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An Interesting Integral Involving Product of Two Generalized Hypergeometric Function
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abstract: In this research note, an interesting integral involving hypergeometric function has been evaluated
in terms of gamma function. It is further used to evaluate an integral involving product of two generalized
hypergeometric functions. A few very interesting special cases have also been given.
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1. Introduction and Results Required

In order to justify our doing, we must quote Sylvester [11]: ” It seems to be expected of every pilgrim
up the slopes of the mathematical parnassus, that he will at some point or other of his journey sit down
and invent a definite integral or two towards the increase of the common stock.”

It is well-known that the Gaussian hypergeometric function 2F1 and the confluent hypergeometric
function 1F1 form the core of special functions. A large number of elementary functions can be expressed
in terms of 2F1 as its limiting or special cases.

Th natural generalization of the above mentioned functions is the generalized hypergeometric function
with p numerator parameters and q denominator parameters denoted by pFq and is defined in the following
manner [3].

pFq





a1, . . . , ap
; x

b1, . . . , bq



 = PFq [a1, . . . , ap; b1, . . . , bq;x]

=

∞
∑

0

∏p

i=1(ai)n
∏q

i=1(bi)n

xn

n!
(1.1)

where (a)n is the well known Pochhammer symbol (or the raised or the shifted factorial, since (1)n = n!)
defined for a ∈ C by

(a)n :=

{

a(a+ 1)...(a+ n− 1) ;n ∈ N

1 ;n = 0
(1.2)

or in terms of Gamma function

(a)n :=
Γ(a+ n)

Γ(a)
(a ∈ C\Z−

0 ) (1.3)

For a complete detail about pFq (including its convergence conditions and properties, we refer to the
standard texts [1,3,7,8]).
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In the theory of hypergeometric and generalized functions classical summations theorems play an im-
portant role. For interesting results on the products of generalized hypergeometric functions by employing
the classical summation theorems, we refer a paper by Bailey [2].

Here, we would like to mention classical Watson’s summation theorem [1,2] viz.

3F2





a, b, c

; 1
a+b+1

2 , 2c



 =
Γ
(

1
2

)

Γ
(

c+ 1
2

)

Γ
(

a+b+1
2

)

Γ
(

c− a
2 − b

2 + 1
2

)

Γ
(

a+1
2

)

Γ
(

b+1
2

)

Γ
(

c− a
2 + 1

2

)

Γ
(

c− b
2 + 1

2

) (1.4)

provided Re(2c− a− b) > −1.
From (1.4), we shall first evaluate the following integral involving hypergeometric function which is also
believed to be new.

∫ π

2

0

e2icθ(sin θ)c−1(cos θ)c−1
2F1





a, b

; eiθ cos θ
a+b+1

2



 dθ

=
e

iπc

2 Γ
(

1
2

)

Γ(c)Γ(c)Γ
(

c+ 1
2

)

Γ
(

a+b+1
2

)

Γ
(

c− a
2 − b

2 + 1
2

)

Γ(2c)Γ
(

a+1
2

)

Γ
(

b+1
2

)

Γ
(

c− a
2 + 1

2

)

Γ
(

c− b
2 + 1

2

) (1.5)

provided Re(c) > 0 and Re(2c− a− b) > −1.

Proof. Denoting the left-hand side of (1.5) by I, we have

I =

∫ π

2

0

e2icθ(sin θ)c−1(cos θ)c−1
2F1





a, b

; eiθ cos θ
a+b+1

2



 dθ.

Now, expressing 2F1 as a series, change the order of integration, which is easily seen to be justified due
to uniform convergence of the series involved in the process, we have

I =

∞
∑

n=0

(a)n(b)n

(12 (a+ b+ 1)n)n!

∫ π

2

0

ei(2c+n)θ(sin θ)c−1(cos θ)c+n−1dθ.

Evaluating the integral with the help of the following well known integral due to MacRobert [6]

∫ π

2

0

ei(α+β)θ(sin θ)α−1(cos θ)β−1 = ei
πα

2

Γ(α)Γ(β)

Γ(α+ β)

provided Re(α) > 0 and Re(β) > 0, and using the relation (1.3), we have

I = ei
πc

2

Γ(c)Γ(c)

Γ(2c)

∞
∑

n=0

(a)n(b)n(c)n
1
2 (a+ b+ 1)n(2c)nn!

.

Summing up the series, we have

I = ei
πc

2

Γ(c)Γ(c)

Γ(2c)
3F2





a, b, c

; 1
a+b+1

2 , 2c



 .

Finally, using the result (1.4), we easily arrive at the right-hand side of (1.5). ✷

It is not out of place to mention here that, recently good progress has been done in generalizing and
extending the classical Watson’s summation theorem (1.4). For this, we refer to the readers, interesting
research paper by Rakha and Rathie [9] and Kim, et al. [5].
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Remark For the finite integral involving hypergeometric function, see a paper by Brychkov [4].

In this research note, an interesting integral involving product of two generalized hypergeometric
function has been evaluated in terms of gamma function. The integral is evaluated with the help of the
known integral (1.5). A few very interesting special cases have also been given.

2. main integral formula

In this section, we shall evaluate the integral involving product of two generalized hypergeometric
function given in the following theorem.

Theorem 2.1. For Re(c) > 0 and Re(2c− a− b) > −1, the following result holds true.

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1
2F1





a, b

; eiθ cos θ
a+b+1

2





× 2F2





c− a
2 + 1

2 , c− b
2 + 1

2
; −4ie2iθ sin θ cos θ

c, c− a
2 − b

2 + 1
2



 dθ

=
e

iπc

2
+1

√
πΓ(c)Γ(c)Γ

(

c+ 1
2

)

Γ
(

a+b+1
2

)

Γ
(

c− a
2 − b

2 + 1
2

)

Γ(2c)Γ
(

a+1
2

)

Γ
(

b+1
2

)

Γ
(

c− a
2 + 1

2

)

Γ
(

c− b
2 + 1

2

) (2.1)

Proof. In order to evaluate the integral (2.1), we proceed as follows. Denoting the left-hand side of (2.1)
by I, we have

I =

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1
2F1





a, b

; eiθ cos θ
a+b+1

2





× 2F2





c− a
2 + 1

2 , c− b
2 + 1

2
; −4ie2iθ sin θ cos θ

c, c− a
2 − b

2 + 1
2



 dθ

Express 2F2 as a series, interchanging the order of integration and summation, which is easily seen to be
justified due to the uniform convergence of the series involved in the process, we have

I =

∞
∑

n=0

(

c− a
2 + 1

2

)

n

(

c− b
2 + 1

2

)

n
22n(−i)n

(c)n
(

c− 1
2a− 1

2b+
1
2

)

n!

×
∫ π

2

0

ei(2c+2n)θ(sin θ)c+n−1(cos θ)c+n−1
2F1





a, b

; eiθ cos θ
a+b+1

2



 dθ

Evaluating the integral with the help of the result (1.5) and making use of the result (1.2), we have after
some simplification.

I =
ei

πc

2 Γ(c)Γ(c)Γ
(

c+ 1
2

)

Γ
(

a+b+1
2

)

Γ
(

c− a
2 − b

2 + 1
2

)

Γ(2c)Γ
(

a+1
2

)

Γ
(

b+1
2

)

Γ
(

c− a
2 + 1

2

)

Γ
(

c− b
2 + 1

2

)

∞
∑

n=0

1

n!

Finally, noting that

∞
∑

n=0

1
n! = e, we easily arrive at the right-hand side of (2.1). This completes the proof

of (2.1). ✷
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3. special cases

In this section, we shall mention a few very interesting special cases of our main integral (2.1) in the
form of following corollaries.

Corollary 3.1. In (2.1), if we let b = −2n and replace a by a+2n, where n is zero or a positive integer.
Then we get the following result:

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1
2F1





−2n, a+ 2n
; eiθ cos θ

a+1
2





× 2F2





c+ n+ 1
2 , c− a

2 + 1
2 − n

; −4ie2iθ sin θ cos θ
c, c− a

2 + 1
2



 dθ

=
e

iπc

2
+1Γ(c)Γ(c)

Γ(2c)

(

1
2

)

n

(

1
2 + a

2 − c
)

n
(

c+ 1
2

)

n

(

a+1
2

)

n

(3.1)

Corollary 3.2. In (2.1), if we let b = −2n− 1 and replace a by a+2n+1, where n is zero or a positive
integer. Then we get the following result:

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1
2F1





−2n− 1, a+ 2n+ 1
; eiθ cos θ

a+1
2





× 2F2





c+ n+ 1, c− a
2 − n

; −4ie2iθ sin θ cos θ
c, c− a

2 + 1
2



 dθ = 0 (3.2)

Corollary 3.3. In (2.1), if we let a = b = 1
2 and making use of the known result [7, p.473, equ.(75)]

2F1





1
2 ,

1
2

; x

1



 =
2

π
K(

√
x) (3.3)

where K(k) is the well-known Elliptic function of the first kind defined by

K(k) =

∫ π

2

0

dt√
1− k2sin2t

(3.4)

then, we get the following result:

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1 K(
√
eiθ cos θ)

× 2F2





c+ 1
4 , c+ 1

4
; −4ie2iθ sin θ cos θ

c, c



 dθ

= e
iπc

2
+1π

3

2

Γ3(c)Γ
(

c+ 1
2

)

Γ(2c)Γ2
(

3
4

)

Γ2
(

c+ 1
4

) (3.5)

provided Re(c) > 0.

Corollary 3.4. In (2.1), if we let a = b = 1 and making use of the known result [7, p.476, equ.(147)]

2F1





1, 1
; x

3
2



 =
sin−1(

√
x)

√

x(1 − x)
(3.6)
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then, we get the following result:

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1
√

eiθ cos θ(1− eiθ cos θ)

× sin−1(
√
eiθ cos θ) 1F1





c

; −4ie2iθ sin θ cos θ
c− 1

2



 dθ

=
πe

iπc

2
+1

2

Γ
(

c− 1
2

)

Γ
(

c+ 1
2

)

Γ(2c)
(3.7)

provided Re(c) > 1
2 .

Corollary 3.5. In (2.1), if we set b = −a and making use of the known result [4, p.459, equ.(83)]

2F1





a, −a

; x
1
2



 = cos(2asin−1
√
x) (3.8)

then, we get the following result:

∫ π

2

0

e2ciθ(sin θ)c−1(cos θ)c−1 cos(2asin−1
√
ei cos θ)

× 2F2





c− a
2 + 1

2 , c+ a
2 + 1

2
; −4ie2iθ sin θ cos θ

c, c+ 1
2



 dθ

=
πe

iπc

2
+1Γ2(c)Γ2

(

c+ 1
2

)

Γ(2c)Γ
(

1
2 − a

2

)

Γ
(

1
2 + a

2

)

Γ
(

c+ 1
2 − a

2

)

Γ
(

c+ 1
2 + a

2

) (3.9)

provided Re(c) > 0.
Similarly, other result c obtained.
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