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abstract: Using Leray-Schauder degree theory, we study the existence of at least one solution for the
boundary value problem of the type

{

(ϕ(u′))′ = f(t, u, u′)
u′(0) = u(0), u′(T ) = bu′(0),

where ϕ : R → R is a homeomorphism such that ϕ(0) = 0, f : [0, T ]× R× R → R is a continuous function, T
a positive real number, and b some non zero real number.
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1. Introduction

The purpose of this article is to obtain some existence results for the nonlinear boundary value problem
of the form {

(ϕ(u′))′ = f(t, u, u′)
u′(0) = u(0), u′(T ) = bu′(0),

(1.1)

where ϕ : R → R is a homeomorphism such that ϕ(0) = 0, f : [0, T ]×R×R → R is a continuous function,
T a positive real number, and b some non zero real number. By a solution of (1.1) we mean a function
u : [0, T ] → R of class C1 with ϕ(u′) continuously differentiable, which satisfies the boundary conditions
and (ϕ(u′(t)))′ = f(t, u(t), u′(t)) for all t ∈ [0, T ].

In particular, regular periodic problems with ϕ− or p-Laplacian on the left hand side were considered
by several authors, see e.g. del Pino, Manásevich and Murúa [5] or Yan [9].

Recently, V. Bouchez and J. Mawhin in [2] have studied the following boundary value problem:

{
(ϕ(u))′ = f(t, u)
u(T ) = bu(0),

where ϕ : R → (−a, a) is a homeomorphism such that ϕ(0) = 0, f : [0, T ] × R → R is a continuous
function, a and T are positive real numbers and b some non zero real number. The authors obtained the
existence of solutions using topological methods based upon Leray-Schauder degree [7].

The main aim of this paper is to study the existence of at least one solution for the boundary value
problem (1.1) using Schauder fixed point theorem or Leray-Schauder degree. For this, we reduce the
nonlinear boundary value problem to some fixed points problem. The first consequence of this reduction
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2 D. P. Dallos Santos

is that this operator is defined in C1. Second, it is completely continuous. Next, adapts a technique
introduced by Ward [8] for the search of a priori bounds for the possible fixed points required by a
Leray-Schauder approach. The main contribution of this paper is the extension of some results found in
[3] to a more general type of boundary conditions. Such a problem does not seem to have been studied
in the literature.

The paper is organized as follows. In Section 2, we establish the notation and terminology used
throughout the work. In Section 3, we formulate the fixed point operator equivalent to the problem (1.1).
In Section 4, we give the main results of this paper. For these results, we adapt the ideas of [1,2] to the
present situation. Finally, in section 5, we give some examples to illustrate the results obtained.

2. Notation and terminology

We first introduce some notation. For fixed T , we denote the usual norm in L1 = L1([0, T ] ,R)
by ‖·‖L1 . By C = C([0, T ] ,R) we indicate the Banach space of all continuous functions from [0, T ]
into R with the norm ‖·‖∞ and by C1 = C1([0, T ] ,R) we designate the Banach space of continuously
differentiable functions from [0, T ] into R endowed with the usual norm ‖u‖1 = ‖u‖∞ + ‖u′‖∞.

We introduce the following operators:

the Nemytskii operator Nf : C1 → C

Nf(u)(t) = f(t, u(t), u′(t)),

the integration operator H : C → C1

H(u)(t) =
∫ t

0
u(s)ds,

the following continuous linear operators:

Q : C → C, Q(u)(t) = 1
T

∫ T

0
u(s)ds,

P : C → C, P (u)(t) = u(0),

and finally, we introduced the continuous function

Bϕ,b : R → R, Bϕ,b(x) = ϕ(bx)− ϕ(x).

For u ∈ C, we write

um = min
[0,T ]

u, uM = max
[0,T ]

u, u+ = max {u, 0} , u− = max {−u, 0}.

3. Fixed point formulations

Let us consider the operator

M1 : C1 → C1,

u 7→ Q(Nf(u))−
Bϕ,b(Pu)

T +H
(
ϕ−1

[
ϕ(Pu) +H(Nf (u)−Q(Nf (u))) +

IBϕ,b(Pu)
T

])
+ P (u)

where I denotes the function which maps t on t and ϕ−1 is understood as the operator ϕ−1 : C → C
defined by ϕ−1(v)(t) = ϕ−1(v(t)). It is clear that ϕ−1 is continuous and maps bounded sets into bounded
sets.

Using the theorem of Arzelà-Ascoli we show that the operator M1 is completely continuous.

Lemma 3.1. The operator M1 : C
1 → C1 is completely continuous.

Proof. Let Λ ⊂ C1 be a bounded set. Then, if u ∈ Λ, there exists a constant ρ > 0 such that

‖u‖1 ≤ ρ. (3.1)

Next, we show that M1(Λ) ⊂ C1 is a compact set. Let (vn)n be a sequence in M1(Λ), and let (un)n be
a sequence in Λ such that vn = M1(un). Using (3.1), we have that there exists a constant L1 > 0 such
that, for all n ∈ N,
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‖Nf (un)‖∞ ≤ L1,

which implies that

‖H(Nf(un)−Q(Nf (un)))‖∞ ≤ 2L1T .

Hence the sequence (H(Nf(un)−Q(Nf (un))))n is bounded in C. Moreover, for t, t1 ∈ [0, T ] and for all
n ∈ N, we have

|H(Nf (un)−Q(Nf(un)))(t) −H(Nf (un)−Q(Nf (un)))(t1)|

≤

∣∣∣∣
∫ t

t1

Nf (un)(s)ds

∣∣∣∣ +
∣∣∣∣
∫ t

t1

Q(Nf (un))(s)ds

∣∣∣∣

≤ L1 |t− t1|+ |t− t1| ‖Q(Nf (un))‖∞
≤ 2L1 |t− t1| ,

which implies that (H(Nf (un)−Q(Nf (un))))n is equicontinuous. Thus, by the Arzelà-Ascoli theorem
there is a subsequence of (H(Nf (un)−Q(Nf (un))))n, which we call

(
H(Nf (unj

)−Q(Nf(unj
)))
)
j
, which

is convergent in C. Then, passing to a subsequence if necessary, we obtain that the sequence

(
H(Nf (unj

)−Q(Nf (unj
))) +

IBϕ,b(Punj
)

T
+ ϕ(P (unj

))

)

j

is convergent in C. Using the fact that ϕ−1 : C → C is continuous, it follows from

M1(unj
)′ = ϕ−1

[(
H(Nf (unj

)−Q(Nf (unj
))) +

IBϕ,b(Punj
)

T + ϕ(P (unj
))
)]

that the sequence (M1(unj
)′)j is convergent in C. Therefore, passing if necessary to a subsequence, we

have that (vnj
)j = (M1(unj

))j is convergent in C1. Finally, let (vn)n be a sequence in M1(Λ). Let
(zn)n ⊆ M1(Λ) be such that

lim
n→∞

‖zn − vn‖1 = 0.

Let (znj
)j be a subsequence of (zn)n such that converge to z. It follows that z ∈ M1(Λ) and (vnj

)j
converge to z. This concludes the proof. ✷

Lemma 3.2. u ∈ C1 is a solution of (1.1) if and only if u is a fixed point of the operator M1.

Proof. Let u ∈ C1, we have the following equivalences:

(ϕ(u′))′ = Nf (u), u′(T ) = bu′(0), u′(0) = u(0)

⇔ (ϕ(u′))′ = Nf (u)−
(
Q(Nf(u))−

Bϕ,b(u
′(0))

T

)
,

Q(Nf (u))−
Bϕ,b(u

′(0))
T = 0, u′(0) = u(0)

⇔ ϕ(u′) = H (Nf (u)−Q(Nf (u))) +
IBϕ,b(u

′(0))
T + ϕ(u′(0)),

Q(Nf (u))−
Bϕ,b(u

′(0))
T = 0, u′(0) = u(0)

⇔ u′ = ϕ−1
[
H(Nf(u)−Q(Nf (u))) +

IBϕ,b(u
′(0))

T + ϕ(u′(0))
]
,

Q(Nf (u))−
Bϕ,b(u

′(0))
T = 0, u′(0) = u(0)

⇔ u = H
(
ϕ−1

[
H(Nf(u)−Q(Nf (u))) +

IBϕ,b(u
′(0))

T + ϕ(u′(0))
])

+ u(0),

Q(Nf (u))−
Bϕ,b(u

′(0))
T = 0, u′(0) = u(0)
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⇔ u = H
(
ϕ−1

[
H(Nf(u)−Q(Nf (u))) +

IBϕ,b(u(0))
T + ϕ(u(0))

])
+ u(0),

Q(Nf (u))−
Bϕ,b(u(0))

T = 0

⇔ u = Q(Nf (u))

−
Bϕ,b(Pu)

T +H
(
ϕ−1

[
H(Nf (u)−Q(Nf(u))) +

IBϕ,b(Pu)
T + ϕ(Pu)

])
+ Pu. ✷

Remark 3.3. Note that if u is a fixed point of M1, we have the following equivalence: u′(T ) = bu′(0) ⇔

Q(Nf(u)) =
Bϕ,b(u

′(0))
T .

In order to apply Leray-Schauder degree to the operator M1, we introduce a family of problems
depending on a parameter λ. We remember that for each continuous function f : [0, T ]×R×R → R, we
associate its Nemytskii operator Nf : C1 → C defined by

Nf(u)(t) = f(t, u(t), u′(t)).

For λ ∈ [0, 1], we consider the family of boundary value problems
{

(ϕ(u′))′ = λNf (u) + (1 − λ)Q(Nf (u))
u′(0) = u(0), u′(T ) = bu′(0).

(3.2)

Notice that (3.2) coincides with (1.1) for λ = 1. So, for each λ ∈ [0, 1], the operator associated to (3.2)
by Lemma 3.2 is the operator M(λ, ·), where M is defined on [0, 1]× C1 by

M(λ, u) = Q(Nf (u))−
Bϕ,b(Pu)

T +H
(
ϕ−1

[
ϕ(Pu) + λH(Nf (u)−Q(Nf(u))) +

IBϕ,b(Pu)
T

])
+ P (u).

Using the same arguments as in the proof of Lemma 3.1, we show that the operator M is completely
continuous. Moreover, using the same ideas as above, the system (3.2) (see Lemma 3.2) is equivalent to
the problem

u = M(λ, u). (3.3)

In order to prove the existence of at least one solution of (1.1), we introduce the family of problems

{
(ϕ(u′))′ = λQ(Nf (u))∫ T

0 f(t, u(t), u′(t))dt = ϕ(bu(0))− ϕ(u(0)), u′(0) = u(0).
(3.4)

We also introduce the homotopy Z : [0, 1]× C1 → C1 defined by

Z(λ, u) = P (u) +Q(Nf (u))−
Bϕ,b(Pu)

T
+H

(
ϕ−1

[
λ
IBϕ,b(Pu)

T
+ ϕ(Pu)

])
,

where Z(1, ·) = M(0, ·). By the same argument as above, the operator Z (see Lemma 3.1) is completely
continuous.

Lemma 3.4. If (λ, u) ∈ [0, 1]× C1 is such that u = Z(λ, u), then u is a solution of (3.4).

Proof. Let (λ, u) ∈ [0, 1]× C1 be such that u = Z(λ, u). It follows that
∫ T

0 f(t, u(t), u′(t))dt = ϕ(bu(0))− ϕ(u(0))

and

u′(t) = ϕ−1

[
tλ

ϕ(bu(0))− ϕ(u(0))

T
+ ϕ(u(0))

]
(3.5)

for all t ∈ [0, T ]. Applying ϕ to both members and differentiating, we deduce that

(ϕ(u′(t)))′ = λϕ(bu(0))−ϕ(u(0))
T = λQ(Nf(u))

for all t ∈ [0, T ].
On the other hand, using (3.5) for t = 0, we obtain u′(0) = u(0). This completes the proof. ✷
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4. Main results

In this section, we present and prove our main results. These results are inspired on works by Bereanu
and Mawhin [1] and Manásevich and Mawhin [6]. We denote by degB the Brouwer degree and for degLS

the Leray-Schauder degree, and define the mapping G : R2 → R
2 by

G : R2 → R
2, (x, y) 7→

(
Bϕ,b(x)

T
−

1

T

∫ T

0

f(t, x+ yt, y)dt,−x+ y

)
. (4.1)

Theorem 4.1. Assume that Ω is an open bounded set in C1 such that the following conditions hold.

1. If (λ, u) ∈ [0, 1]× C1 is such that u = Z(λ, u), then u /∈ ∂Ω.

2. The Brouwer degree

degB(G,Ω ∩ R
2, 0) 6= 0,

where we consider the natural identification (x, y) ≈ x+ yt of R2 with related functions in C1.

3. For each λ ∈ (0, 1] the problem (3.2) has no solution on ∂Ω.

Then (1.1) has a solution.

Proof. Using hypothesis 1 and that Z is completely continuous, we deduce that for each λ ∈ [0, 1], the
Leray-Schauder degree degLS(I− Z(λ, ·),Ω, 0) is well-defined. The homotopy invariance implies that

degLS(I− Z(1, ·),Ω, 0) = degLS(I− Z(0, ·),Ω, 0).

On the other hand, we have

degLS(I− Z(0, ·),Ω, 0) = degLS(I− (P +QNf −
Bϕ,bP

T +HP ),Ω, 0).

But the range of the mapping

u −→ P (u) +Q(Nf (u))−
Bϕ,b(P (u))

T +H(P (u))

is contained in the subspace of related functions, isomorphic to R
2. Thus, using a reduction property of

Leray-Schauder degree [4,7]

degLS(I− (P +QNf −
Bϕ,bP

T
+HP ),Ω, 0)

= degB

(
I− (P +QNf −

Bϕ,bP

T
+HP )

∣∣
Ω∩R2 ,Ω ∩ R

2, 0

)

= degB(G,Ω ∩R
2, 0) 6= 0.

On the other hand, using the fact that M is completely continuous, that Z(1, ·) coincides with the
operator M(0, ·) and by hypothesis 3, we deduce that for each λ ∈ [0, 1], degLS(I − M(λ, ·),Ω, 0) is
well-defined and by the homotopy invariance, we have

degLS(I−M(1, ·),Ω, 0) = degLS(I−M(0, ·),Ω, 0).

Hence, degLS(I−M(1, ·),Ω, 0) 6= 0. This, in turn, implies that there exists u ∈ Ω such that M1(u) = u,
which is a solution for (1.1). ✷

The problem (1.1) can be studied by requiring some special conditions on f(t, x, y).

Theorem 4.2. Assume that the following conditions hold.

1. There exists a function h ∈ C such that
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|f(t, x, y)| ≤ h(t) for all (t, x, y) ∈ [0, T ]× R
2.

2. There exists M1 < M2 such that for all u ∈ C1,

∫ T

0
f(t, u(t), u′(t))dt−Bϕ,b(u

′(0)) 6= 0 if u′
m ≥ M2,

∫ T

0 f(t, u(t), u′(t))dt −Bϕ,b(u
′(0)) 6= 0 if u′

M ≤ M1.

3. The Brouwer degree

degB(G,Bρ(0) ∩ R
2, 0) 6= 0,

where ρ ≥max{R1, R2} with R1 = r1(2 + T ) and R2 = r2(2 + T ) where

r1 =max
{∣∣ϕ−1(L+ 2 ‖h‖L1)

∣∣ ,
∣∣ϕ−1(−L− 2 ‖h‖L1)

∣∣}

and

r2 =max
{∣∣ϕ−1(L + ‖h‖L1)

∣∣ ,
∣∣ϕ−1(−L− ‖h‖L1)

∣∣},

for L =max{|ϕ(M2)| , |ϕ(M1)|}.

Then problem (1.1) has at least one solution.

Proof. Let (λ, u) ∈ [0, 1]× C1 be such that u is a solution of (3.2). Using (3.3), we have that

u = M(λ, u) = Q(Nf (u))−
Bϕ,b(Pu)

T +H
(
ϕ−1

[
ϕ(Pu) + λH(Nf (u)−Q(Nf(u))) +

IBϕ,b(Pu)
T

])
+ P (u).

By evaluation of u at 0, we obtain
∫ T

0 f(t, u(t), u′(t))dt− Bϕ,b(u(0)) = 0.

Differentiating u and using the fact that u′(0) = u(0), we deduce that
∫ T

0 f(t, u(t), u′(t))dt −Bϕ,b(u
′(0)) = 0.

Now by hypothesis 2 it follows that

u′
m < M2 and u′

M > M1.

Then, there exists ω ∈ [0, T ] such that M1 < u′(ω) < M2. Moreover,
∫ t

ω
(ϕ(u′(s)))′ds = λ

∫ t

ω
Nf (u)(s)ds+ (1− λ)

∫ t

ω
Q(Nf(u))(s)ds

for all t ∈ [0, T ]. By hypothesis 1, it follows that

|ϕ(u′(t))| ≤ |ϕ(u′(ω))|+ 2 ‖h‖L1 < L+ 2 ‖h‖L1 ,

where L =max{|ϕ(M2)| , |ϕ(M1)|}. Hence,

‖u′‖∞ < r1,

where r1 =max
{∣∣ϕ−1(L+ 2 ‖h‖L1)

∣∣ ,
∣∣ϕ−1(−L− 2 ‖h‖L1)

∣∣}. Using the fact that u′(0) = u(0), we obtain

|u(t)| ≤ |u(0)|+
∫ T

0 |u′(s)| dt < r1 + r1T (t ∈ [0, T ]),

and hence

‖u‖1 = ‖u‖∞ + ‖u′‖∞ < r1 + r1T + r1 = r1(2 + T ) = R1.

Let (λ, u) ∈ [0, 1] × C1 be such that u = Z(λ, u). Using Lemma 3.4, u is a solution of (3.4), which
implies that
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∫ T

0 f(t, u(t), u′(t))dt −Bϕ,b(u
′(0)) = 0.

Using hypothesis 2, it follows that there exists τ ∈ [0, T ] such that M1 < u′(τ ) < M2. Moreover,

|ϕ(u′(t))| ≤ |ϕ(u′(τ ))|+
∣∣∣λ
∫ t

τ
Q(Nf (u))(s)ds

∣∣∣

for all t ∈ [0, T ]. Now by hypothesis 1, it follows that

|ϕ(u′(t))| < L+ ‖h‖L1 .

Hence,

‖u′‖∞ < r2,

where r2 =max
{∣∣ϕ−1(L+ ‖h‖L1)

∣∣ ,
∣∣ϕ−1(−L− ‖h‖L1)

∣∣}. Now for t ∈ [0, T ]

|u(t)| ≤ |u(0)|+
∫ T

0
|u′(s)| dt < r2 + r2T ,

and hence

‖u‖1 = ‖u‖∞ + ‖u′‖∞ < r2 + r2T + r2 = r2(2 + T ) = R2.

Defining Ω = Bρ(0) in Theorem 4.1, where Bρ(0) is the open ball in C1 center 0 and radius
ρ ≥max{R1, R2}, we can guarantee the existence of at least a solution of (1.1). ✷

In the next lemma, we adapt the ideas of Ward [8] to obtain the required a priori bounds.

Lemma 4.3. Assume that f satisfies the following conditions.

1. There exists c ∈ C such that

f(t, x, y) ≥ c(t)

for all (t, x, y) ∈ [0, T ]× R× R.

2. There exists M1 < M2 such that for all u ∈ C1,

∫ T

0 f(t, u(t), u′(t))dt 6= 0 if u′
m ≥ M2,

∫ T

0
f(t, u(t), u′(t))dt 6= 0 if u′

M ≤ M1.

If b = 1 and (λ, u) ∈ [0, 1]× C1 is such that u = M(λ, u), then

‖u′‖∞ < r,

where
r = max

{∣∣ϕ−1
(
L+ 2

∥∥c−
∥∥
L1

)∣∣ ,
∣∣ϕ−1

(
−L− 2

∥∥c−
∥∥
L1

)∣∣} ,

L = max {|ϕ(M2)| , |ϕ(M1)|} .

Proof. Use the same arguments as in the proof of Theorem 4.2 and the following inequality

|f(t, u(t), u′(t))| ≤ f(t, u(t), u′(t)) + 2c−(t) for all t ∈ [0, T ] .

✷

Now we can prove an existence theorem for (1.1).

Theorem 4.4. Let f be continuous and satisfy conditions (1) and (2) of Lemma 4.3. Assume that the
following conditions hold for some ρ ≥ r(2 + T ).
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1. The equation

G(x, y) = (0, 0),

has no solution on ∂Bρ(0) ∩ R
2, where we consider the natural identification (x, y) ≈ x+ yt of R2

with related functions in C1.

2. The Brouwer degree

degB(G,Bρ(0) ∩ R
2, 0) 6= 0.

Then problem (1.1) with b = 1 has a solution.

Proof. If b = 1 and (λ, u) ∈ [0, 1]× C1 is such that u = Z(λ, u), by evaluation of u at 0, we have that

∫ T

0

f(t, u(t), u′(t))dt = 0. (4.2)

Moreover, u is a function of the form u(t) = x+ yt, y = x. Thus, by (4.2)
∫ T

0
f(t, x+ yt, y)dt = 0,

which, together with hypothesis 1, implies that u = x+ tx /∈ ∂Bρ(0).
Let b = 1 and (λ, u) ∈ [0, 1] × C1 be such that u = M(λ, u). Using Lemma 4.3, we have that

‖u‖1 < r(2+T ). Thus we have proved that (3.2) has no solution in ∂Bρ(0) for b = 1 and (λ, u) ∈ [0, 1]×C1,
hence the conditions of Theorem 4.1 are satisfied, the proof is complete. ✷

Our next theorem is a generalization of Theorem 4.2 with b < 0. We need first define the following
operators. The differential operator

D : dom(D) → C, u 7→ u′,

where
dom(D) =

{
u ∈ C1

b : ϕ(u′) ∈ C1
}
,

and
C1

b =
{
u ∈ C1 : u′(T ) = bu′(0), u′(0) = u(0)

}
.

The operator

Dϕ : dom(Dϕ) → C, u 7→ (ϕ(u))′,

where dom(Dϕ) =
{
u ∈ C : ϕ(u) ∈ C1

}
.

The operator

D̃ϕ = DϕD : dom(D) → C, u 7→ (ϕ(u′))′.

When b < 0, −ϕ(·) and ϕ(b ·) are simultaneously increasing or decreasing. In this case, Bϕ,b(·) =

ϕ(b ·)− ϕ(·) is injective. Thus, the operator D̃ϕ has an inverse given by

u 7→ H
(
ϕ−1

[
ϕ
(
B−1

ϕ,b

(∫ T

0
u(s)ds

))
+
∫ t

0
u(s)ds

])
+B−1

ϕ,b

(∫ T

0
u(s)ds

)
.

Hence,

(ϕ(u′))′ = Nf (u), u′(T ) = bu′(0), u′(T ) = bu′(0)

⇔ (DϕD)(u) = Nf (u), u ∈ dom(D)

⇔ u = (DϕD)−1Nf(u), u ∈ C1.

Hence our problem is finding a fixed point of the operator
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Γ := (DϕD)−1Nf : C1 → dom(D).

u 7→ H
(
ϕ−1

[
ϕ
(
B−1

ϕ,b

(∫ T

0
Nf (u)(s)ds

))
+
∫ t

0
Nf(u)(s)ds

])
+B−1

ϕ,b

(∫ T

0
Nf (u)(s)ds

)
.

In the next theorem, we adapt the ideas of Bouches and Mawhin [2] to obtain the existence of at least
one solution of (1.1).

Theorem 4.5. If there exists a function h ∈ C such that

|f(t, x, y)| ≤ h(t)

for all (t, x, y) ∈ [0, T ]× R
2, then problem (1.1) with b < 0 has a solution.

Proof. Let us consider v = Γ(u) := (DϕD)−1Nf (u). Then,

v′(T ) = bv′(0), v′(0) = v(0)

and

Nf(u) = (DϕD)(v) = (ϕ(v′))′.

Because v ∈ C1 is such that v′(T ) = bv′(0), there exists τ ∈ [0, T ] such that v′(τ ) = 0, which implies
ϕ(v′(τ )) = 0 and

|ϕ(v′(t))| ≤

∣∣∣∣
∫ t

τ

(ϕ(v′(s)))′ds

∣∣∣∣

≤

∫ t

τ

|Nf (u)(s)| ds ≤

∫ T

0

|f(s, u(s), u′(s))| ds

≤ ‖h‖L1 (t ∈ [0, T ]),

which implies

‖v′‖∞ ≤ β,

where β =max
{∣∣ϕ−1 (‖h‖L1)

∣∣ ,
∣∣ϕ−1 (−‖h‖L1)

∣∣}. Using the fact that v′(0) = v(0), we deduce that

|v(t)| ≤ |v(0)|+

∫ t

0

|v′(s)| ds ≤ |v(0)|+

∫ T

0

|v′(s)| ds ≤ β + βT

for all t ∈ [0, T ], and hence

‖v‖1 = ‖v‖∞ + ‖v′‖∞ ≤ β + βT + β = β(2 + T ).

Because the Γ is completely continuous and bounded, we can use Schauder’s Fixed Point Theorem to
deduce the existence of at least one fixed point in Bβ(2+T )(0). The proof is complete. ✷

5. Examples

In order to illustrate the above results, we consider some examples.

Example 5.1. Let us consider the problem

{ (
(u′)3

)′
= eu

′

2 − 1
u(0) = u′(0) = u′(T ).

(5.1)

Let M1 = −1 and M2 = 1. If we suppose that u′
m ≥ M2 or u′

M ≤ M1, then

∫ T

0 ( e
u′(t)

2 − 1)dt ≥ ( e
M2

2 − 1)T > 0,
∫ T

0 ( e
u′(t)

2 − 1)dt ≤ ( e
M1

2 − 1)T < 0.
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On the other hand, if we choose ρ ≥ (1 + 2T )1/3(2 + T ) and c(t) = −1 for all t ∈ [0, T ], we have that the
equation

G(a, b) =

(
aT + bT 2 − bT −

1

T

∫ T

0

f(t, a+ bt, b)dt, b− a− bT

)
= (0, 0)

=

(
aT + bT 2 − bT −

1

T

∫ T

0

(
eb

2
− 1)dt, b− a− bT

)
= (0, 0)

=

(
aT + bT 2 − bT −

eb

2
+ 1, b− a− bT

)
= (0, 0)

has no solution on ∂Bρ(0) ∩ R
2. Then we have that the Brouwer degree

degB(G,Bρ(0) ∩R
2, (0, 0))

is well defined and, by the properties of that degree, we have

degB(G,Bρ(0) ∩ R
2, (0, 0)) =

∑

x∈G−1(0,0)

sgnJG(x) 6= 0,

where (0, 0) is a regular value of G and JG(x) =detG′(x) is the Jacobian of G at x. So, using Theorem
4.4, we obtain that the boundary value problem (5.1) has at least one solution.

Example 5.2. We consider the following boundary value problem
{ (

|u′|
p−2

u′
)′

= e−u2

2 + t2 cosu′ + 2

u(0) = u′(0), u′(T ) = bu′(0),
(5.2)

where p ∈ (1,∞), T is a positive real number, and b < 0. Then, by Theorem 4.5, we obtain that (5.2)
has at least one solution.
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