)

Then (x, u, v, w, z), x ∈ E, u ∈ P (x), v ∈ Q(y), w ∈ T (x) and z ∈ G(x) is unique solution of Cayley type
inclusion problem (3.2). Moreover, the iterative sequences {xn}, {un}, {vn},{wn}, {zn} generated by
Algorithm 2 converge strogly to (x, u, v, w, z).

Example 3.5. Let E = R with the usual inner product and norm. Let g : E → E,H : E → E∗, ψ :
E∗ → E∗ and N : E × E → E∗ be the mappings defined by

g(x) =
x

4
, H(x) = 50x −

7

20
, ψ(x) = 5x and N(x, y) =

x

15
+

y

20
, ∀x, y ∈ R, respectively. Then, it is

easy to verify that g is
1

5
-strongly accretive and

1

3
-Lipschitz continuous, H is

51

4
-Lipschitz continuous

with respect to g, ψ is
36

60
-Lipschitz continuous with respect to N and satisfies ψ(x + y) = ψ(x) + ψ(y)

M(x) = {14x}, H(x) = 50x−
7

20
and ψ(x) = 5x−

1

2
, ∀x ∈ R.

〈ψ ◦M(x) − ψ ◦M(y), x− y〉 = 70(x− y)2 ≥ 0

Thus, ψ ◦M is a monotone mapping. It is easy to see that

(H + ψ ◦M)(x) = 120x−
17

20
, ∀x ∈ R,

i.e., (H + ψ ◦M) is surjective. Hence, M is (H,ψ)-monotone.
For λ = 1, the proximal point operator associated to (H,ψ)-monotone mapping defined by (2.3) is

given by

R
H,λ
M,ψ(x) = (H + λψ ◦M)−1(x) =

x

120
+

17

2400
, ∀x ∈ R.

Now,

‖RH,λM,ψ(x) −R
H,λ
M,ψ(y)‖ =

1

120
‖x− y‖ ≤

1

n
‖x− y‖, ∀x ∈ R, n ≤ 120.

Thus, the proximal point operator RH,λM,ψ is
1

n
–Lipschitz continuous, for n ≤ 120.

The Cayley operator CH,λM,ψ defined by (2.4) is given by

C
H,λ
M,ψ(x) =

−x− 1

3
, ∀x ∈ R.
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Also, ‖CH,λM,ψ(x) − C
H,λ
M,ψ(y)‖ =

1

120
‖x− y‖ ≤

( 2

n
+ 1

)

‖x− y‖, ∀x ∈ R, n = 1, 2, 3.

Thus, the Cayley operator CH,λM,ψ is
( 2

n
+ 1

)

–Lipschitz continuous, for n = 1, 2, 3.

4. Concluding Remarks

In this paper, we considered and studied a system of set-valued Cayley type inclusions involving
Cayley operator and (H,ψ)-monotone operator in real Banach spaces, which includes many inclusion
problems studied in the literature as special cases. We proved that Cayley operator associated with the
(H,ψ)-monotone operator is Lipschitz type continuous. Existence and uniqueness of the approximate
solution is proved. Moreover, we suggested an iterative algorithm for the system of set-valued Cayley type
inclusions and the strong convergence of the sequences generated by the proposed algorithm is discussed.
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