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Application of the Dual Space of Gelfand-Shilov Spaces of Beurling Type

Ala Qadomi, Maysam Abu-Dalu, Sa’ud Al-Sa’di and Hamed M. Obiedat

abstract: Using a previously obtained structure theorem of Gelfand-Shilov spaces Σβ
α of Beurling type of

ultradistributions, we prove that these ultradistributions can be represented as an initial values of solutions

of the heat equation by describing the action of the Gauss-Weierstrass semigroup on the dual space (Σβ
α)′

.
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1. Introduction

The theory of generalized functions devised by L. Schwartz was to provide a satisfactory framework
for the Fourier transform (see [11]). They are objects which generalize functions, and they extend the
concept of derivative to all integrable functions and beyond, and used to formulate generalized solutions
of partial differential equations (see [5]).

Gelfand and Shilov have introduced other types of distributions called ultradistributions in the study of
the uniqueness of the Cauchy problems of partial differential equations (see [3]). These spaces are invariant
under Fourier transform, closed under differentiation and multiplication by polynomials, moreover, it
contains Schwartz space of tempered distributions as a subspace. This makes the Gelfand Shilov spaces
appropriate domains for quantum field theory. S. Pilipovic obtained structural theorems and defined the
convolution for Gelfand-Shilov spaces of Roumieu and Beurling type (see [9], [10], [4]).

In this paper, we use the characterization of Gelfand-Shilov spaces of Beurling type of test functions of
tempered ultradistribution in terms of their Fourier transform obtained in [2] and the structure theorem
for functionals in dual space (Σβ

α)′ equipped with the weak topology, to study the action of Gauss-
Weierstrass semigroup on the dual space (Σβ

α)′. Consequently, we prove that these ultradistributions can
be represented as an initial values of solutions of the heat equation ut −Au = 0.

Throughout the paper the symbols C∞, C∞
0 , Lp, etc., denote the usual spaces of functions defined

on Rn, with complex values. We denote |·| the Euclidean norm on Rn, while ‖·‖p indicates the p-norm
in the space Lp, where 1 ≤ p ≤ ∞. In general, we work on the Euclidean space Rn unless we indicate
other than that as appropriate. The Fourier transform of a function f will be denoted by F (f) or f̂ and
it will be defined as

∫
Rn e

−2πixξf (x) dx. A Fréchet spaces are a locally convex topological vector spaces
that are completely metrizable.

2. Preliminary definitions and results

In this section, we introduce basic notations and recalling some facts concerning Gelfand-Shilov spaces.

Remark 2.1. For α > 1, the function |•|1/α
: [0,∞) → [0,∞) has the following properties:

1. |•|1/α is increasing, continuous and concave,

2. |x|1/α ≥ a+ b ln (1 + x) for some a ∈ R and some b > 0.
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Remark 2.2. Property 2 of Remark 2.1 implies that the function e−N |x|1/α

is integrable for some positive
constant N . In fact, if N > n

b is an integer, then

CN =

∫

Rn

e−N |x|1/α

dx < ∞, for all α > 1,

where b is the constant in Property 2 of Remark 2.1. Moreover, Property 1 in Remark 2.1 implies that

|•|1/α
is subadditive..

In the following theorem we state a symmetric characterization of the Gelfand-Shilov spaces Σβ
α in

terms of the Fourier transformations.

Theorem 2.3. The space Σβ
α can be described as a set as well as topologically by

Σβ
α =

{
ϕ : Rn → C : ϕ is continuous and for all
k = 0, 1, 2, ..., pk,0 (ϕ) < ∞, πk,0 (ϕ) < ∞.

}
,

where pk,0 (ϕ) =
∥∥∥ek|x|1/α

ϕ
∥∥∥

∞
, πk,0 (ϕ) =

∥∥∥ek|ξ|1/β

ϕ̂
∥∥∥

∞
.

The space Σβ
α, equipped with the family of semi-norms

N = {pk,0, πk,0 : k ∈ N0},

is a Fréchet space.

The proof of Theorem 2.3 mimics the proof of Theorem 3.1 in [7] so we omit it. In the other hand,
we can employ the above theorem to prove the following structure theorem for functionals T ∈ (Σβ

α)′.

Theorem 2.4. If T ∈ (Σβ
α)′, then there exist two regular complex Borel measures µ1 and µ2 of finite

total variation and k ∈ N0 such that

T = ek|•|1/α

µ1 + F(ek|•|1/β

µ2) (2.1)

in the sense of (Σβ
α)′.

The following Lemma will be useful in the proofs later.

Lemma 2.5. ( [7]) Let ϕ ∈ Σβ
α. Then ϕ(x+ y) ∈ Σβ

α for each y ∈ Rn.

Proof: Fix y ∈ Rn and let ϕ ∈ Σβ
α. First, let us prove that

∥∥∥ek|x|1/α

ϕ(x+ y)
∥∥∥

∞
< ∞.

To do so, we use concavity property of |•|1/α
as follows:

ek|x|1/α |ϕ(x+ y)| = ek|x|1/α

e−2k|x+y|1/α

e2k|x+y|1/α |ϕ(x+ y)|
≤ ek|x|1/α

e−k|x+y|1/α
∥∥∥e2k|x+y|1/α

ϕ(x+ y)
∥∥∥

∞

≤ Ce2k(
|x|1/α

2
−2|x+y|1/α) ≤ e2k(

|x|1/α

2
−| x+y

2 |1/α
)

≤ Ce2k(− |y|1/α

2
) ≤ Ce−k|y|1/α

< ∞.

This proves that
∥∥∥ek|x|1/α

ϕ(x+ y)
∥∥∥

∞
< ∞. Similarly,

∥∥∥ek|x|1/β

ϕ̂(x + y)
∥∥∥

∞
< ∞. This completes the

proof of Lemma 2.5. �

Given two functionals T and S that are integrable functions, the classical definition of convolution of
T and S is given by

〈T ∗ S, φ〉 = 〈Tx, 〈Sy, φ(y + x)〉.
Using this definition, Definition 1.6.11, and results from Section 1.7 of [1], it is easy to show that if

T ∈ (Σβ
α)′ and ϕ ∈ Σβ

α, then the functional T ∗ ϕ ∈ (Σβ
α)′.
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Theorem 2.6. If T ∈ (Σβ
α)′ and ϕ ∈ Σβ

α, then the functional T ∗ ϕ ∈ (Σβ
α)′ and given by 〈T, ϕ(x− ·)〉.

We end this section with the definition of operator semigroup on a Banach space that we will use in
application in the next section.

Definition 2.1. [8] Let B be a Banach space. An operator semigroup on B is a family (Tt : t ∈ R+)
of bounded linear operators on B such that

i) T0 = I,

ii) TsTt = Ts+t for all t, s ∈ R+.

3. Applications

In this section, we study some applications on the structure theorem of Σβ
α tempered ultradistributions

stated in Theorem 2.4 by proving some results on a semi-group acting on the Fréchet space Σβ
α and

extend it to its dual (Σβ
α)′. We start this section by recalling a previously proved result which says

that the convolution in Theorem 2.6 coincides with classical definition of convolution of two integrable
functionals.

Theorem 3.1. If T ∈ (Σβ
α)′ and ϕ ∈ Σβ

α, then the functional T ∗ ϕ defined by

〈T ∗ ϕ, φ〉 = 〈Ty, (ϕz, φ(x+ y)〉

coincides with the functional given by integration against the function ψ(x) = 〈Ty, ϕ(x− y)〉.

Proof: Using (2.1) in Theorem 2.4, we can write for each x

ψ(x) = 〈Ty, ϕ(x− y)〉 =

∫

Rn

ek|y|1/α

ϕ(x + y)dµ1(y) +

∫

Rn

ek|ξ|1/β

e−2πiy.ξ
F

−1(ϕ)(ξ)dµ2(ξ).

So,

〈T ∗ ϕ, φ〉 = 〈Ty, (ϕz, φ(x+ y)〉

=

∫

Rn

ek|y|1/α

(

∫

Rn

ϕ(x− y)φ(y)dµ1(y)) +

∫

Rn

ek|ξ|1/β

F
−1(ϕ)(ξ)φ̂(ξ)dµ2(ξ)

=

∫

Rn

ek|y|1/α

(

∫

Rn

ϕ(x− y)φ(y)dµ1(y)) +

∫

Rn

ek|ξ|1/β

F(
g

ϕ ∗ φ)(ξ)dµ2(ξ)

= 〈ek|•|1/α

µ1(y), 〈ϕ(x− y), φ(x)〉〉 + 〈F(ek|•|1/β

µ2)(y), 〈ϕ(x − y), φ(x)〉〉
= 〈ek|•|1/α

µ1(y) + F(ek|•|1/β

µ2)(y), 〈ϕ(x− y), φ(x)〉〉
= 〈Ty, 〈ϕ(x− y), φ(x)〉〉

for all φ ∈ Σβ
α. This completes the proof of Theorem 3.1.

�

Now we employ the above theorem to describe the action of the semi-group defined by the convolution
kernel t−nT (x−y

t ), where t > 0 on (Σβ
α)′.

Theorem 3.2. Let T ∈ Σβ
α and {Pt}t≥0 be a semi-group defined by the convolution kernel t−nT (x−y

t ),
where t > 0. Then, the action of Pt on (Σβ

α)′ is given by the integration against the function

ρ(x) = 〈Sy, t
−nT (

x− y

t
)〉, (3.1)

where Sy ∈ (Σβ
α)′ and y indicates on which variable the functional S acts.
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Proof: Using Lemma 2.5 and Theorem 3.1, it is enough to show that T ( ·
t ) ∈ Σβ

α for each t > 0. Note
that

∣∣∣ek|x|1/α

T (
x

t
)
∣∣∣ ≤

∣∣∣ekt| x
t |1/α

T (
x

t
)
∣∣∣

≤
∣∣∣e([kt]+1)| x

t |1/α

T (
x

t
)
∣∣∣

=
∣∣∣em| x

t |1/α

T (
x

t
)
∣∣∣

≤
∣∣∣
∣∣∣em|•|1/α

T
∣∣∣
∣∣∣
∞

and ∣∣∣ek|ξ|1/β

T̂ (
x

t
)(ξ)

∣∣∣ =
∣∣∣ek|ξ|1/β

tT̂ (tξ)
∣∣∣ = Ct

∣∣∣ek|ξ|1/β

T̂ (tξ)
∣∣∣ .

Now if t ≥ 1, then |ξ|1/β ≤ |tξ|1/β
and therefore

∣∣∣ek|ξ|1/β

T̂ (tξ)
∣∣∣ ≤

∣∣∣ek|tξ|1/β

T̂ (tξ)
∣∣∣

≤
∣∣∣
∣∣∣ek|•|1/β

T̂
∣∣∣
∣∣∣
∞
.

For 0 < t < 1, we have

∣∣∣ek|ξ|1/β

T̂ (tξ)
∣∣∣ ≤

∣∣∣ekN |tξ|1/β

T̂ (tξ)
∣∣∣

≤
∣∣∣
∣∣∣ekN |•|1/β

T̂
∣∣∣
∣∣∣
∞
,

where N is an integer such that N ≥ 1
t . This completes the proof of Theorem 3.2. �

Theorem 3.3. Let B be a bounded subset of Σβ
α. Then

ϕt(x) = 〈t−nT (
x− y

t
), ϕ(x)〉 =

∫

Rn

t−nT (
x− y

t
)ϕ(y)dy → ϕ

in Σβ
αas t → 0+ uniformly on B.

Proof: We note that ϕt ∈ Σβ
α ⊂ (Σβ

α)′ for each t > 0. If 0 < t < 1 and z = x−y
t , then for any δ > 0, we

can write

ek|y|1/α |ϕt(x) − ϕ(y)| =

∫

Rn

ek|y|1/α

T (z) |ϕ(y + tz) − ϕ(y)| dz

≤ I1 + I2 + I3,

where

I1 =

∫

|y|≤δ

ek|y|1/α

T (z) |ϕ(y + tz) − ϕ(y)| dz,

I2 =

∫

|y|≥δ

ek|y|1/α

T (z) |ϕ(y + tz)|dz,

I3 =

∫

|y|≥δ

ek|y|1/α

T (z) |ϕ(y)| dz.

We begin estimating I1. For each 0 < t < 1 and z ∈ Rn, there exists C > 0 such that

ek|y|1/α |ϕ(y + tz) − ϕ(y)| ≤ Ct |z| .
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We note that property 2 in Remark 2.1 implies that there exist N ∈ N and C > 0 such that

|z| ≤ CeN |z|1/α

. Substituting this into I1, we obtain the estimate

I1 ≤
∫

|y|≤δ

Ct |z|T (z)dz (3.2)

≤ C

∫

|y|≤δ

teN |z|1/α

T (z)dz

≤ Cδt
∥∥∥eN |•|1/α

T
∥∥∥

∞
.

Next, we estimate I2. Using the subadditivity of |•|1/α
and 0 < t < 1, we obtain

I2 ≤
∫

|y|≥δ

ek|y|1/α

T (z) |ϕ(y + tz)| dz (3.3)

=

∫

|y|≥δ

ek|y+tz−tz|1/α

T (z) |ϕ(y + tz)| dz

≤
∫

|y|≥δ

ek|tz|1/α

T (z)
∣∣∣ek|y+tz|1/α

ϕ(y + tz)
∣∣∣ dz

≤
∥∥∥eN |•|1/α

ϕ
∥∥∥

∞

∫

|z|≥δ

ek|z|1/α

T (z)dz

≤ C

∫

|z|≥δ

ek|z|1/α

T (z)dz.

Finally, let us estimate I3. We have

I3 =

∫

|z|≥δ

ek|y|1/α

T (z) |ϕ(y)| dz (3.4)

≤
∥∥∥ek|•|1/α

ϕ
∥∥∥

∞

∫

|z|≥δ

ek|z|1/α

T (z)dz.

Therefore, if we choose δ to be sufficiently large and t sufficiently small then the estimates in (3.2),

(3.3) and (3.4) imply that
∥∥∥ek|y|1/α

(ϕt(x) − ϕ(y))
∥∥∥

∞
converges to 0 as t → 0+.

Now to prove that
∥∥∥ek|ξ|1/β

F (ϕt(x) − ϕ(y)) (ξ)
∥∥∥

∞
converges to 0 as t → 0+, we consider

ek|ξ|1/β |F (ϕt(x) − ϕ(y)) (ξ)| = ek|ξ|1/β

∣∣∣∣F(

∫

Rn

t−nT (
x− y

t
)ϕ(y)dy)(ξ) − F(ϕ(y))(ξ)

∣∣∣∣

= ek|ξ|1/β

∣∣∣∣F(

∫

Rn

t−nT (
x− y

t
)ϕ(y)dy)(ξ) − F(ϕ(y))(ξ)

∣∣∣∣

= ek|ξ|1/β

ϕ̂(ξ) |F(T )(tξ)−1|
≤

∥∥∥ek|•|1/β

ϕ̂
∥∥∥

∞
|F(T )(tξ)−1| ≤ C |F(T )(tξ)−1| .

Now by uniform continuity of F(T )(tξ), we observe that F(T )(tξ) → F(T )(0) =
∥∥t−nT ( ·

t )
∥∥

1
= 1, which

implies that C |F(T )(tξ)−1| → 0 as t → 0+ uniformly on compact subsets of Rn. Thus

∥∥∥ek|•|1/β

F(ϕt(x) − ϕ(y))
∥∥∥

∞

converges to 0 uniformly on B. This completes the proof of Theorem 3.3. �
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Example 3.4. Consider the heat kernel

E(x, t) =

{
(4πt)− n

2 e− |x|2

4t , for t > 0,
0 , for t < 0.

It is known that ‖E(·, t)‖1 = 1 for t > 0 (see [6]). Also, consider the Gauss-Weierstrass semigroups
{Tt}t≥0 defined by the integration with respect to the heat kernel

T√
t(ϕ)(x) = 〈E(x− y, t), ϕ(y)〉 = 〈t−n/2T (

x− y√
t

), ϕ(y)〉.

This semigroup generated by the Laplacian on Rn and the function u(x, t) = T√
t(ϕ)(x) is a solution of

the equation ut − △u = 0 with u(x, 0) = ϕ(x) for an appropriate ϕ. That is, the convolution

u(x, t) = E ∗ ϕ

is the solution to the heat equation and

u(x, 0) = ϕ(x) = lim
t→0+

T√
t(ϕ)(x)

and the convergence is uniform on bounded subsets of Rn. Now it is clear that E(x, t) ∈ Σβ
α for all

|•|1/α
, |•|1/β

satisfying the properties in Remark 2.1 since E(x, t) is exponentially decreasing and using

Theorem 3.2. Moreover, Theorem 3.2 implies that the action of T√
t on L ∈ (Σβ

α)′ for all such |•|1/α
, |•|1/β

can be defined by the integral against the function ρ(x) given in (3.1) and by using Theorem 3.1, we
conclude that this is equivalent to

T√
t(T ) = 〈Ly, 〈t−n/2T (

x− y√
t

), φ(x)〉〉

which implies that lim
t→0+

T√
t(T ) = T in the sense of (Σβ

α)′ and this is equivalent to

〈t−n/2T (
x− y√

t
), φ(x)〉〉 → ϕ in (Σβ

α)′as t → 0+.

As a result, the (Σβ
α)′ tempered ultradistributions can be realized as boundary values of the equation

ut −Au = 0.
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