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abstract: For a connected simple graph G with Aα eigenvalues ρ
1

≥ ρ
2

≥ · · · ≥ ρn and a real number β,

let Sα
β

(G) =
n
∑

i=1

ρ
β
i

be the sum of the βth powers of the Aα eigenvalues of graph G. In this paper, we obtain

various bounds for the graph invariant Sα
β

(G) in terms of different graph parameters. As a consequence, we

obtain the bounds for the quantity IEAα (G) = Sα
1
2

(G), the Aα energy-like invariant of the graph G.
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1. Introduction

Let G(V, E) be a simple graph with n vertices and m edges and having vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. This is referred as (n, m) graph. The set
of vertices adjacent to v ∈ V (G), denoted by N(v), is the neighborhood of v. The degree of v, denoted by
dG(v) (we simply write dv if it is clear from the context) is the cardinality of N(v). A graph is called
regular if each of its vertices have the same degree. The adjacency matrix A = (aij) of G is a (0, 1)-
square matrix of order n whose (i, j)-entry is equal to 1, if vi is adjacent to vj and equal to 0, otherwise.
Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees di = dG(vi), i = 1, 2, . . . , n

of graph G. The matrices L(G) = A(G) − D(G) and Q(G) = A(G) + D(G) are called the Laplacian
matrix and the signless Laplacian matrix, respectively. It is well known that both L(G) and Q(G)
are positive semidefinite matrices having real eigenvalues so that their eigenvalues can be ordered as
µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G), respectively.

Nikiforov [10] proposed to study the convex combinations Aα(G) of A(G) and D(G) defined by
Aα(G) = αD(G) + (1 − α)A(G), 0 ≤ α ≤ 1. It is obvious that A(G) = A0(G), D(G) = A1(G) and
2A 1

2
(G) = D(G)+A(G) = Q(G). We further note that Aα −Aγ = (α−γ)(D(G)−A(G)) = (α−γ)L(G).

As Aα(G) is a symmetric matrix, for α ∈
[

1
2 , 1
]

, clearly Aα(G) is positive semidefinite and so the Aα

eigenvalues of G can be taken as ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G). In this setup, the matrices A(G), Q(G)
and D(G) were seen in a new light and very interesting results were deduced in [3,10,11,14,17].

For a real number β (β 6= 0, 1), Zhou[18] considered the graph invariant sβ(G), the sum of βth powers of

the Laplacian eigenvalues of G. In particular, for β = 1
2 , s 1

2
(G) =

n
∑

i=1

√
µi = LEL(G), known as Laplacian-

energy-like invariant, was investigated in [9]. Similarly for β = −1, we have ns−1(G) = n
n
∑

i=1

1
µi

= Kf(G),

called the Kirchhoff index [4] of the graph G. We note that the cases β = 0, 1 are trivial as s0(G) = n − 1
and s1(G) = T r(L(G)) = 2m, where T r is the trace of the matrix. More about LEL(G) and Kf(G) can
be found in [13] and the references therein.
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Akbari et al. [1] introduced the sum of the βth powers of the signless Laplacian eigenvalues of G as

s+
β (G) =

n
∑

i=1

q
β
i . Again for β = 0, 1, we have s+

0 (G) = n and s+
1 (G) = 2m. Likewise for β = 1

2 , we have

s+
1
2

(G) =
n
∑

i=1

√
qi = IE(G), known as incidence energy of the graph G.

Motivating the definitions of sβ(G) and s+
β (G), we put forward Sα

β (G) =
n
∑

i=1

ρ
β,
i for the sum of the

βth powers of the Aα eigenvalues of the graph G. If β = 0, we get Sα
0 (G) = n and for β = 1, we have

Sα
1 (G) = T r(Aα(G)) = 2αm. To avoid trivialities, we assume β 6= 0, 1. In particular for β = 1

2 , we obtain

Sα
1
2
(G) =

n
∑

i=1

√
ρi = IEAα(G). This quantity is similar to LEL(G) and IE(G) and is called Aα-energy-like

invariant.
The first general Zagreb index [7] (also called the general zeroth-order Randić index) of a graph G

is denoted by Za(G) and is defined as Za(G) =
n
∑

i=1

da
i , where a is any real number other than 0 and 1.

Also, for a = 2, we have Z2(G) =
n
∑

i=1

d2
i = M1(G), which is known as the first Zagreb index [5] of G. For

concepts and notations not defined here, we refer the reader to any standard text, such as [2,6,15].
The following inequalities play an important role in Sections 2 and 3.

Lemma 1.1 (Power mean inequality). If q > p > 0, and x1, x2, . . . , xn are non negative real numbers,
then

(

x
p
1 + x

p
2 + · · · + xp

n

n

)
1
p

≤
(

x
q
1 + x

q
2 + · · · + xq

n

n

)
1
q

,

with equality if and only if x1 = x2 = · · · = xn.

Lemma 1.2 (Jensen’s inequality). Let f be a convex function on an interval I and let x1, x2, . . . , xn be

points of I and let a1, a2, . . . , an be real numbers satisfying
n
∑

k=1

ak = 1. Then

f

(

n
∑

k=1

akxk

)

≤
n
∑

k=1

akf(xk)

with equality if and only if x1 = x2 = · · · = xn.

The following lemmas will be used in the sequel.

Lemma 1.3. [10,14] Let G be a connected graph of order n and size m having vertex degree sequence
{d1, d2, . . . , dn}. Then

(1).
n
∑

i=1

ρi = 2αm.

(2).
n
∑

i=1

ρ2
i = α2Z2(G) + (1 − α)22m.

(3).
n
∑

i=1

s2
i = α2Z2(G) + (1 − α)22m − 4α2m2

n
.

(4). ρ(G) ≥ 2m

n
, equality holds if and only if G is degree regular graph.

(5). ρ(G) ≥
√

Z2(G)
n

, equality holds if and only if G is degree regular graph.

Lemma 1.4. [10] Let G be a connected graph of order n with diameter D. If Aα has exactly t distinct
eigenvalues, then D + 1 ≤ t.

Lemma 1.5. [10] Let G be a connected graph of order n with α ∈
[

1
2 , 1
]

. Then Aα is a positive
semidefinite matrix. If G has no isolated vertices then Aα is positive definite.
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From Lemma 1.5, for α ∈
[

1
2 , 1
]

, we see that Aα is a positive semidefinite matrix, so that ρi(G) ≥ 0

for i = 1, 2, . . . , n. From now onwards, we assume that α ∈
[

1
2 , 1
]

unless otherwise stated.

Lemma 1.6. [14] Let G be a connected graph of order n and size m, where m ≥ n and let G
′

= G − e

be a connected graph obtained from G by deleting an edge. Then ρi(Aα(G)) ≥ ρi(Aα(G
′

)) holds for all
1 ≤ i ≤ n.

Lemma 1.7. [10] The Aα eigenvalues of the complete graph Kn are {n − 1, (αn − 1)[n−1]}, where [j]
means the multiplicity of λ.

Lemma 1.8. [14] Let G be a connected graph of order n having vertex degree sequence [d1, d2, . . . , dn].

Then ρ(G) ≥
√

Z2(G)
n

≥ 2m
n

, with equalities if and only if G is degree regular.

Lemma 1.9. [10] Let G be a graph with maximum degree △(G) = △. Then

ρ(G) ≥ 1

2

(

α(△ + 1) +
√

α2(△ + 1)2 + 4 △ (1 − 2α)
)

.

If α ∈ [0, 1) and G is a connected graph, equality holds if and only if G ∼= K1,△.

In Section 2, we obtain upper and lower bounds for Sα
β (G) in terms of different parameters related

to graphs like maximum degree, number of edges, trace of Aα, clique number, independence number and
other parameters. In Section 3, we obtain bounds for IEAα(G).

2. Bounds for Sα
β (G)

Let G be a connected (n, m) graph with Aα eigenvalues ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G). For brevity, we

use ρi instead of ρi(G). For 1 ≤ k ≤ n − 1, let Mk =
k
∑

i=1

ρi and mk =
k
∑

i=1

ρn−i. If G is connected without

isolated vertices and α ∈ [ 1
2 , 1), then Mk ≥ α

k
∑

i=1

1 = αk, for 1 ≤ k ≤ n − 1, which is a consequence

of Schur’s theorem stating that the spectrum of any positive definite symmetric matrix majorizes its
main diagonal. This can be further improved as follows:

Mk

k
=

k
∑

i=1

ρi

k
≥

n
∑

i=k+1

ρi

n − k
=

2αm − Mk

n − k
(2.1)

which after simplification gives Mk ≥ 2αmk

n
. It can be easily verified that equality holds if and only if

G ∼= Kn. Similarly, we can show that mk ≤ 2αmk

n
with equality if and only if G ∼= Kn.

Now, we have the following observation.

Lemma 2.1. If G be a connected (n, m) graph having m ≥ n edges, then ρ2(G) = ρ3(G) = · · · = ρn(G)
if and only if G ∼= Kn.

Proof. Suppose ρ2 = ρ3 = · · · = ρn. Then t = 2 and from Lemma 1.4, D = 1.

Conversely, if G ∼= Kn. Then ρ2 = ρ3 = · · · = ρn and the result follows. �

Lemma 2.2. Let G be a connected (n, m) graph with m ≥ n edges. Then

Mk ≤ 2αmk +
{

k(n − k)[n(α2Z2(G) + 2m(1 − α)2) − (2αm)2]
}

1
2

n
(2.2)

with equality if and only if G ∼= Kn.
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Proof. Using Cauchy-Schwartz’s inequality and Lemma 1.3, we have

(2αm − Mk)2 =

(

n
∑

i=k+1

ρi

)2

≤ (n − k)

(

n
∑

i=k+1

ρ2
i

)

= (n − k)

(

n
∑

i=1

ρ2
i −

k
∑

i=1

ρ2
i

)

= (n − k)

(

α2Z2(G) + (1 − α)22m −
k
∑

i=1

ρ2
i

)

≤ (n − k)

(

α2Z2(G) + (1 − α)22m − M2
k

k

)

.

After making simplifications, we obtain

nM2
k − 4αmkMk + 4α2m2 − k(n − k)(α2Z2(G) + 2m(1 − α)2) ≤ 0.

Hence, it follows that

Mk ≤ 2αmk +
√

k(n − k)[n(α2Z2(G) + 2m(1 − α)2) − 4α2m2]

n

which is inequality (2.2).
Assume that equality holds in (2.2). Then all above inequalities must be equalities. So ρ1 = ρ2 =

· · · = ρk and ρk+1 = ρk+2 = · · · = ρn, that is, G has exactly two distinct Aα eigenvalues. So, by Equation
(2.1), G ∼= Kn. Similarly it is easy to check equality other way round. �

Inequality (2.2) can also be written in terms of the trace of the matrix as

Mk ≤ kT r(Aα) +
√

k(n − k)[n(α2Z2(G) + (1 − α)2T r(A2)) − (T r(Aα))2]

n
.

If we proceed similar to Lemma 2.2, we have

mk ≥ 2αmk +
{

k(n − k)[n(α2Z2(G) + 2m(1 − α)2) − (2αm)2]
}

1
2

n
(2.3)

with equality if and only if G ∼= Kn.

If ρ1 and ρn are respectively the largest and the smallest Aα eigenvalues, for k = 1, then Lemmas 2.2
and 2.3 imply that

ρ1 ≤ 2αm +
{

(n − 1)[n(α2Z2(G) + 2m(1 − α)2) − (2αm)2]
}

1
2

n

and

ρn ≥ 2αm +
{

(n − 1)[n(α2Z2(G) + 2m(1 − α)2) − (2αm)2]
}

1
2

n
.

If G − e is the graph obtained from G by deleting the edge e, using Lemma (1.6) and the fact that if
a ≤ b, then al ≤ bl for each l > 0 and al ≥ bl for each l < 0, we get

Sα
β (G) ≥ Sα

β (G − e), ifβ > 0

Sα
β (G) ≤ Sα

β (G − e), ifβ < 0.
(2.4)

As G is a spanning subgraph of Kn, using (3.4) and Lemma (1.7) , we have

Sα
β (G) ≤ (n − 1)β + (n − 1)(αn − 1)β , if β > 0

Sα
β (G) ≥ (n − 1)β + (n − 1)(αn − 1)β , if β < 0,

with equality occurring in both cases if and only if G ∼= Kn.
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If G is a connected bipartite graph of order n with partite sets of cardinality a and b, then G is the
spanning subgraph of the complete bipartite graph Ka,b. For n ≥ 2 and m ≥ n, we have

Sα
β (G) ≤ x

β
1 + x

β
2 + (b − 1)(aα)β + (a − 1)(αb)β , if β > 0

Sα
β (G) ≥ x

β
1 + x

β
2 + (b − 1)(aα)β + (a − 1)(αb)β, if β < 0.

where x1 = 1
2 (αn +

√

(αn)2 + 4ab(1 − 2α)) and x2 = 1
2 (αn −

√

(αn)2 + 4ab(1 − 2α)), equality occurring
in both cases if and only if G ∼= Ka,b.

A complete split graph, denoted by CSn−k,k, is the graph consisting of an independent set on k vertices
and a clique on n − k vertices, such that each vertex of the clique is connected to every vertex of the
independent set. It is well known that CSn−k,k = Kn−k ▽ Kk. Using this information in Proposition 37
of [10], we can find Aα spectrum of CSn−k,k.

For α ∈ [0, 1], the eigenvalues of Aα(CSn−k,k) are

{

n − k − 1 + αn ±
√

θ

2
, (α(n − k))[k−1], (αn − 1)[n−k−1]

}

,

where θ = k2(4α − 3) + k(2n + 2 − 2αn − 4α) + n(α − 1)(nα − α + 2) + 1.

In case G is a connected graph on n ≥ 2 vertices having independence number k, then

Sα
β (G) ≤ x

β
1 + x

β
2 + (k − 1)(αn − αk)β + (n − k − 1)(αn − 1)β, if β > 0

Sα
β (G) ≥ x

β
1 + x

β
2 + (k − 1)(αn − αk)β + (n − k − 1)(αn − 1)β, if β < 0,

where

x1 =
1

2

[

n − k − 1 + αn + {k2(4α − 3) + k(2n + 2 − 2αn − 4α) + n(α − 1)(nα − α + 2) + 1} 1
2

]

and

x2 =
1

2

[

n − k − 1 + αn − {k2(4α − 3) + k(2n + 2 − 2αn − 4α) + n(α − 1)(nα − α + 2) + 1} 1
2

]

,

equality occurring in both cases if and only if G ∼= CSn−k,k.

Further, if G is a degree regular graph on n ≥ 3 vertices, then

Sα
β (Cn) ≤ Sα

β (G) ≤ (n − 1)β + (n − 1)(αn − 1)β, if β > 0

Sα
β (Cn) ≥ Sα

β (G) ≥ (n − 1)β + (n − 1)(αn − 1)β , if β < 0,

equality holds on the right if and only if G ∼= Kn and equality occurs on the left if and only if G ∼= Cn.

Theorem 2.3. Let G be a connected graph of order n ≥ 2.

(i) If β < 0 or β > 1, then

Sα
β (G) ≥

(

2m

n

)β

+
(2m(αn − 1))β

nβ(n − 1)β−1
,

with equality if and only if G ∼= Kn.

(ii) If 0 < β < 1, then

Sα
β (G) ≤

(

2m

n

)β

+
(2m(αn − 1))β

nβ(n − 1)β−1
,

with equality if and only if G ∼= Kn.

Proof. For β 6= 0, 1 and x > 0, we see that xβ is concave up when β < 0 or β > 1. Thus, by Jensen’s
inequality, we have

(

n
∑

i=2

1

n − 1
ρi

)β

≤
n
∑

i=2

1

n − 1
ρ

β
i ,
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which implies that
n
∑

i=2

ρ
β
i ≥ 1

(n − 1)β

(

n
∑

i=2

ρi

)β

with equality if and only if ρ2 = ρ3 = · · · = ρn. Now,

using this observation in the definition of Sα
β (G), we have

Sα
β (G) ≥ ρ

β
1 +

1

(n − 1)β

(

n
∑

i=2

ρi

)β

= ρ
β
1 +

(2αm − ρ1)β

(n − 1)β−1
.

Let f(x) = xβ +
(2αm − x)β

(n − 1)β−1
. By solving f

′

(x) ≥ 0, we see that f(x) is increasing for x ≥ 2αm

n
. By

Lemma 1.3, we have ρ1 ≥ 2m

n
≥ 2αm

n
and thus

Sα
β (G) ≥ f

(

2m

n

)

=

(

2m

n

)β

+
(2m(αn − 1))β

nβ(n − 1)β−1
,

with equality if and only if ρ2 = ρ3 = · · · = ρn and ρ1 =
2m

n
. Therefore, G has exactly two distinct Aα

eigenvalues and by Lemma 2.1, G is the complete graph Kn, proving part (i).
(ii) Suppose that 0 < β < 1. Then, clearly xβ is concave down when x > 0 or 0 < β < 1. So,

(

n
∑

i=2

1

n − 1
ρi

)β

≥
n
∑

i=2

1

n − 1
ρ

β
i ,

with equality if and only if ρ2 = ρ3 = · · · = ρn and f(x) is decreasing for x ≥ 2αm

n
. Now proceeding as

in part (i), we obtain the required result. �

Using similar arguments as in Theorem 2.3 and Lemma 1.8, we have the following.

(i) If β < 0 or β > 1, then

Sα
β (G) ≥

(

Z2(G)

n

)

β

2
+

(2mα
√

n − Z2(G))β

n
β

2 (n − 1)β−1
,

with equality if and only if G ∼= Kn.

(ii) If 0 < β < 1, then

Sα
β (G) ≤

(

Z2(G)

n

)

β

2
+

(2mα
√

n − Z2(G))β

n
β

2 (n − 1)β−1
,

with equality if and only if G ∼= Kn.

Theorem 2.4. Let G be a graph of order n ≥ 2 and 1 ≤ k ≤ n − 1 be a positive integer.
(i) If 0 < β < 1, then

Sα
β (G) ≤ k1−β

(

2αmk

n

)β

+ (n − k)1−β

(

2αm

(

n − k

n

))β

,

with equality if and only if G ∼= K1.

(ii) If β > 1, then

Sα
β (G) ≥ k1−β

(

2αmk

n

)β

+ (n − k)1−β

(

2αm

(

n − k

n

))β

,
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with equality if and only if G ∼= K1.

(iii)If β < 0, then

Sα
β (G) ≤ k1−β

(

2αmk +
√

θ

n

)β

+ (n − k)β

(

2αmk −
√

θ

n

)β

,

where θ = k(n − k)(n(α2Z2(G) + 2(1 − α)2m) − (2αm)2).

Proof. By power mean inequality with 0 < β < 1, we have

(

∑k
i=1 ρ

β
i

k

)
1
β

≤ Mk

k
,

that is,
k
∑

i=1

ρ
β
i ≤ k1−βM

β
k with equality if and only if ρ1 = ρ2 = · · · = ρk.

Similarly,
n
∑

i=k+1

ρ
β
i ≤ (n − k)1−β(2αm − Mk)β , with equality if and only if ρk+1 = ρk+2 = · · · = ρn.

Thus, by the definition of Sα
β (G), we have

Sα
β (G) =

k
∑

i=1

ρ
β
i +

n
∑

i=k+1

ρ
β
i ≤ k1−βM

β
k + (n − k)1−β(2αm − Mk)β .

Consider the function

f(x) = k1−βxβ + (n − k)1−β(2αm − x)β , x ≥ 2αmk

n
.

We see that

f
′

(x) = β
(x

k

)β−1

−
(

2αm − x

n − k

)β−1

≤ 0

provided 0 < β < 1 and x ≥ 2αmk

k
. Thus f(x) is a decreasing function on x ≥ 2αmk

k
. Therefore, by

equation (2.1), Mk ≥ 2αmk

n
and we have

Sα
β (G) = f(Mk) ≤ f

(

2αmk

n

)

= k1−β

(

2αmk

n

)β

+ (n − k)

(

2αm − 2αmk

n

)β

,

proving part (i).

Suppose equality holds, that is, ρ1 = ρ2 = · · · = ρk, ρk+1 = ρk+2 = · · · = ρn and Mk =
2αmk

n
. From

this, we have ρ1 = ρ2 = · · · = ρn =
2αm

n
, which happens if G ∼= K1. Conversely, we can easily verify

that equality occurs if G ∼= K1.

(ii) For β > 1, using power mean inequality as in part (i), we obtain

Sα
β (G) ≥ k1−βM

β
k + (n − k)1−β(2αm − Mk)β .

Also, f(x) = k1−βxβ + (n − k)1−β(2αm − x)β is an increasing function on x ≥ 2αmk
n

for β > 1. Now
proceeding similarly as in (i) we can establish (ii). Also, the equality can be discussed similar to (i).

(iii) We note that f(x) = k1−βxβ + (n − k)1−β(2αm − x)β is an increasing function on x ≥ 2αmk

n
as

β < 0. From Equation (2.1) and Lemma 2.2, we have

2αmk

n
≤ x ≤ 2αmk +

√
θ

n
,
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where θ = k(n − k)(n(α2Z2(G) + 2(1 − α)2m) − (2αm)2). Hence

Sα
β (G) ≤ f

(

2αmk +
√

θ

n

)

= k1−β

(

2αmk +
√

θ

n

)β

+ (n − k)β

(

2αmk −
√

θ

n

)β

.

�

For a connected graph G of order n ≥ 3, let D =
n
∏

i=1

ρi, where ρ1 ≥ ρ2 ≥ · · · ≥ ρn are the eigenvalues

of Aα.

Theorem 2.5. Let G be a connected (n, m) graph with n ≥ 3. If β < 0 or β > 1, then

Sα
β (G) ≥

(

2m

n

)β

+ (n − 1)D
β

n−1

(

2m

n

)
−β

n−1

,

with equality if and only if G ∼= Kn.

Proof. From the definition of Sα
β (G), we have Sα

β (G) = ρ
β
i +

n
∑

i=2

ρ
β
i . Applying arithmetic-geometric mean

inequality to the second term of the R.H.S, we have

Sα
β (G) ≥ ρ

β
i + (n − 1)

(

n
∏

i=2

ρ
β
i

)

1

n − 1
= ρ

β
i + (n − 1)

(

D

ρ1

)

β

n − 1
,

with equality if and only if ρ2 = ρ3 = · · · = ρn. Consider the function

f(x) = xβ + (n − 1)D

β

n − 1 x

−β

n − 1 .

After differentiation, we have

f
′

(x) = βx

−β

n − 1
−1



x

nβ

n − 1 − D

β

n − 1



 .

For β < 0 or β > 1, we can easily verify that f(x) is an increasing function for x ≥ D
1
n . Therefore, by

Lemma 1.3 and using arithmetic-geometric inequality, we have

ρ1 ≥ 2m

n
≥ 2αm

n
=

n
∑

i=1

ρi

n
≥
(

n
∏

i=1

)

1

n
= D

1

n .

So, this implies that

Sα
β (G) ≥ f

(

2m

n

)

=

(

2m

n

)β

+ (n − 1)D

β

n − 1
(

2m

n

)

−β

n − 1
.

Equality occurs if and only if ρ1 =
2m

n
and ρ2 = ρ3 = · · · = ρn. That is, if and only if G is degree regular

with two distinct Aα eigenvalues. So, by Lemma 2.1, G ∼= Kn. �
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Theorem 2.6. Let G be a graph of order n ≥ 2 and 1 ≤ k ≤ n − 1 be a positive integer.
(i) If β < 0, 0 < β < 1, then

Sα
β (G) ≥ (2αm)2−β

(α2Z2(G) + (1 − α)22αm)1−β
.

(ii) If 1 < β < 2, β > 2, then

Sα
β (G) ≤ (2αm)2−β

(α2Z2(G) + (1 − α)22αm)1−β
.

Proof. Let a1, a2, . . . , an be positive real numbers and let k be a real number with k 6= 0, 1
2 , 1. It is

clear that, k < 0 or k > 0, so that 2k−1
k

> 0. By Hölder’s inequality, we have

n
∑

i=1

ak
i =

n
∑

i=1

a
k

2k−1

i a
2k(k−1)

2k−1

i ≤
(

n
∑

i=1

(

a
k

2k−1

i

)
2k−1

k

)

k
2k−1

(

n
∑

i=1

(

a
2k(k−1)

2k−1

i

)
2k−1
k−1

)

k−1
2k−1

=

(

n
∑

i=1

ai

)
k

2k−1
(

n
∑

i=1

a2t
i

)
k−1

2k−1

,

which implies that

n
∑

i=1

ai ≥

(

n
∑

i=1

ak
i

)
2k−1

k

(

n
∑

i=1

a2k
i

)
k−1

k

,

with equality if and only if a1 = a2 · · · = an. Now, letting a = ρi and k = 1
α

, it implies that

Sα
β (G) =

n
∑

i=1

ρ
β
i ≥

(

n
∑

i=1

ρi

)2−β

(

n
∑

i=1

ρ2
i

)1−β
=

(2αm)2−β

(α2Z2(G) + (1 − α)22αm)1−β
,

for each β < 0 or 0 < β < 1. Similarly, if 1 < β < 2 or β > 2, then 1
2 < k < 1 or 0 < k < 1

2 . Taking

p = 2k−1
k

, q = 2k−1
k−1 and noting that p > 0, q < 0 if 1

2 < k < 1; and p < 0, q > 0 if 0 < k < 1
2 . In each of

these cases Hölders inequality gets reversed and the second part follows. �

3. Bounds for IEAα energy-like invariant

The graph invariant Sα
1
2
(G) =

n
∑

i=1

√
ρi = IEAα(G) is called Aα−energy-like invariant. From Theorem

2.3, we observe that

IEAα(G) ≤
√

2m

n
+

√

(

2m(αn − 1)(n − 1)

n

)

,

with equality if and only if G ∼= Kn.

Also, we have

IEAα(G) ≤
(

Z2(G)

n

)
1
4

+

√

(2mα
√

n − Z2(G))(n − 1)

n
1
4

,

with equality if and only if G ∼= Kn.
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From Theorem 2.4 part (i), we have

IEAα (G) ≤ (
√

k + n − k)

√

(

2αm

n

)

,

with equality if and only if G ∼= K1.

If G − e is the connected graph obtained from G by the deletion of an edge e, then

IEAα (G) ≥ IEAα(G − e).

Further, we have

IEAα(G) ≤
√

(n − 1) + (n − 1)
√

αn − 1,

with equality occurring in both cases if and only if G ∼= Kn.

Also

IEAα(G) ≤ √
x1 +

√
x2 + (b − 1)

√

(aα) + (a − 1)
√

(αb),

where x1 = 1
2 (α(a + b) +

√

α2(a + b)2 + 4ab(1 − 2α)) and x2 = 1
2 (α(a + b) −

√

α2(a + b)2 + 4ab(1 − 2α)),
equality occurs if and only if G ∼= Ka,b.

If G has independence number k, then

IEAα(G) ≤ √
x1 +

√
x2 + (k − 1)

√

(αn − αk) + (n − k − 1)
√

(αn − 1),

where x1 = 1
2 (n − k − 1 + αn + {k2(4α − 3) + k(2n + 2 − 2αn − 4α) + n(α − 1)(nα − α + 2) + 1} 1

2 ) and

x2 = 1
2 (n − k − 1 + αn − {k2(4α − 3) + k(2n + 2 − 2αn − 4α) + n(α − 1)(nα − α + 2) + 1} 1

2 ), equality
occurring in both cases if and only if G ∼= CSn−k,k.

If G is a degree regular graph on n ≥ 3 vertices, then

√

(n − 1) + (n − 1)
√

(αn − 1) ≥ IEAα(G) ≥ IEAα (Cn),

equality occurs if and only if G ∼= Cn.

From Lemma 1.9, if B = 1
2

(

α(△ + 1) +
√

α2(△ + 1)2 + 4 △ (1 − 2α)
)

, then we can easily see that

ρ(G) ≥ B ≥ 2αm

n
. From second inequality of (2.4), it follows that

IEAα (G) ≤
√

B +
√

(n − 1)(2αm − B),

where equality holds if and only if G ∼= K1,△.

Theorem 3.1. Let G be a connected graph (n, m) graph, where n ≥ 2. Then

IEAα(G) ≤
{

2αm + (n − 1)
(

(αn − 1)(n − 2) + 2(n − 1)
√

(n − 1)(αn − 1)
)}

1
2

where equality holds if and only if G ∼= Kn.

Proof. Let G be a connected graph of order n ≥ 2 having Aα eigenvalues ρ1, ρ2, . . . , ρn.

Now

(

IEAα(G)
)2

=

(

n
∑

i=1

√
ρi

)2

=

n
∑

i=1

ρi + 2
∑

i6=j

√
ρi

√
ρj . (3.1)

As we know G is a connected spanning subgraph of Kn, thus by Lemma 1.6 and noting that α lies in
[ 1

2 , 1), we have

ρ1(G) ≤ ρ1(Kn) = n − 1, ρi(G) ≤ ρi(Kn) = αn − 1, i = 2, 3, . . . , n.
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Evaluating the second term of (3.1), we have

∑

i6=j

√
ρi

√
ρj =

√
ρ1(

√
ρ2 +

√
ρ3 + · · · +

√
ρn) +

√
ρ2(

√
ρ3 +

√
ρ4 + · · · +

√
ρn) + · · · +

√
ρn−1

√
ρn

≤ (n − 1)(
√

(n − 1)(αn − 1)) + (n − 2)(αn − 1) + · · · + (αn − 1)

= (n − 1)
√

(n − 1)(αn − 1) + (αn − 1)

(

(n − 1)(n − 2)

2

)

.

Hence, from equation (3.1), we obtain

IEAα(G) ≤
{

2αm + (n − 1)
(

(αn − 1)(n − 2) + 2(n − 1)
√

(n − 1)(αn − 1)
)}

1
2

.

Equality occurs if and only if ρ1(G) = ρ1(Kn) = n − 1 and ρi(G) = ρi(Kn) = αn − 1 for i = 2, 3, . . . , n.
That is, if and only if G ∼= Kn. �
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