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New Estimates for the Fourier Transform in the Space L?(R")

M. El Hamma, R. Daher, N. Djellab and Ch. Khalil

ABSTRACT: In this paper, we prove new estimates are presented for the integral f \)/”\(t)Pdt, where f
[t|I=N

stands for the Fourier transform of f and N > 1, in the space L2(R™) characterized by the generalized

modulus of continuity of the kth order constructed with the help of the generalized spherical mean operator.
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1. Introduction and preliminaries

In [2], Abilov et al. proved new estimates for the Fourier transform in the space L?(R) on certain
classes of functions characterized by the generalized continuity modulus for these estimates, using a
Steklov function.

In this paper, we prove the generalization of Abilov’s results [2] in the Fourier transform for multivariable
functions on R™. For this purpose, we use spherical mean operator in the place of the Steklov function.

Assume that L?(R™) the space of integrable functions f with the norm

= ([ 1rerpar)

The Fourier transform for the function f € L'(R") is defined by

Foy= @02 [ payets
]Rn

The inverse Fourier transform is defined by the formula
f)= @) [ Foetar
Rn

The Plancherel theorem provides an extension of the Fourier transform to L?(R"),
ie,

[ @i~ [ (5opa

Let j,(z) be a normalized Bessel function of the first kind, i.e.,

_2T(p+ 1)

7 Jp(2), V2 € RT (1.1)

Jp(2)

where J,(2) is a Bessel function of the first kind.
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Consider in L?(R™) the spherical mean operator (see [3])

1

Wp—1 Jgn-1

My f(z) = flx + hw)dw

where S~ is the unit sphere in R", w,_; its total surface measure with respect to the usual induced
measure dw.

The finite differences of the first and higher orders are defined by

Apf(x) = Mpf(z) = f(z) = (M = 1) f(z)

k

AR f(x) = Ap(AF (@) = (M = DF f(a) = > (=1 ()M}, f(2) (1.2)

i=0

where MY f(x) = f(z), Mj f(z) = M,(M} " f(2)) for i = 1,2,.....,k and k = 1,2,....., I is the identity
operator in L*(R™).
The k" order generalized modulus of continuity of function f € L?(R") is defined as

Q(f,0) = sup [[ALf(x)]lo-
0<h<s
Denote by L2 the class of functions f € L?(R") such that D" f € L2(R"™)
r=1,2,... (In the sense of Levi (see[5])).
where the operator D = 6‘9—; is the Laplace operator and x = (21,2, ......,2,) DUf = f, D'f =

i=1
D(DI1f), i=1,2,...r
According to [3], we have

My, f(x) = (27r)*n/2 s A(t)jnT_2(|t|h)e”'tdt,

and

flz) = 2m)™2 [ f(t)etdt.
]Rn

i.e

My f(x) — f(z) = (271')—11/2 f(t)(j%(mh) - 1)€ir'tdt.

R"L
By Parseval’s identity, we obtain

M (@)~ F@IE = [ FOF Gaga ()~ 1)%a

Rn
Lemma 1.1. Let f € L2. Then
llﬁﬁDrf(x)H%:/R 0177 (1= Gz ([t]2))** | F (1)t (1.3)

Proof. We have

o~

Df(t) = (—1)|t|"F(t)
Then

NG (1) = (<177 (jagz (BI)) 70
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From formula (1.2), we conclude that the Fourier transform of AFD" f(z) is

koo
(=)t (nT—Q(h|t|) - 1) f(t). By Plancherel identity, we have the result. O

2. Main Result

Befor presenting the theorems and their proofs, for convenience, we intoduce the notation

1/2
mi(f) = ( / N |f<t>|2dt>

Theorem 2.1. Let r € NU{0} and k € N. If f € L2, then

c
m(f) < N7 f, ),
where ¢ > 0 is a fized constant and N — oo.

Proof. In the terms of j,(z), we have (see [1])

lip(2)] < 1. (2.1)

1—j,(2)=0(), z>1. (2.2)
1—jp(2) =0(%), 0< 2z < 1. (2.3)
Vhzd,(hz) = 01), hz>0 (2.4)

Let f € L2. By Holder inequality, we have

e ) o
/|t>N|f(t)| it /|t>N|f(t)|]T(h|t|))dt /M(l e (A PO P

~

/ (1= ju_z () FOPFIF ()| Fdt
[t|>N

2k—1

< ( 2dt> (/ <1—jn_-2<h|t|>)2’“|f<t>|2dt>
It\>N [t|>N 2
2o 1 i 5
< ()2dt / (= e (W) | F )
t\>N e au z
2k—1 ﬁ
< NT*

(/ |<t>|2dt> (/ <1—jnT-a<h|t|>>2k|t|2r|f<t>|2dt>
[t|>N [t|>N

From formula (1.3), we have the inequality

/t|>N(1 — Juz ()|t | (0)Pde < | AFD" f(2)]]3

Therefore,

[ WFwra < [ (R Gl
[t|>N [t|>N

2k—1

L N / FoPat)  |AED f@)E
/>N
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From formulas (1.1) and (2.4), we have

Then

(1—O(Nh)==7) / . |f(t)]dt = O (NT'” ( /| - |f<t>|2dt> ||A2Drf<x>|§)

Setting h = + in the last inequality and choose ¢ > 0 such that (1 — O(c_n;rl ) >

1
5

Therefore

2k—1
2k

/ |f<t>|2dt=0<NT'”></ |f<t)|2dt> |ADT f(2)]
[t|>N [t|>N

1
k
2

Then

i.e.,

ma(f) =0 (N77Qu(D £, 1))

This completes the proof of Theorem 2.1.

Theorem 2.2. Let f € L2(R™). Then
N 1/2
Q(f,0) =0 [ N7 (Z 14’“‘1m?(f)> :
=1

where k =1,2,... and N — +oc.

Proof. Let f € L?(R™). Then

IAEF@IE = [ (1= o () Fie) e

Rn

Let N =[], where 0 < h < 1. From formula (2.3), we have
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fom fow hos

- o) [h’“ /| IO / -, |f<t>|2dt]

_ i 4k T 2 4k
= Ol /Mm Fopa+ v [

[t|=N

_ L 4k 4k
= O(z) Z/mmw Fe)Pdi+ N /

lt>N
= O(ﬁ) Zl4k/

i 1<\t|<z

' </|t> (®)] dt—/ltZi_1|f(t)|2dt> +N4k/t|2N|f(t)|2dt1

Y
Z"
1 N ak Ak NE
_ O(W>;((z+1) —z )/It>i|f(t)| dt.

|f<t>|2dt]
|f<t>|2dt]

(t)|2dt+N4k/

lt|I=N

|f(b‘)|2dt1

Since

(n+1)7—n? <29 ¢g>1

The previous inequality implies that

— G 2K\ F()12dt = L N<4k712
(= a2 ()T O dt = O | g ZZ mi(f)

ie.,

which implies

This theorem is proved.

Theorem 2.3. Let f € L2(R"). If the serie

+oo
Zir_lmi(f), r=1,2,..
i=1

converge, then f € L2 and

N
o (Dr _ < —4k ZZ2T+4k 1 )) + Z iQT?lmi(f),

where k =1,2... and N — +o0
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Proof. Let f € L?2(R"™), we have

D" £113

/ 7 (o) 2t
.

“+o0
20| Fra\ 12
3 / EOR

i—0 Y i<[t|<it+l

using an Abel transformation we obtain

+oo
ID"fI3 < ma(f) +2r Y (i +1)* " tmi(f)
i=1

From the inequality 7 + 1 < 2¢ we conclude that

ID"f113 < C(mg(f) + ZZQT tm

where C' > 0 is a positive constant.
Hence

“+o0
ID"f|I3 = O (Z z"“—lmxf))
=1

—+o0

Since the serie > i""tm;(f), r = 1,2,.., converge then f € L2.
i=1

From Lemma 1.1, we have

KHALIL

IARDTF@IE = [ 171 = faga ) o)

Let N = [+]. Then
Z&k r
|AED F@)le < </|t<N+/t|>N>
(L) ()
[t| <N [t|>N
(11)1/2 )1/2
We have

L= [P e () Fe)
[t| <N

By formula (2.3), we have
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L= O™ / 2 o) P
[t| <N

_ h4k Z/ |t|2r+4k|f(t)|2dt

1<|t| <

_ O(h4k)z 2r+4k/ |f(f)|2dt
— i—1<]t|<i

N

= O(h™) Z ara ( / |>V|f<t>|2dt— / |>,_1|f<t>|2dt>

_ h4k Z 2r4-4k—1 /|t>i|f(t)|2dt'

Z

i.e

N
I, = O(h4k) Z i2r+4k71mf(f).

i=1

Now we estimate I, we have

I

[ e () e Pt
>N

- >/ U s () 1) Pl
— Jein<pr<2in

~ 0 (Z(zw)?r /2’i1N<t|<21N|f(t)|2dt>

1=1

_ <N2ri 2”m21 1N ))

It follows that

(I)'/2 = <NTZ2 Mai—1 n ( )

Applying the relations

27N 1
/ yr—ldy — _Nr2r(l—2)(2r _ 1)
2l—2 N r

Using the fact the sequence my(f), N = 1,2, ..., is monotonically decreasing, we can show (see [6])
that

then this theorem is proved. O
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Remark:

Theorems 2.1 and 2.2 imply

my(f) = O(NY) <= [|Anfll2 = O(h"),

where 0 < v <2,0<h<1, N — +o0.
This result was proved in [4].
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