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1. Introduction

Let A be the class of the functions of the form:

f (z) = z +

∞
∑

n=2

anz
n (1.1)

which are analytic in the open unit disc D = {z : z ∈ C and |z| < 1} and satisfying the conditions
f(0) = 0 and f ′(0) = 1. Also, let S be the subclass of A consisting of the form (1.1) which are univalent
in D.

Let f and g be analytic functions in D. We define that the function f is subordinate to g in D and
denoted by

f(z) ≺ g(z) (z ∈ D) ,

if there exists a Schwarz function ω, which is analytic in D with ω(0) = 0 and |ω(z)| < 1 (z ∈ D) such
that

f(z) = g (ω(z)) (z ∈ D) .

If g is a univalent function in D, then

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).

Chebyshev polynomials play a considerable role in numerical analysis ( [4], [8]). There are four
kinds of Chebyshev polynomials. The first and second kinds of Chebyshev polynomials are defined by

Tn(t) = cosnϕ and Un(t) =
sin(n+1)ϕ

sinϕ (−1 < t < 1) where n denotes the polynomial degree and t = cosϕ.

For a brief history of Chebyshev polynomials of the first kind Tn(t), the second kind Un(t) and their
applications one can refer [1]- [16].

Now, we define a subclass of analytic functions in D with the following subordination condition:

Definition 1.1. A function f ∈ A given by (1.1) is said to be in the class N (λ, β, t) for 0 ≤ β ≤ λ ≤ 1
and t ∈

(

1
2 , 1

]

if the following subordination hold:

λβz3f ′′′(z) + (2λβ + λ− β)z2f ′′(z) + zf ′(z)

λβz2f ′′(z) + (λ− β)zf ′(z) + (1− λ+ β)f(z)
≺ H (z, t) =

1

1− 2tz + z2
(z ∈ D) . (1.2)
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We consider that if t = cosϕ
(−π

3 < ϕ < π
3

)

, then H(z, t) = 1
1−2 cosϕz+z2 = 1 +

∑∞
n=1

sin(n+1)ϕ
sinϕ zn

(z ∈ D) . Thus, H(z, t) = 1 + 2 cosϕz +
(

3 cos2 ϕ− sin2 ϕ
)

z2 + · · · (z ∈ D) .
So, according to [15], we write the Chebyshev polynomials of the second kind as following:

H(z, t) = 1 + U1(t)z + U2(t)z
2 + · · · (z ∈ D,−1 < t < 1)

where Un−1(t) =
sin(narccost)√

1−t2
(n ∈ N) and we have Un(t) = 2tUn−1(t)− Un−2(t),

U1 (t) = 2t, U2 (t) = 4t2 − 1, U3 (t) = 8t3 − 4t, U4 (t) = 16t4 − 12t2 + 1, · · · . (1.3)

The Chebyshev polynomials Tn(t), t ∈ [−1, 1] of the first kind have the generating function of the
form

∑∞
n=0 Tn(t)z

n = 1−tz
1−2tz+z2 (z ∈ D) .

There is the following connection by the Chebyshev polynomials of the first kind Tn(t) and the second
kind Un(t) :

dTn(t)

dt
= nUn−1(t), Tn(t) = Un(t)− tUn−1(t), 2Tn(t) = Un(t)− Un−2(t).

In 1933, Fekete and Szegö [6] obtained a sharp bound of the functional |a3 − µa22|, with real µ
(0 ≤ µ ≤ 1) for a univalent function f . Since then, the problem of finding the sharp bounds for this
functional of any compact family of functions or f ∈ A with any complex µ is known as the classical
Fekete-Szegö problem or inequality.

In this paper, we obtain initial coefficients |a2| and |a3| for subclass N (λ, β, t) by means of Chebyshev
polynomials expansions of analytic functions in D. Also, we solve Fekete-Szegö problem for functions in
this subclass.

2. Coefficient bounds for the function class N (λ, β, t)

We begin with the following result involving initial coefficient bounds for the function class N (λ, β, t) .

Theorem 2.1. Let the function f(z) given by (1.1) be in the class N (λ, β, t). Then

|a2| ≤
2t

2λβ + λ− β + 1
(2.1)

and

|a3| ≤
8t2 − 1

2 (6λβ + 2λ− 2β + 1)
. (2.2)

Proof. Let f ∈ N (λ, β, t) . From (1.2), we have

λβz3f ′′′(z) + (2λβ + λ− β)z2f ′′(z) + zf ′(z)

λβz2f ′′(z) + (λ− β)zf ′(z) + (1− λ+ β)f(z)
= 1 + U1 (t) p (z) + U2 (t) p

2 (z) + · · · (2.3)

for some analytic functions

p (z) = c1z + c2z
2 + c3z

3 + · · · (z ∈ D) , (2.4)

such that p(0) = 0, |p(z)| < 1 (z ∈ D) . Then, for all j ∈ N,

|cj | ≤ 1 (2.5)

and for all µ ∈ R
∣

∣c2 − µc21
∣

∣ ≤ max {1, |µ|} . (2.6)

It follows from (2.3) that

λβz3f ′′′(z) + (2λβ + λ− β)z2f ′′(z) + zf ′(z)

λβz2f ′′(z) + (λ− β)zf ′(z) + (1− λ+ β)f(z)
= 1 + U1 (t) c1z +

[

U1 (t) c2 + U2 (t) c
2
1

]

z2 + · · · . (2.7)
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It follows from (2.7) that

(2λβ + λ− β + 1) a2 = U1 (t) c1, (2.8)

and

2 (6λβ + 2λ− 2β + 1) a3 − (2λβ + λ− β + 1)
2
a22 = U1 (t) c2 + U2 (t) c

2
1. (2.9)

From (1.3), (2.8) and (2.5), we have

|a2| ≤
2t

2λβ + λ− β + 1
. (2.10)

By using (1.3) and (2.5) in (2.9), we obtain

|a3| ≤
8t2 − 1

2 (6λβ + 2λ− 2β + 1)
. (2.11)

which completes the proof of Theorem 2.1. ✷

For λ = 1 in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let the function f(z) given by (1.1) be in the class N (1, β, t). Then

|a2| ≤
2t

β + 2

and

|a3| ≤
8t2 − 1

2 (4β + 3)
.

If we choose β = 0 in Theorem 2.1, we get the following corollary.

Corollary 2.3. Let the function f(z) given by (1.1) be in the class N (λ, 0, t). Then

|a2| ≤
2t

λ+ 1

and

|a3| ≤
8t2 − 1

2 (2λ+ 1)
.

For β = λ in Theorem 2.1, we obtain the following corollary.

Corollary 2.4. Let the function f(z) given by (1.1) be in the class N (β, t). Then

|a2| ≤
2t

2β2 + 1

and

|a3| ≤
8t2 − 1

2
(

6β2 + 1
) .

Remark 2.5. For β = 0 and λ = 1 in Theorem 2.1, we obtain result of Dziok et al. [5, Theorem 6].
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3. Fekete-Szegö inequality for the function class N (λ, β, t)

Now, we find the sharp bounds of Fekete-Szegö functional
∣

∣a3 − µa22
∣

∣ defined for N (λ, β, t) .

Theorem 3.1. Let the function f(z) given by (1.1) be in the class N (λ, β, t). Then for some µ ∈ R,

∣

∣a3 − µa22
∣

∣ ≤

{

t
6λβ+2λ−2β+1 , µ ∈ [µ1, µ2] ,

t
6λβ+2λ−2β+1

∣

∣

∣

8t2−1
2t − µ 4t(6λβ+2λ−2β+1)

(2λβ+λ−β+1)2

∣

∣

∣
, µ /∈ [µ1, µ2] ,

(3.1)

where µ1 =
(8t2−2t−1)(2λβ+λ−β+1)2

8t2(6λβ+2λ−2β+1) and µ2 =
(8t2+2t−1)(2λβ+λ−β+1)2

8t2(6λβ+2λ−2β+1) .

Proof. Let f ∈ N (λ, β, t) . By using (2.8) and (2.9) for some µ ∈ R, we have

∣

∣a3 − µa22
∣

∣ =
U1(t)

2 (6λβ + 2λ− 2β + 1)

∣

∣

∣

∣

∣

c2 +

{

U2(t)

U1(t)
+ U1(t)− 2µ

(6λβ + 2λ− 2β + 1)U1(t)

(2λβ + λ− β + 1)
2

}

c21

∣

∣

∣

∣

∣

. (3.2)

Then, in view of (2.6), we conclude that

∣

∣a3 − µa22
∣

∣ ≤
U1 (t)

2 (6λβ + 2λ− 2β + 1)
max

{

1,

∣

∣

∣

∣

∣

U2 (t)

U1 (t)
+ U1(t)− 2µ

(6λβ + 2λ− 2β + 1)U1 (t)

(2λβ + λ− β + 1)
2

∣

∣

∣

∣

∣

}

. (3.3)

Finally, by using (1.3) in (3.3), we get

∣

∣a3 − µa22
∣

∣ ≤
t

6λβ + 2λ− 2β + 1
max

{

1,

∣

∣

∣

∣

∣

8t2 − 1

2t
− 4µ

(6λβ + 2λ− 2β + 1) t

(2λβ + λ− β + 1)
2

∣

∣

∣

∣

∣

}

.

Because t > 0, we obtain
∣

∣

∣

∣

∣

8t2 − 1

2t
− 4µ

(6λβ + 2λ− 2β + 1) t

(2λβ + λ− β + 1)
2

∣

∣

∣

∣

∣

≤ 1

⇔

{

(

8t2 − 2t− 1
)

(2λβ + λ− β + 1)
2

8t2 (6λβ + 2λ− 2β + 1)
≤ µ ≤

(

8t2 + 2t− 1
)

(2λβ + λ− β + 1)
2

8t2 (6λβ + 2λ− 2β + 1)

}

⇔ µ1 ≤ µ ≤ µ2.

This proves Theorem 3.1. ✷

For λ = 1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let the function f(z) given by (1.1) be in the class N (1, β, t). Then for some µ ∈ R,

∣

∣a3 − µa22
∣

∣ ≤

{

t
4β+3 , µ ∈ [µ1, µ2] ,

t
4β+3

∣

∣

∣

8t2−1
2t − µ 4t(4β+3)

(β+2)2

∣

∣

∣
, µ /∈ [µ1, µ2] ,

where µ1 =
(8t2−2t−1)(β+2)2

8t2(4β+3) and µ2 =
(8t2+2t−1)(β+2)2

8t2(4β+3) .

If we choose β = 0 in Theorem 3.1, we get the following corollary.

Corollary 3.3. Let the function f(z) given by (1.1) be in the class N (λ, 0, t). Then for some µ ∈ R,

∣

∣a3 − µa22
∣

∣ ≤

{

t
2λ+1 , µ ∈ [µ1, µ2] ,

t
2λ+1

∣

∣

∣

8t2−1
2t − µ 4t(2λ+1)

(λ+1)2

∣

∣

∣
, µ /∈ [µ1, µ2] ,

where µ1 =
(8t2−2t−1)(λ+1)2

8t2(2λ+1) and µ2 =
(8t2+2t−1)(λ+1)2

8t2(2λ+1) .
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For β = λ in Theorem 3.1, we obtain the following corollary.

Corollary 3.4. Let the function f(z) given by (1.1) be in the class N (β, t). Then for some µ ∈ R,

∣

∣a3 − µa22
∣

∣ ≤







t
6β2+1

, µ ∈ [µ1, µ2] ,

t
6β2+1

∣

∣

∣

∣

8t2−1
2t − µ

4t(6β2+1)
(2β2+1)2

∣

∣

∣

∣

, µ /∈ [µ1, µ2] ,

where µ1 =
(8t2−2t−1)(2β2+1)

2

8t2(6β2+1)
and µ2 =

(8t2+2t−1)(2β2+1)
2

8t2(6β2+1)

Remark 3.5. For β = 0 in Theorem 3.1, we obtain result of Mustafa and Akbulut [10].

Acknowledgments

The research was supported by the Commission for the Scientific Research Projects of Kyrgyz-Turkish
Manas University, project number KTMU-BAP2020.FB.0

We would like to thank the referees for their contributions.

References
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