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On Parallel p-equidistant Ruled Surfaces by Using Mofied Orthogonal Frame with

Curvature in E
3
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abstract: In this paper, it is investigated Ruled surfaces according to modified orthogonal frame with
curvature in 3-dimensional Euclidean space. Firstly, we give apex angle, pitch and drall of closed ruled surface
in E

3. Then, it is characterized the relationship between these invariant of parallel p-equidistant ruled surfaces.
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1. Introduction

The Frenet-Serret frame which has an importance place in Euclidean space is obtained continuously
differentiable non-degenerate curves, [3,7,20]. For this reason, the studies related to the frenet frame
are often used in differential geometry. One of most important of them is Karacan’s study. Karacan
described new frames, called modified orthogonal frame, with the help of the frenet frame [5,6]. These
frames are created both curvature and torsion of a space curve in E

3. Karacan also described these frames
in Minkowski 3-space. Because these frames are newly defined, there is not study in the literature.

Modern surface modeling systems are contain the ruled surface, because this surface frequently used
many areas suct that simulation of rigid body, design, production, motion analysis. For this reason, it
has an important place in kinematical geometry and positional mechanisms in Euclidean 3-space. For
instance, Brosius classifyed rank 2-vector bundels on a ruled surface and Onder and other authors viewed
ruled surfaces minkowski space, [4, 20,25].

In this paper, we obtain new characteristic properties parallel p-equidistant ruled surfaces according
to modified orthogonal frame frame in Euclidean 3-space. Firstly, we summarize properties modified
orthogonal frame and the basic concepts on curves and ruled surfaces. Finally, we give new theorem
to take the relationship between the differential and integral invariants of parallel p-equidistant ruled
surfaces according to modified orthogonal frame in Euclidean 3-space.

2. Preliminaries

Given a spatial curve ξ : s → ξ(s), which is parameterized by arc-length parameter s. Derivative of
the Frenet frame according to arc-length parameter is governed by the relations [20];

Ṫ = κN,

Ṅ = −κT+τB,

Ḃ = −τN,
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where κ is the curvature and τ is torsion of the curve α. Now we define an orthogonal frame {e1, e2, e3}
as follows:

e1 = T,

e2 = κN, (2.1)

e3 = κB.

Thus, e2 (s0) = e3 (s0) = 0 when κ (s0) = 0 and squares of the length of e2 and e3 vary analitically in s.
By the definition of {e1, e2, e3} or eq (2.1), a simple calculation show that

d

ds





e1 (s)
e2 (s)
e3 (s)



 =





0 1 0
−κ2 (s) κ̇

κ
τ

0 −τ κ̇
κ









e1 (s)
e2 (s)
e3 (s)



 , (2.2)

where a dash denotes the differentation with respect to arc length s and

τ (s) =
(α̇ (s) , α̈ (s) ,

...
α (s))

κ2 (s)

is torsion of α. Moreover, {e1, e2, e3} satisfies:

〈e1, e1〉 = 1, 〈e2, e2〉 = 〈e3, e3〉 = κ2,

〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0,

where 〈, 〉 denotes the inner product of E3, [5,6].
On the other hand, a ruled surface is a surface generated by the motion of a straight line δ along α.

Furthermore, if α is a closed curve, then this surfaces is called closed ruled surface [20]. Moreover, the
drall PX , the striction γ, the apex angle λX and the pitch IX of the closed ruled surface are defined by

PX =
det (α′, X,X ′)

‖X ′‖
2 ,

γ = α−
〈X ′, α′〉

‖X ′‖2
X, (2.2)

λX = 〈D,X〉 ,

IX = 〈V,X〉 .

3. On Parallel p-Equidistant Surfaces in E
3

Definition 3.1. Let α and α̃ be two regular curves and let {e1, e2, e3} and {ẽ1, ẽ2, ẽ3} be the

modified orthogonal frames with curcature of α and α̃ at the points α (s) and α̃ (s), respectively, in E
3.

Then, the ruled surfaces are

R (s, t) = α (s) + te1 (s) and R̃ (s, t) = α̃ (s) + tẽ1 (s) .

For these surfaces, if the e and ẽ vectors are parallel and the distance p between central planes in suitable

points are constant, then this couple ruled surface are called parallel p-equidistant ruled surfaces according

to modified orthogonalp frame.
Theorem 3.2. Let γ, γ̃ and κ, τ , κ̃, τ̃ be striction curves and curvatures of R and R̃ ruled surfaces,

respectively. Then, equations of striction curves according to Bishop frame are

γ = α (s) , (3.1)

γ̃ = α̃ (s) . (3.2)

Proof. Considering the definition of striction curve in equation (2.2), we can write

γ (s) = α (s)−
〈e′1 (s) , α

′ (s)〉

‖e′1 (s)‖
2 e1 (s) .
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From (2.1), we have
γ = α.

Similarly, if we apply the same equations for γ̃ (s) , γ̃ (s) can obtained as simple calculations by

γ̃ = α̃.

Theorem 3.3. Let α (s) , α̃ (s) and γ (s) , γ̃ (s) be anchor curves and striction curves of R (s, t) and
R̃ (s, t) parallel p-equidistant ruled surfaces and {e1, e2, e3} and {ẽ1, ẽ2, ẽ3} be the modified orthogonal

frames of α and α̃ at the points α (s) and α̃ (s) in E
3, respectively. Then, the anchor curve α̃ of R̃ is

given by

α̃ = γ + pe1+ze2 + qe3. (3.3)

Proof. Assume that γγ̃ be
γ̃ − γ = pe1+ze2 + qe3 (3.4)

vector is written related to frame {e1, e2, e3}, where |p| = |〈γγ̃, e1〉| is distance between polar planes.
From (3.4), we have

γ̃ = γ + pe1+ze2 + qe3.

If we write the (3.2) equation instead of γ̃, then we can write

α̃ = γ + pe1+ze2 + qe3.

Theorem 3.4. Let γ (s), γ̃ (s) be striction curves of R (s, t) and R̃ (s, t) parallel p-equidistant ruled
surfaces, respectively. Then, the relation between striction curves are given by

γ̃ = γ +

(

τq − z′ − z
κ′

κ

)

e1+ze2 + qe3. (3.5)

Proof. If we take the derivative of equation (3.3), we obtain

α̃′ =
[

‖α′‖+ p′ − zκ2
]

e1

+

[

p+ z′ + z
κ′

κ
− qτ

]

e2 (3.6)

+

[

zτ + q′ + q
κ′

κ

]

e3.

Now, if we take the inner product of (3.6) and e′1, one can calculate by

〈

(α̃)
′
, e′1

〉

= κ2

(

p+ z′ + z
κ′

κ
− qτ

)

. (3.7)

Since γ̃ (s) = α̃ (s)−
〈ẽ′

1
(s),α̃′(s)〉
‖ẽ′

1
(s)‖2 ẽ1 (s) and e1, ẽ1 vectors are parallel vectors, we have

γ̃ (s) = α̃ (s)−

〈

e′1 (s) , α̃
′ (s)

〉

‖e′1 (s)‖
2 e1 (s)

From (3.3) and (3.7), we take

γ̃ = γ +

(

τq − z′ − z
κ′

κ

)

e1+ze2 + qe3.

Corollary 3.5. The distance between central planes of R (s, t) and R̃ (s, t) parallel p-equidistant ruled
surfaces is

p = τq − z′ − z
κ′

κ
.



4 M. T. Sariaydin, T. Körpinar and V. Asil

Theorem 3.6. Let {e1, e2, e3} and {ẽ1, ẽ2, ẽ3} be the modified orthogonal frames of the points

α (s) and α̃ (s) of anchor curves of R (s, t) and R̃ (s, t) parallel p-equidistant ruled surfaces in E
3. Then,

the relation between modified orthogonal frames are given by

ẽ1 = e1,

ẽ2 = cosφe2 − sinφe3,

ẽ3 = sinφe2 + cosφe3,

where φ is angle between the vector e2 and the vector ẽ2.
Remark 3.7. Let κ, τ and κ̃, τ̃ be curvatures of R and R̃ parallel p-equidistant ruled surfaces in

E
3. Then, the relation between curvatures are given by

κ̃ = κ cosφ
ds

ds∗
, (3.8)

τ̃ = τ
ds

ds∗
. (3.9)

On the other hand, we calculate apex angle, pitch and drall of closed ruled surface R (s, t) as

Pe
1

= 0, Pe
2
=

τ ‖α′‖

κ4 + (κ′)
2
+ κ2τ2

, and Pe
3
=

τ ‖α′‖

(κ′)
2
+ κ2τ2

, (3.10)

λe
1

=

∮

(α)

τds, λe
2
= 0, and λe

3
=

∮

(α)

ds, (3.11)

Ie
1

=

∮

(α)

ds and Ie
2
= Ie

3
= 0. (3.12)

Now, we can write the relationship between the differential and integral invariants of parallel p−equi-
distant ruled surfaces.

Theorem 3.8. Let λe
1
, λe

2
, λe

3
and λẽ

1
, λẽ

2
, λẽ

3
be apex angles of R and R̃ parallel p-equidistant

ruled surfaces in E
3. Then, the relation between apex angles are given by

λẽ
1

= λe
1
+

∮

(pe1+ze2+qe3)

τ̃ ds̃,

λẽ
2

= λe
2
= 0, (3.13)

λẽ
3

= cos4 φλe
3
+

∮

(pe1+ze2+qe3)

κ̃4ds̃.

Proof. From (3.11), we can write following equation

λẽ
1
=

∮

(α̃)

τ̃ ds̃. (3.14)

If we consider the eq. (3.3), the we obtain

λẽ
1

=

∮

(α+pe1+ze2+qe3)

τ̃ds̃,

=

∮

(α)

τds+

∮

(pe1+ze2+qe3)

τ̃ds̃,

= λe
1
+

∮

(pe1+ze2+qe3)

τ̃ ds̃.
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Similarly, we have

λẽ
3

=

∮

(α̃)

κ̃4ds̃,

=

∮

(α+pe1+ze2+qe3)

κ̃4ds̃,

=

∮

(α)

κ4 cos4 φds+

∮

(pe1+ze2+qe3)

κ̃4ds̃

= cos4 φλe
3
+

∮

(pe1+ze2+qe3)

κ̃4ds̃.

Theorem 3.9. Let Ie1
, Iẽ1

be pitchs of R and R̃ parallel p-equidistant closed ruled surfaces in E
3.

If we specially take helix curve instead of anchor curve of parallel p-equidistant closed ruled surface, then

the relation between pitchs are given by

Iẽ
1
=

κ

κ̃
cosφIe

1
+

∮

(pe1+ze2+qe3)

ds∗.

Proof. From (3.12), then we can write

Iẽ
1
=

∮

(α∗)

ds∗.

Thus, we get

Iẽ
1

=

∮

(α+pe1+ze2+qe3)

ds∗,

=

∮

(α)

ds∗ +

∮

(pe1+ze2+qe3)

ds∗,

=
κ

κ̃
cosφ

∮

(α)

ds+

∮

(pe1+ze2+qe3)

ds∗,

=
κ

κ̃
cosφIe

1
+

∮

(pe1+ze2+qe3)

ds∗.

Let us consider two unit speed curve in E
3 by

α (s) = (
4

5
cos s, 1− sin s,−

3

5
cos s) and α (s) = (cos s, sin s, 0) .

Then, we can easily draw the following graphics;



6 M. T. Sariaydin, T. Körpinar and V. Asil

Figure 1: The ruled surface of curves α and α̃.

Figure 2: Gaph of function p.
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