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A Spatiotemporal SIR Epidemic Model Two-dimensional with Problem of Optimal

Control

Khalid Adnaoui, Imane Elberrai, Adil El Alami Laaroussi and Khalid Hattaf

abstract: In the context of a more realistic model, in this work, we are interested in studying a spatiotem-
poral two-dimensional SIR epidemic model, in the form of a system of partial differential equations (PDE). A
distribution of a vaccine in the form of a control variable is considered to force immunity. The purpose is to
characterize a control that minimizes the number of susceptible, infected individuals and the costs associated
with vaccination over a finite space and time domain. In addition, the existence of the solution of the state
system and the optimal control is proved. The characterization of the control is given in terms of state func-
tion and adjoint function. The numerical resolution of the state system shows the effectiveness of our control
strategy.
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1. Introduction

Mathematical modeling in the field of epidemiology has become an important tool, since it gives an
approximate idea of the causes, dynamics and spread of epidemic. In addition, it can provide useful
control measures to make decisions about effective control strategies [1]. SIR is among the elementary
models in the mathematical modeling of diseases, it consists of divided the population into different class,
depending on the stage of infection. The susceptible class (S) includes individuals who may contract the
disease but are not yet infectious. The infectious class (I) includes those who have the disease and can
transmit it. The recovered compartment (R) includes persons who have recovered from the disease with
permanent immunity. In the literature, there are a great deal of mathematical studies of diseases that
give an interesting insight into the use of mathematical models in epidemiology. For example, Baily et al.
[2], Anderson et al. [3], Hethcote [4], Brauer and Castillo-Chavez [5], Keeling and Rohani [6] , Huppert
and Katriel [7] and [8,9,10,11,12,13,25,26]. In this contribution, we consider an epidemic SIR model,
spatiotemporal in two dimensions in the work of Lotfi. et al [14] and Hattaf. et al [15], in this system we
introduce a vaccine in the form of a control variable,in order to minimise susceptible, infected individuals
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and the costs associated with vaccination. The existence of the state system solution and the optimal
control is proved, and the characterization of the optimal control in terms of state function and adjoint
is given. For the validation of our strategy, we present the numerical results obtained.

2. The Basic Mathematical Model

2.1. The model without controls

In this paper, we consider the following SIR epidemic model:







































∂S

∂t
= ds△S + Λ− f (S, I, R)SI − µS

∂I

∂t
= dI△I + f (S, I, R)SI − (µ+ d+ r)I

∂R

∂t
= dR△R− µR+ rI

(t, x) ∈ Q = [0, T ]× Ω (2.1)

With f (S, I, R) = β
1+α1S+α2I+α3SI is the incidence rate, such as α1, α2, α3≥ 0 are constants . Λ is the

recruitment rate of the population, µ is the natural death rate of the population,d is the death rate due
to disease, r is the recovery rate of the infective individuals, β is the infection coefficient. The positive
constants dS , dI ,and dR denote the corresponding diffusion rate for susceptible, infectious, and recovered
individuals. We denote by Ω a fixed and bounded domain in IR2 with smooth boundary ∂Ω and η is
the outward unit normal vector on the boundary. The initial conditions and no-flux boundary conditions
are given by

∂S

∂η
=

∂I

∂η
=

∂R

∂η
= 0 , (t, x) ∈ Σ = [0, T ]× ∂Ω (2.2)

S(0, x) = S0 ≥ 0, I(0, x) = I0, and R(0, x) = R0 (2.3)

In this step, the numerical results obtained by using the finite difference method of the system (1) without
control are given. We have adopted two situations: In the first, the disease starts from the middle (1)
and in the second, the disease starts at the corner (2).Figures 1, 2, and 3 present numerical results
for susceptible, infected, and recovered individuals.Results show that in both situations, susceptible
individuals become infected after an incubation period, and after a period of time, the disease spreads
throughout the population.In order to fight against the spread of the disease we adopted a strategy based
on the introduction of a vaccine in the form of a control variable.
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Figure 1: Susceptible behavior within Ω without control

Figure 2: Infected behavior within Ω without control
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Figure 3: Recovered behavior within Ω without control

2.2. The model with controls

The controlled model is the following:







































∂S

∂t
= dS△S + Λ− f (S, I, R)SI − (µ+ v (t, x))S

∂I

∂t
= dI△I + f (S, I, R)SI − (µ+ d+ r)I

∂R

∂t
= dR△R− µR+ v (t, x)S + rI

(t, x) ∈ Q = [0, T ]× Ω (2.4)

With f (S, I, R) = β
1+α1S+α2I+α3SI and initial conditions and no-flux boundary conditions are given by

∂S

∂η
=

∂I

∂η
=

∂R

∂η
= 0 , (t, x) ∈ Σ = [0, T ]× ∂Ω (2.5)

S(0, x) = S0 ≥ 0, I(0, x) = I0, and R(0, x) = R0 (2.6)

v(x, t) represents the vaccination rate at time and position x. We seek to minimize the functional objective

J (v) =

∫ T

0

∫

Ω

(ρ1S (t, x) + ρ2I (t, x))dxdt+
α

2
‖v‖

2
L2(Q) (2.7)

Eligible controls are contained in the ensemble

Uad = {v ∈ L∝ (Q) /0 ≤ v ≤ vmax ≤ 1} (2.8)

for some positive constant vmax.
Where ρ1, ρ2 are constant weights. The cost of vaccination is a nonlinear function of v, we choose a

quadratic function indicating the additional costs associated with high vaccination rates.

The parameter α
2 , with the units Population/km2

vaccin2 , balances the cost squared of the vaccine with the
cost associated with the infected population. Our objective is to find control functions such that

J(v∗) = min {J (v) , v ∈ Uad}
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• We put H (Ω) =
(

L2 (Ω)
)3
, we denote by W 1,2 ([0, T ] , H (Ω)) the space of all absolutely continuous

functions y : [0, T ] → H (Ω) having the property that
∂y

∂t
∈ L2 ([0, T ] , H (Ω)).

• L (T,Ω) = L2
(

[0, T ] , H2(Ω)
)

∩ L∞
(

[0, T ] , H1 (Ω)
)

3. Existence of solution

We study in this section the existence of a global strong solution, positivity, and boundedness of
solutions of problem for (2.4)-(2.6). Let y = (y1, y2, y3) = (S, I, R) the solution of the system (2.4)-(2.6)
with y0 =

(

y01 , y
0
2 , y

0
3

)

=
(

S0, I0, R0
)

. A denotes the linear operator defned as following

A : D (A) ⊂ H (Ω) −→ H (Ω)
Ay = (dS∆y1, dI∆y2, dR∆y3) ∈ D (A) , ∀y = (y1, y2, y3) ∈ D (A)

(3.1)

with the domain of A defined by

D (A) =

{

y ∈
(

H2 (Ω)
)3

,
∂y1
∂η

=
∂y2
∂η

=
∂y3
∂η

= 0, a.e x ∈ ∂Ω

}

(3.2)

Theorem 3.1. Let Ω be a bounded domain from R
2, with the boundary smooth enough, y0i ≥ 0 on Ω

( for i = 1, 2, 3 ), the problem (2.4-2.6 ) has a unique (global) strong solution y ∈ W 1,2 ([0, T ] : H (Ω))
such that yi ∈ L (T,Ω)∩L∞ (Q) for i = 1, 2, 3 . In addition y1, y2, and y3 are nonnegative. Furthermore
there exists C > 0 (independent of (v)) for all t ∈ [0, T ]

∥

∥

∥

∥

∂yi
∂t

∥

∥

∥

∥

L2(Q)

+ ‖yi‖L2(0,T ;H2(Ω)) + ‖yi‖H1(Ω) + ‖yi‖L∞(Q) ≤ C, for i = 1, 2, 3 (3.3)

Proof. To prove the existence of a (global) strong solution for system(2.4)-(2.6), now we write system
(2.4)-(2.6) as shown in ((4.1) see Appendix). Let























g1 (y (t)) = Λ− f (y) y1y2 − (µ+ v (t, x)) y1

g2 (y (t)) = f (y) y1y2 − (µ+ d+ r)y2, t ∈ [0, T ]

g3 (y (t)) = −µy3 + v (t, x) y1 + ry2

(3.4)

The system (3.4) represent the nonlinear term of (2.4) and we consider the function
g (y (t)) = (g1 (y (t)) , g2 (y (t)) , g3 (y (t))), then we can be rewrite the system (2.4-2.6 ) in the space
H(Ω) as follows

{

∂y

∂t
= Ay + g (y (t)) , t ∈ [0, T ]

y (0) = y0
(3.5)

It is clear that function g is not Lipschitz continuous in y = (y1, y2, y3) uniformly with respect to t ∈ [0, T ].
Therefore, we cannot apply Theorem (8.1) (see appendix) for our problem directly.

Step 1: This step studies the local existence of positive solutions to system (2.1)-(2.6) in view of
Theorem (8.1) (see appendix). We use a truncation procedure for g. For a fixed positive integer k > 0,
let us define the function sets D1 = {z| z > k}, D2 = {z| |z| < k} ,D3 = {z| z < −k}and consider the
following auxiliary problem:







∂yk

∂t
= Ay + gk

(

t, yk (x, t)
)

, in Q,

yk (x, 0) = y0, in Ω,

where gk
(

t, yk
)

=
(

gk1
(

t, yk
)

, gk2
(

t, yk
)

, gk3
(

t, yk
))

. Here, for each index i, gki
(

t, yk
)

are defined as
follows:

gki
(

t, yk
)

= gi
(

t, [y1]Ds1
, [y2]Ds2

, [y3]Ds3

)
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where [yi]Dsi
means that yi ∈ Dsi, and

[yi]Dsi
=







k if si = 1,
yi if si = 2,
−k if si = 3.

As the operator A defined in (3.1)-(3.2) is dissipating, self-adjoint and generates a C0-semi-group of
contractions on H (Ω)[23], it is clear that function gk

(

t, yk
)

becomes Lipschitz continuous in yk uniformly
with respect to t ∈ [0, T ]. Therefore, theorem (8.1) (see appendix) assures problem (2.1-2.6) admits a
unique strong solution yk ∈ W 1,2 ([0, T ] , H (Ω)) with

yk1 , y
k
2 , y

k
3 ∈ L2

(

[0, T ] , H2(Ω)
)

(3.6)

In order to show that yki ∈ L∞ (Q) for i = 1, 2, 3, we denote M = max
{

∥

∥gk1
∥

∥

L∞(Q)
,
∥

∥y01
∥

∥

L∞(Ω)

}

and

{S (t) , t ≥ 0} is the C0-semi-group generated by the operator B : D (B) ⊂ L2 (Ω) −→ L2 (Ω), where

Byk1 = d1∆yk1 and D (B) =

{

yk1 ∈ H2 (Ω) ,
∂yk1
∂η

= 0, a.e ∂Ω

}

. It is clear that the function Uk
1 (t, x) =

yk1 −Mkt−
∥

∥y01
∥

∥

L∞(Ω)
satisfies the system















∂Uk
1

∂t
(t, x) = dS△Uk

1 + gk1 (t, y (t))−Mk , t ∈ [0, T ]

Uk
1 (0, x) = y01 −

∥

∥y01
∥

∥

L∞(Ω)

(3.7)

Note that this system has a solution given by

Uk
1 (t) = S (t) (y01 −

∥

∥y01
∥

∥

L∞(Ω)
) +

∫ t

0

S (t− s) (gk1 (s, y (s))−Mk)ds,

As y01 −
∥

∥y01
∥

∥

L∞(Ω)
≤ 0 and gk1 (s, y (s)) − Mk ≤ 0, we have Uk

1 (t, x) ≤ 0, ∀ (t, x) ∈ Q . Similarly the

function Uk
2 (t, x) = yk1 +Mkt+

∥

∥y01
∥

∥

L∞(Ω)
satisfies Uk

2 (t, x) ≥ 0, ∀ (t, x) ∈ Q. Then

∣

∣yk1 (t, x)
∣

∣ ≤ Mkt+
∥

∥y01
∥

∥

L∞(Ω)
, ∀ (t, x) ∈ Q

and analogously, we have

∣

∣yki (t, x)
∣

∣ ≤ Mkt+
∥

∥y0i
∥

∥

L∞(Ω)
∀ (t, x) ∈ Qfor i = 2, 3 (3.8)

Thus we have proved that
yki ∈ L∞(Q) ∀ (t, x) ∈ Q for i = 1, 2, 3. (3.9)

By the first equation of (2.1), we obtain

∫ t

0

∫

Ω

∣

∣

∣

∣

∂yk1
∂s

∣

∣

∣

∣

2

dsdx+ d2S
∫ t

0

∫

Ω

∣

∣△yk1
∣

∣

2
dsdx − 2dS

∫ t

0

∫

Ω

∂yk1
∂s

△yk1dsdx

=
∫ t

0

∫

Ω

(

Λ− f
(

yk
)

yk1 − (µ+ v (t, x)) yk1
)2

dsdx

Using the regularity of yk1 and the Green’s formula, we can write

2
∫ t

0

∫

Ω

∂yk1
∂s

△yk1dx = −
∫ t

0

∂

∂s

(

∫

Ω

∣

∣∇yk1
∣

∣

2
dx

)

ds = −
∫

Ω

∣

∣∇yk1
∣

∣

2
dx+

∫

Ω

∣

∣∇y01
∣

∣

2
dx

Then
∫ t

0

∫

Ω

∣

∣

∣

∣

∂yk1
∂s

∣

∣

∣

∣

2

dsdx+ d2S
∫ t

0

∫

Ω

∣

∣△yk1
∣

∣

2
dsdx+ dS

∫

Ω

∣

∣∇yk1
∣

∣

2
dx− dS

∫

Ω

∣

∣∇y01
∣

∣

2
dx

=
∫ t

0

∫

Ω

(

Λ− f
(

yk
)

yk1 − (µ+ v (t, x)) yk1
)2

dsdx
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Since
∥

∥yki
∥

∥

L∞(Q)
for i = 1, 2, 3 are bounded independently of v and y01 ∈ H2(Ω) , we deduce that

yk1 ∈ L∞
(

[0, T ] , H1 (Ω)
)

(3.10)

We make use of (3.6), (3.7), and (3.10), in order to get

yk1 ∈ L (T,Ω) ∩ L∞ (Q)

and conclude that the inequality in (3.3) holds for i = 1, similarly for yk2 and yk3 .
In order to show the positiveness of yki for i = 1, 2, 3, we start by demonstrating that yk2 is positivive

to be, we set yk2 = yk+2 − yk−2 with yk+2 = sup{yk2(t, x), 0} and yk−2 = sup{−yk2(t, x), 0}. we multiply the
second equation of (2.4) and we integrate on Ω we obtain:

−
1

2

d

dt
(

∫

Ω

(yk−2 )2(t, x)dx) =

∫

Ω

|d2∇yk−2 (t, x)|2dx−

∫

Ω

f
(

yk
)

yk1 (y
k−
2 (t, x))2dx+

∫

Ω

(µ+d+r)(yk−2 (t, x))2dx

wich implies

−
1

2

d

dt
(

∫

Ω

(yk−2 )2(t, x)dx) ≥ −

∫

Ω

f
(

yk
)

yk1 (y
k−
2 (t, x))2yk1 (y

k−
2 (t, x))2dx

Then,
1

2

d

dt
(

∫

Ω

(yk−2 )2(t, x)dx) ≤

∫

Ω

f
(

yk
)

yk1 (y
k−
2 (t, x))2yk1 (y

k−
2 (t, x))2dx

We put b = f
(

yk
)

yk1 and Gronwall’s inequality leads to

∫

Ω

(yk−2 )2(t, x)dx ≤ et‖b‖L∞(Ω)

∫

Ω

(yk−2 )2(0, x)dx

then yk−2 = 0,on deduces that yk2 (t, x) ≥ 0,
To demonstrate the positivity of yk1 and yk3 , we write the 1st and 3rd equations of (2.1) in the form



















∂yk1
∂t

= d1△yk1 + F k
1

(

yk1 , y
k
2 , y

k
3

)

, (t, x) ∈ Q,

∂yk3
∂t

= d3△yk3 + F k
3

(

yk1 , y
k
2 , y

k
3

)

.

(3.11)

It is obvious to see that the functions F k
1

(

yk1 , y
k
2 , y

k
3

)

and F k
3

(

yk1 , y
k
2 , y

k
3

)

, are continuously differentiable

satisfying F1

(

0, yk2 , y
k
3

)

= Λ ≥ 0, and F3

(

yk1 , y
k
2 , 0

)

= v (t, x) yk1 + ryk2 ≥ 0 for all yk1 , y
k
3 ≥ 0.

Since initial data of system (3.11) are nonnegative, we deduce the positivity of yk1 , y
k
2 and yk3 (see [24]).

Now we particularize k > 0 large enough such that

Mkθ +
∥

∥y0i
∥

∥

L∞(Ω)
≤ k, i = 1, 2, 3, for some θ ∈ [0, T ] (3.12)

For example, we can take k > 2max
{

‖y‖L∞(Ω) , i = 1, 2, 3
}

. Let θ ∈ (0, T ) be maximal with property

(3.12). By (3.8)-(3.12), it is clear that
∣

∣yki (t, x)
∣

∣ < k , for (t, x) ∈ [0, θ] × Ω and i = 1, 2, 3. So,

gk(t, y1, y2, y3) coincides with g(t, y1, y2, y3) for(t, x) ∈ [0, θ]×Ω, and consequently yk =
(

yk1 , y
k
2 , y

k
3

)

is a
local solution for (2.4)-(2.6) defined on [0, θ]×Ω.

Step 2. It remains to show that the above local positive solution of problem (2.4)-(2.6) is in fact a
global one in [0, θ] × Ω . Indeed, it is sufficient to show the uniformly boundedness of yi, i = 1, 2, 3, in
[0, θ]×Ω . To this end, we first introduce

N = y1 + y2 + y3 then
∂N

∂t
= d1△y1 + d2△y2 + d3△y3 − Λ − dy2 − µN , there exists m such that:

∂N

∂t
≤ dm△N+mN with dm = max {d1, d2, d3}. This leads to the estimate 0 < N (t, x) ≤ emS (t)N0 (x),



8 K. Adnaoui, I. Elberrai, A. El Alami Laaroussi and K. Hattaf

(t, x) ∈ [0, θ] × Ω, where S(t), t ≥ 0 is the C0-semi group of contractions on L2(Ω) generated by

the operator BN = d∆N , with the domain D (B) =

{

N ∈ H2 (Ω) ,
∂N

∂η
= 0, a.e in ∂Ω

}

. Therefore,

‖N‖L∞([0,θ]×Ω) ≤ m1 for some m1 > 0 independent of k and of v. Next, we can deduce the boundedness

of y1, y2 and y3 on [0, θ] × Ω. Consequently, yi are defined on the whole set Q (and also positive and
bounded). Thus (y1, y2, y3) is a global positive strong solution of system (2.4)-(2.6) and it satisfies (3.3).
This completes the proof. ✷

4. The existence of the optimal solution

In this section, we will prove the existence of an optimal control for the problem (2.7) subject to
reaction diffusion system (2.4)-(2.6) and (v) ∈ Uad. The main result of this section is the following
theorem.

Theorem 4.1. Under the hypotheses of theorem (3.1), the optimal control problem (2.4-2.7) admits an
optimal solution (y∗, (v∗)).

Proof. From Theorem 3.1, we know that, for every v ∈ Uad, there exists a unique solution y to system
(2.4-2.6) . Assume that

infv∈Uad
J ((v)) > −∞

Let {(vn)} ⊂ Uad be a minimizing sequence such that

limn→∝J(v
n) = infv∈Uad

J (v)

where (yn1 , y
n
2 , y

n
3 ) is the solution of system (2.4-2.6) corresponding to the control (vn) for n = 1, 2, ....

That is







































∂yn1
∂t

= d1∆yn1 + Λ− f (yn) yn1 − (µ+ vn (t, x)) yn1

∂yn2
∂t

= d2∆yn2 + f (yn) yn1 − (µ+ d+ r)yn2 , (t, x) ∈ Q

∂yn3
∂t

= d3∆yn3 − µyn3 + vn (t, x) yn1 + ryn2

(4.1)

∂yn1
∂η

=
∂yn2
∂η

=
∂yn3
∂η

= 0 (t, x) ∈ Σ (t, x) ∈ Σ (4.2)

yni (0, x) = y0i for i = 1, 2, 3 x ∈ Ω (4.3)

and By theorem (3.1) using the estimate (3.3) of the solution yni , there exists a constant C > 0 such that
for all n ≥ 1,t ∈ [0, T ]

∥

∥

∥

∥

∂yni
∂t

∥

∥

∥

∥

L2(Q)

≤ C, ‖yni ‖L2(0,T ;H2(Ω)) ≤ C, ‖yni ‖H1(Ω) ≤ C, i = 1, 2, 3 (4.4)

H1 (Ω) is compactly embedded in L2 (Ω), so we deduce that yn1 (t) is compact in L2 (Ω).

Let’s Show that {yn1 (t) , n ≥ 1} is equicontinuous in C
(

[0, T ] : L2 (Ω)
)

. As
∂yn1
∂t

is bounded in L2 (Q),

this implies that for all s, t ∈ [0, T ]

∣

∣

∣

∣

∫

Ω

(yn1 )
2
(t, x) dx−

∫

Ω

(yn1 )
2
(s, x) dx

∣

∣

∣

∣

≤ K |t− s| (4.5)

The Ascoli-Arzela Theorem(See [22]) implies that yn1 is compact in C
(

[0, T ] : L2 (Ω)
)

. Hence, selecting
further sequences, if necessary, we have
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yn1 −→ y∗1 in L2 (Ω), uniformly with respect to t and analogously, we have for yni −→ y∗i in L2 (Ω) for
i = 2 , 3 , uniformly with respect to t.

From the boundedness of ∆yni in L2 (Q), which implies it is weakly convergent in L2 (Q) on a subse-
quence denoted again △yni then for all distribution ϕ

∫

Q

ϕ∆yni =

∫

Q

yni △ϕ →

∫

Q

y∗i△ϕ =

∫

Q

ϕ∆y∗i

Which implies that △yni → △y∗i weakly in L2 (Q),i = 1, 2, 3, In addition, the estimates (4.4) leads to
∂yni
∂t

→
∂y∗i
∂t

weakly in L2 (Q), i = 1, 2, 3

yni → y∗i weakly in L2
(

0, T ;H2 (Ω)
)

, i = 1, 2, 3

yni → y∗i weakly star in L∞
(

0, T ;H1 (Ω)
)

, i = 1, 2, 3
We now show that yn1 y

n
2 7→ y∗1y

∗
2 and f (yn) yn1 y

n
2 → f (y∗) y∗1y

∗
2 strongly in L2 (Q), we write

yn1 y
n
2 − y∗1y

∗
2 = (yn1 − y∗1) y

n
2 + (yn2 − y∗2) y

∗
1

f (yn) yn1 y
n
2 − f (y∗) y∗1y

∗
2 = f (yn) (yn1 y

n
2 − y∗1y

∗
2) + y∗1y

∗
2 (f (yn)− f (y∗))

and

f (yn)− f (y∗) =
β

1 + α1yn1 + α2yn2 + α3yn1 y
n
2

−
β

1 + α1y∗1 + α2y∗2 + α3y∗1y
∗
2

and we make use of the convergences yni −→ y∗i strongly in L2 (Q), i = 1, 2, and of the boundedness of
yn1 , y

n
2 in L∞ (Q), then yn1 y

n
2 → y∗1y

∗
2and f (yn) yn1 → f (y∗) y∗1 strongly in L2 (Q).

Since vn is bounded, we can assume that vn → v∗ weakly in L2 (Q) on a subsequence denoted again
vn . Since Uad is a closed and convex set in L2 (Q), it is weakly closed, so v∗ ∈ Uad

We now show that

vnyn1 → v∗y∗1weakly in L2 (Q)

Writing

vnyn1 − v∗y∗1 = (yn1 − y∗1) v
n + (vn − v∗) y∗1

and making use of the convergences yn1 −→ y∗1 strongly in L2 (Q), and vn −→ v∗ weakly in L2 (Q), one
obtains thatvnyn1 → v∗y∗1 weakly in L2 (Q).

By taking n → ∞ i in (4.1-4.3),, we obtain that y∗ is a solution of (2.4-2.6) corresponding to (v∗1) ∈ Uad.
Therefore

J (y∗, v∗) = ρ1
∫ T

0

∫

Ω y∗1 (t, x) dxdt + ρ2
∫ T

0

∫

Ω y∗2 (t, x) dxdt+
η

2
‖v∗‖

2
L2(Q)

≤ limn→∝inf
(

ρ1
∫ T

0

∫

Ω
yn1 (t, x) dxdt + ρ2

∫ T

0

∫

Ω
yn2 (t, x) dxdt+

η

2
‖vn‖

2
L2(Q)

)

= limn→∝

(

ρ1
∫ T

0

∫

Ω yn1 (t, x) dxdt + ρ2
∫ T

0

∫

Ω yn2 (t, x) dxdt+
η

2
‖vn‖

2
L2(Q)

)

= inf(v)∈Uad
J ((y, v))

This shows that J attains its minimum at (y∗, v∗) , we deduce that (y∗, v∗) verifies problem (2.4-2.6) and
minimizes the objectif functional (2.7). The proof is complet ✷

5. Necessary optimality conditions

Let v ∈ Uad and vε = v∗ + εv ∈ Uad, in this section, we show the optimality conditions to problem
(2.4-2.6), and we find the characterization of optimal control. First , we need the Gateaux differen-
tiability of the mapping v → y(v). For this reason, denoting by yε = (yε1, y

ε
2, y

ε
3) = (y1, y2, y3) (v

ε)
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and y∗ = (y∗1 , y
∗
2 , y

∗
3) = (y1, y2, y3) (v

∗) the solution of (2.4-2.6) corresponding to vε and v∗ respec-

tively. H =









−
βy∗

2(1+α2y
∗

2)

(1+α1y∗

1+α2y∗

2+α3y∗

1y
∗

2)
2 − (µ+ v∗) −

βy∗

1(1+α1y
∗

1)

(1+α1y∗

1+α2y∗

2+α3y∗

1y
∗

2)
2 0

βy∗

2 (1+α2y
∗

2 )

(1+α1y∗

1+α2y∗

2+α3y∗

1y
∗

2)
2

βy∗

1 (1+α1y
∗

1 )

(1+α1y∗

1+α2y∗

2+α3y∗

1y
∗

2)
2 − (µ+ d+ r) 0

v∗ r −µ









and

G =





−y∗1
0
y∗1



.

Proposition 5.1. The mapping y : Uad → W 1,2 ([0, T ] ;H (Ω)) with yi ∈ L (T,Ω) for i = 1, 2, 3 is
Gateaux differentiable with respect to v∗. For all direction u ∈ Uad, y

′ (v∗) v = Y is the unique solution
in W 1,2 ([0, T ] ;H (Ω)) with Yi ∈ L (T,Ω) of the following equation











∂Y

∂t
= AY +HY +Gv, t ∈ [0, T ]

Y (0) = 0

(5.1)

Proof. Put Y ε
i =

yεi − y∗i
ε

for i = 1, 2, 3, Q (y1, y2) =
βy1y2

1 + α1y1 + α2y2 + α3y1y2
,

M ε
1 =

Q (yε1, y
ε
2)−Q (y∗1 , y

ε
2)

yε1 − y∗1
, and M ε

2 =
Q (y∗1 , y

ε
2)−Q (y∗1 , y

∗
2)

yε2 − y∗2
.

We denote Sε the system (2.4 ) corresponding to vε and S∗ the system (2.4) corresponding to v∗,
subtracting system Sε from S∗, we have







































∂Y ε
1

∂t
= d1∆Y ε

1 − (M ε
1 + µ+ vε)Y ε

1 −M ε
2Y

ε
2 − vy∗1

∂Y ε
2

∂t
= d2∆Y ε

2 +M ε
1Y

ε
1 + (M ε

2 − d− µ− r) Y ε
2 , (x, t) ∈ Q

∂Y ε
3

∂t
= d3∆Y ε

3 + vεY ε
1 + rY ε

2 − µY ε
3 + vy∗1

(5.2)

with the homogeneous Neumann boundary conditions

∂Y ε
1

∂η
=

∂Y ε
2

∂η
=

∂Y ε
3

∂η
= 0 (x, t) ∈ Σ (5.3)

Y ε
i (0, x) = 0 x ∈ Ω, for i = 1, 2, 3 (5.4)

We prove that Y ε
i are bounded in L2 (Q) uniformly with respect to ε . For this end, denoting by

Y ε = (Y ε
1 , Y

ε
2 , Y

ε
3 ), H

ǫ =





−M ε
1 − µ− vε −M ε

2 0
M ε

1 M ε
2 − (d+ µ+ r) 0

vε r −µ



 , and G =





−y∗1
0
y∗1



. Then

(5.2) given by










∂Y ε

∂t
= AY ε +HεY ε +Gv, t ∈ [0, T ]

Y ε (0) = 0

(5.5)

(S (t) , t ≥ 0)be the semi-group generated by A, then the solution of (5.5) can be expressed as

Y ε (t) =

∫ t

0

S (t− s)Hε (s)Y ε (s) ds+

∫ t

0

S (t− s)Gv (s) ds, (5.6)

On the other hand the coefficients of the matrix Hε are bounded uniformly with respect to ε, using
Gronwall’s inequality, we have

‖Y ε
i ‖L2(Q) ≤ Γ (5.7)
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where Γ > 0 (i = 1, 2, 3). Then

‖yεi − y∗i ‖L2(Q) = ε ‖Y ε
i ‖L2(Q) (4.7) (5.8)

Hence yεi → y∗i in L2 (Q), i = 1, 2, 3.

Denoting by H =





−M∗
1 − µ− v∗ −M∗

2 0
M∗

1 M∗
2 − (d+ µ+ r) 0

v∗ r −µ



 where M∗
1 =

∂Q (y∗1 , y
∗
2)

∂y1
, M∗

2 =

∂Q (y∗1 , y
∗
2)

∂y2
, and Y = (Y1, Y2, Y3). Hence, then system (5.2-5.4) can be written in the form











∂Y

∂t
= AY +HY +Gv, t ∈ [0, T ]

Y (0) = 0

(5.9)

and its solution can be expressed as

Y (t) =

∫ t

0

S (t− s)H (s)Y (s) ds+

∫ t

0

S (t− s)Gv (s) ds, (5.10)

By (5.6) and (5.10) we deduce that

Y ε (t)− Y (t) =

∫ t

0

S (t− s)Hε (s) (Y ε − Y ) + Y (s) (Hε (s)−H (s)) ds (5.11)

Thus all the coefficients of the matrix Hεtend to the corresponding coefficients of the matrix H in L2 (Q),
An application of Gronwall’s Inequality yields to Y ε

i → Yi in L2 (Q) as ε → 0, for i = 1, 2, 3. ✷

Let v∗ be an optimal control of (2.4-2.8), y∗ = (y∗1 , y
∗
2 , y

∗
3) be the optimal state, D is the matrix defined

by D =





1 0 0
0 1 0
0 0 0



, ρ = (ρ1, ρ2, 0), D
∗ is the adjoint matrix associated to D, H∗ is the adjoint matrix

associated to H and p = (p1, p2, p3) is the adjoint variable,we can write the dual system associated to
system (2.4-2.8):











−
∂p

∂t
−Ap−H∗p = D∗Dρ, t ∈ [0, T ]

p (T, x) = 0

(5.12)

Lemma 5.2. Under hypotheses of theorem ( 3.1) , if (y∗, (v∗)) is an optimal pair, then there exists a
unique strong solution p ∈ W 1,2 ([0, T ] ;H (Ω)) to the system (5.12) with pi ∈ L (T,Ω) for i = 1, 2, 3.

Proof. Like in Theorem (3.1), by making the change of variable s = T − t and the change of functions
qi (s, x) = pi (T − s, x) = pi (t, x) , (t, x) ∈ Q, i = 1, 2, 3. we can easily prove the existence of the solution
to this lemma . ✷

To obtain the necessary conditions for the optimal control problem, applying standard optimality
techniques, analyzing the objective functional and utilizing relationships between the state and adjoint
equations,we obtain a characterization of the control optimal.

Theorem 5.3. Let v∗be an optimal control of (2.4)-(2.8) and let y∗ ∈ W 1,2 ([0, T ] ;H (Ω)) with y∗i ∈
L (T,Ω) for i = 1, 2, 3, be the optimal state, that is y∗ is the solution to (2.4)-(2.8) with the control u∗.
Then,

v∗ = min

(

vmax, max

(

0,
y∗1p1 − y∗1p3

α

))

(5.13)
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Proof. We suppose v∗ is an optimal control and y∗ = (y∗1 , y
∗
2 , y

∗
3) = (y1, y2, y3) (v

∗) are the corresponding
state variables. Consider vε = v∗ + εh ∈ Uad and corresponding state solution yε = (yε1, y

ε
2, y

ε
3) =

(y1, y2, y3) (v
ε), we have

J ′ (v∗) (h) = lim
ε→0

1

ε
(J (vε)− J (v∗))

= lim
ε→0

1

ε

(

∫ T

0

∫

Ω ρ1 (y
ε
1 − y∗1) (t, x) dxdt +

∫ T

0

∫

Ω ρ2 (y
ε
2 − y∗2) (t, x) dxdt

+
α

2

∫ T

0

∫

Ω

(

(vε)
2
− (v∗)

2
)

(t, x) dxdt

= lim
ε→0

(

∫ T

0

∫

Ω ρ1

(

yε1 − y∗1
ε

)

(t, x) dxdt +
∫ T

0

∫

Ω ρ2

(

yε2 − y∗2
ε

)

(t, x) dxdt

+
α

2

∫ T

0

∫

Ω

(

(εh)
2
+ 2hv∗

)

(t, x) dxdt
)

=
∫ T

0

∫

Ω ρ1Y1 (t, x) dxdt+
∫ T

0

∫

Ω ρ2Y2 (t, x) dxdt+ α
∫ T

0

∫

Ω (h∗v∗) (t, x) dxdt

=
∫ T

0
〈Dρ,DY 〉H(Ω) dt+

∫ T

0
〈αv∗, h〉L2(Ω) dt

(5.14)

We use (5.1) and (5.12), we have

∫ T

0

〈Dρ,DY 〉H(Ω) dt =

∫ T

0

〈D∗Dρ, Y 〉H(Ω) dt

=

∫ T

0

〈

−
∂p

∂t
−Ap−H∗p, Y

〉

H(Ω)

dt

=

∫ T

0

〈

p,
∂Y

∂t
−AY −HY

〉

H(Ω)

dt

=

∫ T

0

〈p,Gh〉H(Ω) dt (5.15)

=

∫ T

0

〈G∗p, h〉L2(Ω) dt

Since J is Gateaux differentiable at v∗ and Uad is convex, as the minimum of the objective functional is
attained at v∗ it is seen that J

′

(v∗) (u− v∗) ≥ 0 for all u ∈ Uad .

We take h = u− v∗ and we use (5.14)-(5.15) then J
′

(v∗) (u− v∗) =
∫ T

0 〈G∗p+ αu∗, (u− v∗)〉L2(Ω) dt.

We conclude that J
′

(v∗) (u− v∗) ≥ 0 equivalent to
∫ T

0
〈G∗p+ αv∗, (u− v∗)〉L2(Ω) dt ≥ 0 for all u ∈ Uad.

By standard arguments varying u, we obtain

αv∗ = −G∗p

Then

v∗ =
y∗1p1 − y∗1p3

α

As v∗ ∈ Uad, we have

v∗ = min

(

vmax, max

(

0,
y∗1p1 − y∗1p3

α

))

✷
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Notations Value Description (Units)

S0 (x, y)
40 for (x, y) ∈ Ωi i = 1, 2
45 for (x, y) /∈ Ωi

Initial susceptible population
(

people/km2
)

I0 (x, y)
5 for (x, y) ∈ Ωi i = 1, 2
0 for (x, y) /∈ Ωi

Initial infected population
(

people/km2
)

R0 (x, y) 0 for (x, y) ∈ Ω
Initial recovered population

(

people/km2
)

Λ 0.5
Recruitment rate

(

day−1
)

µ 0.1
rate

(

day−1
)

β 0.6 The infection coefficient

r 0.02
rate

(

day−1
)

d 0.01
TB inducedmortality rate

(

day−1
)

dS 0.5 diffusion rate for susceptible
dI 0.9 diffusion rate for infected
dR 0.9 diffusion rate for recovered
α1 0.1 Constant
α2 0.02 Constant
α3 0.03 Constant

t [1, 60]
time period

(day)

Table 1: Initial conditions and parameters values

6. Numerical results

We present the results obtained, by numerical resolution using the forward-backward sweep method
(FBSM) [21], of our optimality system, which is formulated by state equations with initial and boundary
conditions (2.4-2.6), adjoint equations with transversality conditions(5.12), and optimal control charac-
terization (5.13).our strategy is to apply two types of treatment respectively to susceptible and infected
individuals, in order to fight the spread of the disease. We will keep the same situations described previ-
ously in section 2.1: the first, the disease starts from the middle of the domain Ω (1) and in the second,
the disease begins in the lower left corner of Ω (2). In this work, we take the density of 45 in order to
model a situation of high contacts. Concerning the choice of the domain Ω, we take a rectangular grid of
size 30 km × 40 km: The parameter values and the initial values are given in table 1. These values are
extracted from [14].Moreover, the upper limits of the optimality condition are considered to be vmax =
1 [19] and the constant weighting values in the objective function are ρ1 = 1, ρ2 = 1, α = 2, taken from
[20] .

6.1. Optimal control simulation

To validate our vaccination strategy, we will proceed in two different ways:

1- Start vaccination against the disease after 20 days.

2- Vaccination against the disease starts from the first day.

In the first case, when introducing vaccination after 20 days, it can be seen in Figures 4 and 5 that
the number of susceptible and infected individuals decreases rapidly.on the other hand, in Figure 6, we
can clearly see the increase in the number of individuals recovered.
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Figure 4: Susceptible behavior within Ω with control (vaccine strategy starts after the 20th day)

Figure 5: Infectied behavior within Ω with control (vaccine strategy starts after the 20th day)
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Figure 6: Recovered behavior within Ω with control (vaccine strategy starts after the 20th day)

In the second case, when the vaccination against the disease starts from the first day, the effectiveness
of our vaccination strategy is clear, since the disease disappears quickly (figure 7 and 8 ).

Figure 7: Infectied behavior within Ω with control (vaccine strategy starts from the first day)
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Figure 8: Recovered behavior within Ω with control (vaccine strategy starts from the first day)

7. Conclusion

In this contribution, we presented an SIR model in the form of a system of partial derivative equations
with initial and boundary conditions.We have shown the existence of the solution of our state system
and optimal control, so we have given a characterization of this control.Numerical simulation has proven
the positive impact of our vaccination strategy.In fact Figures 1, 2 and 3 in the absence of the vaccine,
have shown the spread of the disease in the entire domain, especially when the disease begins in the
middle of the domain.However, when we introduced the vaccine, we observed that the number of infected
individuals has decreased and the number of recovered has increased, which is very beneficial and reflects
the importance of our control strategy.It should be noted that it is preferable to apply the vaccine during
the first days of the onset of the disease, in order to block the spread in the population (see Figures 7
and 8 ).

Data Availability

Te data used to support the findings of this study are available from the corresponding author upon
request.
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8. Appendix

First recall a general existence result which we use in the sequel (Proposition 1.2, p. 175, [16]; see
also [17,18]. Consider the initial value problem

{

∂z

∂t
= Az (t) + g (t, z (t)) , t ∈ [0, T ]

z (0) = z0
(8.1)

where A is a linear operator defined on a Banach space X , with the domain D(A) and g : [0, T ]×X → X
is a given function. If X is a Hilbert space endowed with the scalar product (·, ·), then the linear operator
A is called dissipative if (Az, z) ≤ 0, (∀z ∈ D(A)).

Theorem 8.1. X be a real Banach space, A : D(A) ⊆ X → X be the infinitesimal generator of a
C0−semigroup of linear contractions S(t), t ≥ 0 on X, and g : [0, T ]×X → X be a function measurable
in t and Lipschitz continuous in x ∈ X, uniformly with respect to t ∈ [0, T ].

(i) If z0 ∈ X , then problem (8.1) admits a unique mild solution, i.e. a function z ∈ C([0, T ];X)

which verifies the equality z(t) = S(t)z0 +
∫ t

0
S(t− s)g(s, z(s))ds, (∀t ∈ [0, T ] .

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on X and z0 ∈ D(A), then the mild
solution is in fact a strong solution and z ∈ W 1,2([0, T ] ;X) ∩ L2(0, T ;D(A))
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