New Estimates for the Fourier Transform in the Space $L^{2}\left(\mathbb{R}^{n}\right)$

M. El Hamma, R. Daher, N. Djellab and Ch. Khalil

ABSTRACT: In this paper, we prove new estimates are presented for the integral $\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t$, where \widehat{f} stands for the Fourier transform of f and $N \geq 1$, in the space $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ characterized by the generalized modulus of continuity of the $k t h$ order constructed with the help of the generalized spherical mean operator.

Key Words: Fourier transform, Generalized derivatives, Spherical mean operator, Continuity modulus.

Contents

1 Introduction and preliminaries

2 Main Result

1. Introduction and preliminaries

In [2], Abilov et al. proved new estimates for the Fourier transform in the space $L^{2}(\mathbb{R})$ on certain classes of functions characterized by the generalized continuity modulus for these estimates, using a Steklov function.
In this paper, we prove the generalization of Abilov's results [2] in the Fourier transform for multivariable functions on \mathbb{R}^{n}. For this purpose, we use spherical mean operator in the place of the Steklov function.

Assume that $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ the space of integrable functions f with the norm

$$
\|f\|_{2}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{2} d x\right)^{1 / 2}
$$

The Fourier transform for the function $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\widehat{f}(t)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x . t} d x
$$

The inverse Fourier transform is defined by the formula

$$
f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \widehat{f}(t) e^{i x . t} d t
$$

The Plancherel theorem provides an extension of the Fourier transform to $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$, i.e,

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d x=\int_{\mathbb{R}^{n}}|\widehat{f}(t)|^{2} d t
$$

Let $j_{p}(z)$ be a normalized Bessel function of the first kind, i.e.,

$$
\begin{equation*}
j_{p}(z)=\frac{2^{p} \Gamma(p+1)}{z^{p}} J_{p}(z), \forall z \in \mathbb{R}^{+} \tag{1.1}
\end{equation*}
$$

where $J_{p}(z)$ is a Bessel function of the first kind.

[^0]Consider in $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ the spherical mean operator (see [3])

$$
\mathrm{M}_{h} f(x)=\frac{1}{w_{n-1}} \int_{\mathrm{S}^{n-1}} f(x+h w) d w
$$

where S^{n-1} is the unit sphere in \mathbb{R}^{n}, w_{n-1} its total surface measure with respect to the usual induced measure $d w$.

The finite differences of the first and higher orders are defined by

$$
\begin{gather*}
\Delta_{h} f(x)=\mathrm{M}_{h} f(x)-f(x)=\left(\mathrm{M}_{h}-\mathrm{I}\right) f(x) \\
\Delta_{h}^{k} f(x)=\Delta_{h}\left(\Delta_{h}^{k-1} f(x)\right)=\left(\mathrm{M}_{h}-\mathrm{I}\right)^{k} f(x)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} \mathrm{M}_{h}^{i} f(x) \tag{1.2}
\end{gather*}
$$

where $\mathrm{M}_{h}^{0} f(x)=f(x), \mathrm{M}_{h}^{i} f(x)=\mathrm{M}_{h}\left(\mathrm{M}_{h}^{i-1} f(x)\right)$ for $i=1,2, \ldots, k$ and $k=1,2, \ldots .$. , I is the identity operator in $L^{2}\left(\mathbb{R}^{n}\right)$.

The $k^{\text {th }}$ order generalized modulus of continuity of function $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\Omega_{k}(f, \delta)=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{k} f(x)\right\|_{2}
$$

Denote by L_{r}^{2} the class of functions $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ such that $\mathrm{D}^{r} f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ $r=1,2, \ldots$ (In the sense of Levi (see [5])).
where the operator $\mathrm{D}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator and $x=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \mathrm{D}^{0} f=f, \mathrm{D}^{i} f=$ $\mathrm{D}\left(\mathrm{D}^{i-1} f\right), i=1,2, \ldots, r$

According to [3], we have

$$
\mathrm{M}_{h} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \widehat{f}(t) j_{\frac{n-2}{2}}(|t| h) e^{i x . t} d t .
$$

and

$$
f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \widehat{f}(t) e^{i x . t} d t .
$$

i.e

$$
\mathrm{M}_{h} f(x)-f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \widehat{f}(t)\left(j_{\frac{n-2}{2}}(|t| h)-1\right) e^{i x . t} d t
$$

By Parseval's identity, we obtain

$$
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}|\widehat{f}(t)|^{2}\left(j_{\frac{n-2}{2}}(|t| h)-1\right)^{2} d t
$$

Lemma 1.1. Let $f \in \mathrm{~L}_{r}^{2}$. Then

$$
\begin{equation*}
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}|t|^{2 r}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t \tag{1.3}
\end{equation*}
$$

Proof. We have

$$
\widehat{\mathrm{Dff}}(t)=(-1)^{r}|t|^{r} \widehat{f}(t)
$$

Then

$$
\widehat{\mathrm{M}_{h}^{i} \mathrm{D}^{r}} f(t)=(-1)^{r}|t|^{r}\left(j_{\frac{n-2}{2}}(h|t|)\right)^{i} \widehat{f}(t)
$$

From formula (1.2), we conclude that the Fourier transform of $\Delta_{h}^{k} \mathrm{D}^{r} f(x)$ is $(-1)^{r}|t|^{r}\left(j_{\frac{n-2}{2}}(h|t|)-1\right)^{k} \widehat{f}(t)$. By Plancherel identity, we have the result.

2. Main Result

Befor presenting the theorems and their proofs, for convenience, we intoduce the notation

$$
m_{l}(f)=\left(\int_{|t| \geq l}|\widehat{f}(t)|^{2} d t\right)^{1 / 2}
$$

Theorem 2.1. Let $r \in \mathbb{N} \cup\{0\}$ and $k \in \mathbb{N}$. If $f \in \mathrm{~L}_{r}^{2}$, then

$$
m_{N}(f) \leq N^{-r} \Omega_{k}\left(\mathrm{D}^{r} f, \frac{c}{N}\right)
$$

where $c>0$ is a fixed constant and $N \rightarrow \infty$.
Proof. In the terms of $j_{p}(z)$, we have (see [1])

$$
\begin{array}{r}
\left|j_{p}(z)\right| \leq 1 \\
1-j_{p}(z)=O(1), z \geq 1 \\
1-j_{p}(z)=O\left(z^{2}\right), 0 \leq z \leq 1 \\
\sqrt{h z} J_{p}(h z)=O(1), h z \geq 0 \tag{2.4}
\end{array}
$$

Let $f \in \mathrm{~L}_{r}^{2}$. By Hölder inequality, we have

$$
\begin{aligned}
& \left.\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t-\int_{|t| \geq N}|\widehat{f}(t)|^{2} j_{\frac{n-2}{2}}(h|t|)\right) d t=\int_{|t| \geq N}\left(1-j_{\frac{n-2}{2}}(h|t|)|\widehat{f}(t)|^{2} d t\right. \\
= & \int_{|t| \geq N}\left(1-j_{\frac{n-2}{2}}(h|t|)\right)|\widehat{f}(t)|^{2-\frac{1}{k}}|\widehat{f}(t)|^{\frac{1}{k}} d t \\
\leq & \left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left(\int_{|t| \geq N}\left(1-j_{\frac{n-2}{2}}(h|t|)\right)^{2 k}|\widehat{f}(t)|^{2} d t\right)^{\frac{1}{2 k}} \\
\leq & \left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left(\int_{|t| \geq N} \frac{1}{|t|^{2 r}}\left(1-j_{\frac{n-2}{2}}(h|t|)\right)^{2 k}|t|^{2 r}|\widehat{f}(t)|^{2} d t\right)^{\frac{1}{2 k}} \\
\leq & N^{\frac{-r}{k}}\left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left(\int_{|t| \geq N}\left(1-j_{\frac{n-2}{2}}(h|t|)\right)^{2 k}|t|^{2 r}|\widehat{f}(t)|^{2} d t\right)^{\frac{1}{2 k}} .
\end{aligned}
$$

From formula (1.3), we have the inequality

$$
\int_{|t| \geq N}\left(1-j_{\frac{n-2}{2}}(h|t|)\right)^{2 k}|t|^{2 r}|\widehat{f}(t)|^{2} d t \leq\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{2}
$$

Therefore,

$$
\begin{aligned}
\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t & \leq \int_{|t| \geq N}|\widehat{f}(t)|^{2} j_{\frac{n-2}{2}}(h|t|) d \xi \\
& +N^{\frac{-r}{k}}\left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{\frac{1}{k}}
\end{aligned}
$$

From formulas (1.1) and (2.4), we have

$$
j_{\frac{n-2}{2}}(x)=O\left(x^{\frac{-n+1}{2}}\right)
$$

Then

$$
\left(1-O(N h)^{\frac{-n+1}{2}}\right) \int_{|t| \geq N}|\widehat{f}(t)|^{2} d t=O\left(N^{\frac{-r}{k}}\left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{\frac{1}{k}}\right)
$$

Setting $h=\frac{c}{N}$ in the last inequality and choose $c>0$ such that $\left(1-O\left(c^{\frac{-n+1}{2}}\right)\right) \geq \frac{1}{2}$.
Therefore

$$
\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t=O\left(N^{\frac{-r}{k}}\right)\left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{\frac{1}{k}}
$$

Then

$$
\left(\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right)^{\frac{1}{2 k}}=O\left(N^{\frac{-r}{k}}\right)\left\|\Delta_{\frac{c}{N}}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{\frac{1}{k}}
$$

i.e.,

$$
m_{N}(f)=O\left(N^{-r} \Omega_{k}\left(\mathrm{D}^{r} f, \frac{c}{N}\right)\right)
$$

This completes the proof of Theorem 2.1.

Theorem 2.2. Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$. Then

$$
\Omega_{k}(f, \delta)=O\left(N^{-2 k}\left(\sum_{l=1}^{N} l^{4 k-1} m_{l}^{2}(f)\right)^{1 / 2}\right)
$$

where $k=1,2, \ldots$ and $N \rightarrow+\infty$.

Proof. Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$. Then

$$
\left\|\Delta_{h}^{k} f(x)\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t
$$

Let $N=\left[\frac{1}{h}\right]$, where $0<h<1$. From formula (2.3), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}=\int_{|t|<N}+\int_{|t| \geq N} \\
= & O(1)\left[h^{4 k} \int_{|t|<N}|t|^{4 k}|\widehat{f}(t)|^{2} d t+\int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right] \\
= & O\left(\frac{1}{N^{4 k}}\right)\left[\int_{|t|<N}|t|^{4 k}|\widehat{f}(t)|^{2} d t+N^{4 k} \int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right] \\
= & O\left(\frac{1}{N^{4 k}}\right)\left[\sum_{i=1}^{N} \int_{i-1 \leq|t|<i}|t|^{4 k}|\widehat{f}(t)|^{2} d t+N^{4 k} \int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right] \\
= & O\left(\frac{1}{N^{4 k}}\right)\left[\sum_{i=1}^{N} i^{4 k} \int_{i-1 \leq|t|<i}|\widehat{f}(t)|^{2} d t+N^{4 k} \int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right] \\
= & O\left(\frac{1}{N^{4 k}}\right)\left[\sum_{i=1}^{N} i^{4 k}\left(\int_{|t| \geq i}|\widehat{f}(t)|^{2} d t-\int_{|t| \geq i-1}|\widehat{f}(t)|^{2} d t\right)+N^{4 k} \int_{|t| \geq N}|\widehat{f}(t)|^{2} d t\right] \\
= & O\left(\frac{1}{N^{4 k}}\right) \sum_{i=1}^{N}\left((i+1)^{4 k}-i^{4 k}\right) \int_{|t| \geq i}|\widehat{f}(t)|^{2} d t .
\end{aligned}
$$

Since

$$
(n+1)^{q}-n^{q} \leq 2^{q} n^{q-1}, q>1
$$

The previous inequality implies that

$$
\int_{\mathbb{R}^{n}}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t=O\left(\frac{1}{N^{4 k}}\right) \sum_{i=1}^{N} i^{4 k-1} m_{i}^{2}(f)
$$

i.e.,

$$
\left\|\Delta_{h}^{k} f(x)\right\|_{2}^{2}=O\left(\frac{1}{N^{4 k}}\right) \sum_{i=1}^{N} i^{4 k-1} m_{i}^{2}(f)
$$

which implies

$$
\Omega_{k}(f, \delta)=O\left(\frac{1}{N^{2 k}}\left(\sum_{i=1}^{N} i^{4 k-1} m_{i}^{2}(f)\right)^{1 / 2}\right)
$$

This theorem is proved.
Theorem 2.3. Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$. If the serie

$$
\sum_{i=1}^{+\infty} i^{r-1} m_{i}(f), r=1,2, \ldots
$$

converge, then $f \in \mathrm{~L}_{r}^{2}$ and

$$
\Omega_{k}\left(\mathrm{D}^{r} f\right)=O\left(N^{-4 k} \sum_{i=1}^{N} i^{2 r+4 k-1} m_{i}^{2}(f)\right)+\sum_{i=\left[\frac{N}{2}\right]}^{N} i^{2 r-1} m_{i}(f)
$$

where $k=1,2 \ldots$ and $N \rightarrow+\infty$

Proof. Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
\left\|\mathrm{D}^{r} f\right\|_{2}^{2} & =\int_{\mathbb{R}^{n}}|t|^{2 r}|\widehat{f}(t)|^{2} d t \\
& =\sum_{i=0}^{+\infty} \int_{i \leq|t| \leq i+1}|t|^{2 r}|\widehat{f}(t)|^{2} d t
\end{aligned}
$$

using an Abel transformation we obtain

$$
\left\|\mathrm{D}^{r} f\right\|_{2}^{2} \leq m_{0}^{2}(f)+2 r \sum_{i=1}^{+\infty}(i+1)^{2 r-1} m_{i}^{2}(f)
$$

From the inequality $i+1 \leq 2 i$ we conclude that

$$
\left\|\mathrm{D}^{r} f\right\|_{2}^{2} \leq C\left(m_{0}^{2}(f)+\sum_{i=1}^{+\infty} i^{2 r-1} m_{i}^{2}(f)\right)
$$

where $C>0$ is a positive constant.
Hence

$$
\left\|\mathrm{D}^{r} f\right\|_{2}^{2}=O\left(\sum_{i=1}^{+\infty} i^{r-1} m_{i}(f)\right)
$$

Since the serie $\sum_{i=1}^{+\infty} i^{r-1} m_{i}(f), r=1,2, .$. , converge then $f \in \mathrm{~L}_{r}^{2}$.
From Lemma 1.1, we have

$$
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}|t|^{2 r}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t
$$

Let $N=\left[\frac{1}{h}\right]$. Then

$$
\begin{aligned}
\left\|\Delta_{h}^{k} \mathrm{D}^{r} f(x)\right\|_{2} & \leq\left(\int_{|t|<N}+\int_{|t| \geq N}\right)^{1 / 2} \\
& \leq\left(\int_{|t|<N}\right)^{1 / 2}+\left(\int_{|t| \geq N}\right)^{1 / 2} \\
& =\left(\mathrm{I}_{1}\right)^{1 / 2}+\left(\mathrm{I}_{2}\right)^{1 / 2}
\end{aligned}
$$

We have

$$
\mathrm{I}_{1}=\int_{|t|<N}|t|^{2 r}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t
$$

By formula (2.3), we have

$$
\begin{aligned}
\mathrm{I}_{1} & =O\left(h^{4 k}\right) \int_{|t|<N}|t|^{2 r+4 k}|\widehat{f}(t)|^{2} d t \\
& =O\left(h^{4 k}\right) \sum_{i=1}^{N} \int_{i-1 \leq|t|<i}|t|^{2 r+4 k}|\widehat{f}(t)|^{2} d t \\
& =O\left(h^{4 k}\right) \sum_{i=1}^{N} i^{2 r+4 k} \int_{i-1 \leq|t|<i}|\widehat{f}(t)|^{2} d t \\
& =O\left(h^{4 k}\right) \sum_{i=1}^{N} i^{2 r+4 k}\left(\int_{|t| \geq i}|\widehat{f}(t)|^{2} d t-\int_{|t| \geq i-1}|\widehat{f}(t)|^{2} d t\right) \\
& =O\left(h^{4 k}\right) \sum_{i=1}^{N} i^{2 r+4 k-1} \int_{|t| \geq i}|\widehat{f}(t)|^{2} d t .
\end{aligned}
$$

i.e

$$
\mathrm{I}_{1}=O\left(h^{4 k}\right) \sum_{i=1}^{N} i^{2 r+4 k-1} m_{i}^{2}(f) .
$$

Now we estimate I_{2}, we have

$$
\begin{aligned}
\mathrm{I}_{2} & =\int_{|t| \geq N}|t|^{2 r}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t \\
& =\sum_{i=1}^{\infty} \int_{2^{i-1} N \leq|t| \leq 2^{i} N}|t|^{2 r}\left(1-j_{\frac{n-2}{2}}(|t| h)\right)^{2 k}|\widehat{f}(t)|^{2} d t \\
& =O\left(\sum_{i=1}^{\infty}\left(2^{i} N\right)^{2 r} \int_{2^{i-1} N \leq|t| \leq 2^{i} N}|\widehat{f}(t)|^{2} d t\right) \\
& =O\left(N^{2 r} \sum_{i=1}^{\infty} 2^{2 r i} m_{2^{i-1} N}^{2}(f)\right)
\end{aligned}
$$

It follows that

$$
\left(\mathrm{I}_{2}\right)^{1 / 2}=O\left(N^{r} \sum_{i=1}^{\infty} 2^{r i} m_{2^{i-1} N}(f)\right)
$$

Applying the relations

$$
\int_{2^{l-2} N}^{2^{l-1} N} y^{r-1} d y=\frac{1}{r} N^{r} 2^{r(l-2)}\left(2^{r}-1\right)
$$

Using the fact the sequence $m_{N}(f), N=1,2, \ldots$, is monotonically decreasing, we can show (see [6]) that

$$
\left(\mathrm{I}_{2}\right)^{1 / 2}=O\left(\sum_{i=\left[\frac{N}{2}\right]}^{N} i^{2 r-1} m_{i}(f)\right)
$$

then this theorem is proved.

Remark:

Theorems 2.1 and 2.2 imply

$$
m_{N}(f)=O\left(N^{\nu}\right) \Longleftrightarrow\left\|\Delta_{h} f\right\|_{2}=O\left(h^{\nu}\right)
$$

where $0<\nu<2,0<h<1, N \rightarrow+\infty$.
This result was proved in [4].

Acknowledgments

The authors would like to thank the referee for his valuable comments and suggestions.

References

1. V. A. Abilov and F. V. Abilova, Approximation of Functions by Fourier-Bessel Sums. Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 3-9, (2001).
2. V. A. Abilov, F. V. Abilova and M. K. Kerimov, Some New Estimates of the Fourier Transform in the Space $\mathbb{L}_{2}(\mathbb{R})$, Comput. Math. Math. Physi, Vol. 53, No. 9, pp. 1231-1238, (2013).
3. W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis, 255, 2265-2285, (2008).
4. R. Daher and M. El Hamma, On Estimates for the Fourier transform in the Space $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$, C. R. Acad. Sci. Paris, Ser. I 352, 235-240, (2014).
5. S.M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, (Nauka, Moscow)[in Russian], (1996).
6. A. F. Timan, Theory of Approximation of Functions of a Real Variable, (Macmillan, New York, 1963).
```
M. El Hamma, R. Daher, N. Djellab and Ch. Khalil
Université Hassan II,Faculté des Sciences Ä̈n Chock,
Département de mathématiques et informatique,
Laboratoire Topologie, Algèbre, Géométrie et Mathématiques Discrètes, Casablanca, Morocco.
E-mail address: m_elhamma@yahoo.fr
E-mail address: rjdaher024@gmail.com
E-mail address: nisrine.djellab@gmail.com
E-mail address: khalil.chaimaa.92@gmail.com
```


[^0]: 2010 Mathematics Subject Classification: 42B12.
 Submitted October 30, 2019. Published June 27, 2020

