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C0-semigroups and Local Spectral Theory

H. Boua, M. Karmouni and A. Tajmouati

abstract: Let (T (t))t≥0 be a C0-semigroup of operators on a Banach space X. In this paper, we show that
if there exists t0 > 0 such that T (t0) has the SVEP then A has the SVEP and if σp(A) has empty interior,
then T (t) has the SVEP for all t ≥ 0. Also, some local spectral properties for C0 semigroups and theirs
generators and some stabilities results are also established.
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1. Introduction

The semigroups can be used to solve a large class of problems commonly known as the Cauchy
problem,

{

u′(t) = Au(t) for all t ≥ 0,
u(0) = u0. .

on a Banach space X . Here A is a given linear operator with domain D(A) and the initial value
u0. The solution of the previous Cauchy problem will be given by u(t) = T (t)u0 for an operator semi-
group (T (t))t≥0 on X . In this paper, we will focus on a special class of linear semigroups called C0

semigroups which are semigroups of strongly continuous bounded operators. Precisely, a one-parameter
family (T (t))t≥0 of operators on a Banach space X is called a C0-semigroup of operators or a strongly
continuous semigroup of operators if,

1. T (0) = I,

2. T (t + s) = T (t)T (s), ∀t, s ≥ 0,

3. lim
t→0

T (t)x = x, ∀x ∈ X .

(T (t))t≥0 has a unique infinitesimal generator A defined in domain D(A) by,

Ax = lim
t→0

T (t)x − x

t
, ∀x ∈ D(A),

D(A) = {x ∈ X : lim
t→0

T (t)x − x

t
exists}.

Also, T (t) are linear and continuous operators on X for all t ≥ 0, and A is a closed operator, see [4,8]. In
order to understand the behavior of the solutions in terms of the data concerning A, one seeks information
about the spectrum of T (t) in terms of the spectrum of A. Unfortunately the spectral mapping theorem
etσ(A) = σ(T (t)) \ {0} often fails, sometimes in dramatic ways. However, the inclusion

etσ(A) ⊆ σ(T (t)) \ {0} (1.1)

is always true. The aim of this paper is to develop a local spectral theory for C0 semigroups.

2010 Mathematics Subject Classification: 47D03, 47A10, 47A11.
Submitted March 24, 2020. Published June 27, 2020

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.52765


2 H. Boua, M. Karmouni and A. Tajmouati

2. Preliminaries

Throughout, X denotes a complex Banach space, let A be a closed operator on X with domain D(A).
We denote by A∗, R(A), N(A), R∞(A) =

⋂

n≥0 R(An), σK(A), σsu(A), σ(A), respectively the adjoint,
the range, the null space, the hyper-range, the semi-regular spectrum, the surjectivity spectrum and the
spectrum of A. Recall that for a closed operator A and x ∈ X , the local resolvent of A at x, ρA(x)
defined as the union of all open subset U of C for which there is an analytic function f : U → D(A) such
that the equation (A − µI)f(µ) = x holds for all µ ∈ U . The local spectrum σA(x) of A at x is defined
as σA(x) = C \ ρA(x). Evidently σA(x) ⊆ σsu(A) ⊆ σ(A), ρA(x) is open and σA(x) is closed.

Let f(z) =
∞

∑

i=0

xi(z − µ)i ( in a neighborhood of µ) be the Taylor expansion of f . It is easy to see that

µ ∈ ρA(x) if and only if there exists a sequence such that (xi)i≥0 ⊆ D(A), (A−µ)x0 = x, (A−µ)xi+1 = xi,

and supi ||xi||
1

i < ∞, see [5,7].
For any arbitrary closed set Ω in the complex field, the spectral subspace associated to Ω is :

XA(Ω) = {x ∈ X : σA(x) ⊆ Ω}

XA(Ω) is a hyperinvariant subspace of A not always closed, see [6].

Next, let A be a closed operator, A is said to have the single valued extension property at λ0 ∈ C

(SVEP) if for every open disc Dλ0
⊆ C centered at λ0, the only analytic function f : Dλ0

−→ D(A)
which satisfies the equation (A − zI)f(z) = 0 for all z ∈ Dλ0

is the function f ≡ 0. A is said to have the
SVEP if A has the SVEP for every λ ∈ C. Denote by

S(A) = {λ ∈ C : A has not the SVEP at λ}.

XA(∅) = {0} implies S(A) = ∅ [1]. If A is bounded, then XA(∅) is closed if and only if XA(∅) = {0} if
and only if S(A) = ∅ [6].
Note that µ ∈ S(A) if and only if there exists a sequence (xi)i≥0 ⊆ D(A) not all of them equal to zero

such that (A − µ)xi+1 = xi, with x0 = 0 and supi ||xi||
1

i < ∞, see [5].
Let (T (t))t≥0 be a C0 semigroup with generator A, we introduce the following operator acting on X

and depending on the parameters λ ∈ C and t ≥ 0,

Bλ(t)x =
∫ t

0 eλ(t−s)T (s)xds, for all x ∈ X.

It is well known that Bλ(t) is a bounded operator on X and we have ( [4,8]):

(eλt − T (t))nx = (λ − A)nBn
λ(t)x, for all x ∈ X and all n ∈ N

(eλt − T (t))nx = Bn
λ (t)(λ − A)nx, for all x ∈ D(An) and all n ∈ N;
R∞(eλt − T (t)) ⊆ R∞(λ − A);
N(λ − A)n ⊆ N(eλt − T (t))n.

Recall that some spectral inclusions for various reduced spectra are studied in [3], [4] and [8]. The
authors proved that

etν(A) ⊆ ν(T (t))

where ν ∈ {σap, σK}, approximate point spectrum and semi-regular spectrum, also we have equality
where ν ∈ {σp, σr} point spectrum and residual spectrum. In the next two sections, we will prove a
spectral inclusion for local spectrum and a framing of S(; ) which characterizes it. Some related stability
results are also presented.

3. Local Spectral Theory

Theorem 3.1. For the generator A of a strongly continuous semigroup (T (t))t≥0, then for all t ≥ 0, we

have

etS(A) ⊆ S(T (t))\{0} ⊆ et int(σp(A))
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Proof. Let eλ0t /∈ S(T (t)) t ≥ 0, then T (t) has SVEP at eλ0t. Let us show that λ0 /∈ S(A). Let
Dλ0

the open disc centered at λ0, f : Dλ0
−→ D(A) an analytic function such that for all µ ∈ Dλ0

,
(µ − A)f(µ) = 0. Show that f ≡ 0.

Consider the analytic function ϕt : µ ∈ Dλ0
−→ etµ. For all µ ∈ Dλ0

, ϕ′
t(µ) = teµt 6= 0. By the

inverse function theorem, there exists a neighborhood V of λ0 such that V ⊆ Dλ0
, ϕt(V ) is open and

the function ϕt : V −→ ϕt(V ) is bijective. The function ϕ−1
t : ϕt(V ) −→ V is analytic and therefore the

function g : z ∈ ϕt(V ) −→ f(ϕ−1
t (z)) is analytic. Moreover, for all z ∈ ϕt(V ), there exists a µ ∈ V such

that z = etµ. Furthermore,

(z − T (t))g(z) = (µ − A)Bµ(t)f(ϕ−1
t (z))

= (µ − A)Bµ(t)f(µ)

= Bµ(t)(µ − A)f(µ) = 0.

Thus g ≡ 0, then f ≡ 0 on V , hence f ≡ 0 on Dλ0
. Hence λ0 /∈ S(A).

On the other hand S(T (t))\{0} ⊆ int(σp(T (t))\{0}) = int(etσp(A))) ⊆ et int(σp(A)). So the proof is
complete.

�

In the following, we give a sufficient condition to show that the spectral subspace XA(∅) is closed for
all t > 0.

Corollary 3.2. Let (T (t))t≥0 be a C0-semigroup, with generator A, then:

XT (t)(∅) = {0} for some t ≥ 0 implies that A has the SVEP.

Proof. Let t ≥ 0 such that XT (t)(∅) = {0}, that implies that S(T (t)) = ∅, by theorem 3.1 we have
S(A) = ∅. �

Corollary 3.3. Let (T (t))t≥0 be a C0-semigroup, with infinitesimal generator A.

1. If T (t0) has the SVEP for some t0 ≥ 0, then A has the SVEP.

2. If σp(A) has empty interior, then T (t) has the SVEP for all t ≥ 0,.

Example 3.4. We consider the left translation group T (t)t∈R on X = C0(R). Then σ(A) = iR and

σ(T (t)) = {z ∈ C : |z| = 1}, so A has the SVEP. According to corollary 3.3, T (t) has the SVEP for all

t > 0. Then σsu(T (t)) = {z ∈ C : |z| = 1}.

Example 3.5. A C0-semigroup (T (t))t≥0 is called periodic if there exists t0 > 0 such that T (t0) = I, so

T (t0) has the SVEP. From corollary 3.3, the infinitesimal generator A of (T (t))t≥0 has the SVEP.

To continue the development of a spectral theory for semigroups and theirs generators, we prove that
the formula (1.1) holds for local spectrum.

Theorem 3.6. Let (T (t))t≥0 be a C0-semigroup on X with infinitesimal generator A. The following

spectral inclusion holds :

etσA(x) ⊆ σT (t)(x)\{0}, for all t ≥ 0 and x ∈ X.

Proof. Let eλt /∈ σT (t)(x), then there exists (xi)i≥0 ⊆ X, such that

(eλt − T (t))x0 = x, (eλt − T (t))xi = xi−1 and sup ‖xi‖
1

i < ∞.

Let yi = Bi+1
λ (t)xi, then (yi)i≥0 ⊆ D(A) and y0 = Bλ(t)x0. We have :

(λ − A)yi = (λ − A)Bλ(t)Bi
λ(t)xi

= (eλt − T (t))Bi
λ(t)xi

= Bi
λ(t)(eλt − T (t))xi

= Bi
λ(t)xi−1

= yi−1
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and
sup ‖yi‖

1

i < ∞

So that λ /∈ σA(x)
�

Remark 3.1. The spectral inclusion for local spectrum is strict. Indeed, let (T (t))t≥0 be a quasi-nilpotent

C0 semigroup with infinitesimal generator A, and 0 6= x ∈ X. We have σT (t)(x) = {0}, but etσA(x) = ∅.

4. Stability Results.

Let (T (t))t≥0 ba a C0-semigroup on X with infinitesimal generator A. (T (t))t≥0 is said to be strongly
stable if lim

t→∞
||T (t)x|| = 0 for all x ∈ X . We say that (T (t))t≥0 is uniformly stable if lim

t→∞
||T (t)|| = 0.

In [2], A. Elkoutri and M. A. Taoudi showed that (T (t))t≥0 is strongly stable if σK(A) ∩ iR = ∅. In the
following, we give a stability result for strongly continuous semigroups using the local spectrum:

Proposition 4.1. Let A be the generator of a bounded strongly continuous semigroup (T (t))t≥0. If

σA(x) ∩ iR = ∅ for all x ∈ X, then (T (t))t≥0 is strongly stable.

Proof. If σA(x) ∩ iR = ∅, for all x ∈ X . Then,

σsu(A) ∩ iR =
⋃

x∈X

σA(x) ∩ iR =
⋃

x∈X

(σA(x) ∩ iR) = ∅.

As σK(A) ∩ iR ⊆ σsu(A) ∩ iR = ∅, then σK(A) ∩ iR = ∅. According to [2, corollary 2.1], (T (t))t≥0 is
strongly stable. �

Proposition 4.2. Let A be the generator of a bounded strongly continuous semigroup (T (t))t≥0. Then,

the following assertions are equivalent:

1. (T (t))t≥0 is uniformly stable;

2. for all x ∈ X, there exists t0 > 0 such that σT (t0)(x) ∩ Γ = ∅

where Γ stands for the unit circle of C.

Proof. According to [2, corollary 2.2] and [3, Theorem 3.2] , it suffices to show that σ(T (t0))(x) ∩ Γ = ∅
implies that σK(T (t0)) ∩ Γ = ∅. Indeed: If σ(T (t0))(x) ∩ Γ = ∅ for all x ∈ X , then

σsu(T (t0)) ∩ Γ =
⋃

x∈X

σ(T (t0))(x) ∩ Γ =
⋃

x∈X

(σT (t0)(x) ∩ Γ) = ∅.

As σK(T (t0)) ∩ Γ ⊆ σsu(T (t0)) ∩ Γ = ∅, then σK(T (t0)) ∩ Γ = ∅.
�

Example 4.3. Consider the Heat equation in Lp(0, π).











∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), (t, x) ∈ R

+ × (0, π)

u(t, 0) = 0 = u(t, π), t ≥ 0
u(0, x) = f(x) x ∈ (0, π) .

Let p > 2. On X = Lp(0, π) consider the operator defined by

Af(x) = f ′′(x)

with domain D(A) = W 2,p(0, π) ∩ W 1,p
0 (0, π), x ∈ (0, π) where

W 1,p
0 = {f ∈ W 1,p(0, π) : f(0) = 0 = f(π)}.
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The operator A is self-adjoint. For each f ∈ W 2,p(0, π) ∩ W 1,p
0 (0, π) the unique solution of the equation

is given by

u(t, x) = (T (t)f)(x).

The spectrum of A is σ(A) = {−n2; n ≥ 1}. Since int(σ(A)) = ∅, then A has the SVEP. So, T (t) has

the SVEP for all t > 0. Since σA(x) ∩ iR = ∅ for all x ∈ X, then (T (t))t≥0 is strongly stable.

Example 4.4. On the Banach space X := L1[ α
2 , 1] define the operator :

Af := −f ′ − (µ + b)f with D(A) := {f ∈ W 1,1[ α
2 , 1] : f(α

2 ) = 0},

µ is a positive continuous function on [ α
2 , 1] and b a continuous function with b(s) > 0 for s ∈ (α, 1),

b(s) = 0 otherwise. The operator A generates a C0 semigroup (T (t))t≥0 on X given by :

T (t)f(s) =

{

e
−

∫

s

s−t
(µ(τ)+b(τ))dτ

.f(s − t) for s − t > α
2 .

0, else where.

The spectrum A is empty. Hence A has the SVEP, so T (t) has the SVEP for all t > 0. Furthermore,

(T (t))t≥0 is a nilpotent semigroup, so σ(T (t)) = {0}. Hence σ∗(T (t)) = {0}, where σ∗ = σs, σap, σk, σe.
Since, T (t) has the SVEP, then σT (t)(x) = {0} for all x ∈ X \ {0}, so σT (t)(x) ∩ Γ = ∅, thus (T (t))t≥0

is uniformly stable.
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