Fekete-Szegö Problem for a Subclass of Analytic Functions Associated with Chebyshev Polynomials

Murat Çağlar, Halit Orhan and Muhammet Kamali
ABSTRACT: In this paper, we obtain initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a certain subclass by means of Chebyshev polynomials expansions of analytic functions in \mathcal{D}. Also, we solve Fekete-Szegö problem for functions in this subclass.
Key Words: Analytic and univalent functions, Subordination, Coefficient bounds, Chebyshev polynomial, Fekete-Szegö problem.

Contents

1 Introduction

2 Coefficient bounds for the function class $\mathcal{N}(\lambda, \beta, t) \quad \mathbf{2}$
3 Fekete-Szegö inequality for the function class $\mathcal{N}(\lambda, \beta, t)$

1. Introduction

Let \mathcal{A} be the class of the functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathcal{D}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and satisfying the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Also, let \mathcal{S} be the subclass of \mathcal{A} consisting of the form (1.1) which are univalent in \mathcal{D}.

Let f and g be analytic functions in \mathcal{D}. We define that the function f is subordinate to g in \mathcal{D} and denoted by

$$
f(z) \prec g(z) \quad(z \in \mathcal{D}),
$$

if there exists a Schwarz function ω, which is analytic in \mathcal{D} with $\omega(0)=0$ and $|\omega(z)|<1(z \in \mathcal{D})$ such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathcal{D}) .
$$

If g is a univalent function in \mathcal{D}, then

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathcal{D}) \subset g(\mathcal{D}) .
$$

Chebyshev polynomials play a considerable role in numerical analysis ([4], [8]). There are four kinds of Chebyshev polynomials. The first and second kinds of Chebyshev polynomials are defined by $T_{n}(t)=\operatorname{cosn} \varphi$ and $U_{n}(t)=\frac{\sin (n+1) \varphi}{\sin \varphi}(-1<t<1)$ where n denotes the polynomial degree and $t=\cos \varphi$. For a brief history of Chebyshev polynomials of the first kind $T_{n}(t)$, the second kind $U_{n}(t)$ and their applications one can refer [1]- [16].

Now, we define a subclass of analytic functions in \mathcal{D} with the following subordination condition:
Definition 1.1. A function $f \in \mathcal{A}$ given by (1.1) is said to be in the class $\mathcal{N}(\lambda, \beta, t)$ for $0 \leq \beta \leq \lambda \leq 1$ and $t \in\left(\frac{1}{2}, 1\right]$ if the following subordination hold:

$$
\begin{equation*}
\frac{\lambda \beta z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \beta+\lambda-\beta) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \beta z^{2} f^{\prime \prime}(z)+(\lambda-\beta) z f^{\prime}(z)+(1-\lambda+\beta) f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}} \quad(z \in \mathcal{D}) . \tag{1.2}
\end{equation*}
$$

[^0]We consider that if $t=\cos \varphi\left(\frac{-\pi}{3}<\varphi<\frac{\pi}{3}\right)$, then $H(z, t)=\frac{1}{1-2 \cos \varphi z+z^{2}}=1+\sum_{n=1}^{\infty} \frac{\sin (n+1) \varphi}{\sin \varphi} z^{n}$ $(z \in \mathcal{D})$. Thus, $H(z, t)=1+2 \cos \varphi z+\left(3 \cos ^{2} \varphi-\sin ^{2} \varphi\right) z^{2}+\cdots \quad(z \in \mathcal{D})$.

So, according to [15], we write the Chebyshev polynomials of the second kind as following:

$$
H(z, t)=1+U_{1}(t) z+U_{2}(t) z^{2}+\cdots \quad(z \in \mathcal{D},-1<t<1)
$$

where $U_{n-1}(t)=\frac{\sin (n \arccos t)}{\sqrt{1-t^{2}}}(n \in \mathbb{N})$ and we have $U_{n}(t)=2 t U_{n-1}(t)-U_{n-2}(t)$,

$$
\begin{equation*}
U_{1}(t)=2 t, \quad U_{2}(t)=4 t^{2}-1, \quad U_{3}(t)=8 t^{3}-4 t, \quad U_{4}(t)=16 t^{4}-12 t^{2}+1, \cdots \tag{1.3}
\end{equation*}
$$

The Chebyshev polynomials $T_{n}(t), t \in[-1,1]$ of the first kind have the generating function of the form $\sum_{n=0}^{\infty} T_{n}(t) z^{n}=\frac{1-t z}{1-2 t z+z^{2}} \quad(z \in \mathcal{D})$.

There is the following connection by the Chebyshev polynomials of the first kind $T_{n}(t)$ and the second kind $U_{n}(t)$:

$$
\frac{d T_{n}(t)}{d t}=n U_{n-1}(t), \quad T_{n}(t)=U_{n}(t)-t U_{n-1}(t), \quad 2 T_{n}(t)=U_{n}(t)-U_{n-2}(t)
$$

In 1933, Fekete and Szegö [6] obtained a sharp bound of the functional $\left|a_{3}-\mu a_{2}^{2}\right|$, with real μ $(0 \leq \mu \leq 1)$ for a univalent function f. Since then, the problem of finding the sharp bounds for this functional of any compact family of functions or $f \in \mathcal{A}$ with any complex μ is known as the classical Fekete-Szegö problem or inequality.

In this paper, we obtain initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for subclass $\mathcal{N}(\lambda, \beta, t)$ by means of Chebyshev polynomials expansions of analytic functions in \mathcal{D}. Also, we solve Fekete-Szegö problem for functions in this subclass.

2. Coefficient bounds for the function class $\mathcal{N}(\lambda, \beta, t)$

We begin with the following result involving initial coefficient bounds for the function class $\mathcal{N}(\lambda, \beta, t)$.
Theorem 2.1. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\lambda, \beta, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t}{2 \lambda \beta+\lambda-\beta+1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{8 t^{2}-1}{2(6 \lambda \beta+2 \lambda-2 \beta+1)} \tag{2.2}
\end{equation*}
$$

Proof. Let $f \in \mathcal{N}(\lambda, \beta, t)$. From (1.2), we have

$$
\begin{equation*}
\frac{\lambda \beta z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \beta+\lambda-\beta) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \beta z^{2} f^{\prime \prime}(z)+(\lambda-\beta) z f^{\prime}(z)+(1-\lambda+\beta) f(z)}=1+U_{1}(t) p(z)+U_{2}(t) p^{2}(z)+\cdots \tag{2.3}
\end{equation*}
$$

for some analytic functions

$$
\begin{equation*}
p(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad(z \in \mathcal{D}) \tag{2.4}
\end{equation*}
$$

such that $p(0)=0,|p(z)|<1(z \in \mathcal{D})$. Then, for all $j \in \mathbb{N}$,

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \tag{2.5}
\end{equation*}
$$

and for all $\mu \in \mathbb{R}$

$$
\begin{equation*}
\left|c_{2}-\mu c_{1}^{2}\right| \leq \max \{1,|\mu|\} \tag{2.6}
\end{equation*}
$$

It follows from (2.3) that

$$
\begin{equation*}
\frac{\lambda \beta z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \beta+\lambda-\beta) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \beta z^{2} f^{\prime \prime}(z)+(\lambda-\beta) z f^{\prime}(z)+(1-\lambda+\beta) f(z)}=1+U_{1}(t) c_{1} z+\left[U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right] z^{2}+\cdots \tag{2.7}
\end{equation*}
$$

It follows from (2.7) that

$$
\begin{equation*}
(2 \lambda \beta+\lambda-\beta+1) a_{2}=U_{1}(t) c_{1} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
2(6 \lambda \beta+2 \lambda-2 \beta+1) a_{3}-(2 \lambda \beta+\lambda-\beta+1)^{2} a_{2}^{2}=U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2} \tag{2.9}
\end{equation*}
$$

From (1.3), (2.8) and (2.5), we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t}{2 \lambda \beta+\lambda-\beta+1} \tag{2.10}
\end{equation*}
$$

By using (1.3) and (2.5) in (2.9), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{8 t^{2}-1}{2(6 \lambda \beta+2 \lambda-2 \beta+1)} \tag{2.11}
\end{equation*}
$$

which completes the proof of Theorem 2.1.

For $\lambda=1$ in Theorem 2.1, we obtain the following corollary.
Corollary 2.2. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(1, \beta, t)$. Then

$$
\left|a_{2}\right| \leq \frac{2 t}{\beta+2}
$$

and

$$
\left|a_{3}\right| \leq \frac{8 t^{2}-1}{2(4 \beta+3)}
$$

If we choose $\beta=0$ in Theorem 2.1, we get the following corollary.
Corollary 2.3. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\lambda, 0, t)$. Then

$$
\left|a_{2}\right| \leq \frac{2 t}{\lambda+1}
$$

and

$$
\left|a_{3}\right| \leq \frac{8 t^{2}-1}{2(2 \lambda+1)}
$$

For $\beta=\lambda$ in Theorem 2.1, we obtain the following corollary.
Corollary 2.4. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\beta, t)$. Then

$$
\left|a_{2}\right| \leq \frac{2 t}{2 \beta^{2}+1}
$$

and

$$
\left|a_{3}\right| \leq \frac{8 t^{2}-1}{2\left(6 \beta^{2}+1\right)}
$$

Remark 2.5. For $\beta=0$ and $\lambda=1$ in Theorem 2.1, we obtain result of Dziok et al. [5, Theorem 6].

3. Fekete-Szegö inequality for the function class $\mathcal{N}(\lambda, \beta, t)$

Now, we find the sharp bounds of Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ defined for $\mathcal{N}(\lambda, \beta, t)$.
Theorem 3.1. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\lambda, \beta, t)$. Then for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{t}{6 \lambda \beta+2 \lambda-2 \beta+1}, & \mu \in\left[\mu_{1}, \mu_{2}\right] \tag{3.1}\\ \frac{t}{6 \lambda \beta+2 \lambda-2 \beta+1}\left|\frac{8 t^{2}-1}{2 t}-\mu \frac{4 t(6 \lambda \beta+2 \lambda-2 \beta+1)}{(2 \lambda \beta+\lambda-\beta+1)^{2}}\right|, & \mu \notin\left[\mu_{1}, \mu_{2}\right],\end{cases}
$$

where $\mu_{1}=\frac{\left(8 t^{2}-2 t-1\right)(2 \lambda \beta+\lambda-\beta+1)^{2}}{8 t^{2}(6 \lambda \beta+2 \lambda-2 \beta+1)}$ and $\mu_{2}=\frac{\left(8 t^{2}+2 t-1\right)(2 \lambda \beta+\lambda-\beta+1)^{2}}{8 t^{2}(6 \lambda \beta+2 \lambda-2 \beta+1)}$.
Proof. Let $f \in \mathcal{N}(\lambda, \beta, t)$. By using (2.8) and (2.9) for some $\mu \in \mathbb{R}$, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{U_{1}(t)}{2(6 \lambda \beta+2 \lambda-2 \beta+1)}\left|c_{2}+\left\{\frac{U_{2}(t)}{U_{1}(t)}+U_{1}(t)-2 \mu \frac{(6 \lambda \beta+2 \lambda-2 \beta+1) U_{1}(t)}{(2 \lambda \beta+\lambda-\beta+1)^{2}}\right\} c_{1}^{2}\right| . \tag{3.2}
\end{equation*}
$$

Then, in view of (2.6), we conclude that

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{U_{1}(t)}{2(6 \lambda \beta+2 \lambda-2 \beta+1)} \max \left\{1,\left|\frac{U_{2}(t)}{U_{1}(t)}+U_{1}(t)-2 \mu \frac{(6 \lambda \beta+2 \lambda-2 \beta+1) U_{1}(t)}{(2 \lambda \beta+\lambda-\beta+1)^{2}}\right|\right\} \tag{3.3}
\end{equation*}
$$

Finally, by using (1.3) in (3.3), we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{t}{6 \lambda \beta+2 \lambda-2 \beta+1} \max \left\{1,\left|\frac{8 t^{2}-1}{2 t}-4 \mu \frac{(6 \lambda \beta+2 \lambda-2 \beta+1) t}{(2 \lambda \beta+\lambda-\beta+1)^{2}}\right|\right\}
$$

Because $t>0$, we obtain

$$
\begin{aligned}
& \left|\frac{8 t^{2}-1}{2 t}-4 \mu \frac{(6 \lambda \beta+2 \lambda-2 \beta+1) t}{(2 \lambda \beta+\lambda-\beta+1)^{2}}\right| \leq 1 \\
& \Leftrightarrow \quad\left\{\frac{\left(8 t^{2}-2 t-1\right)(2 \lambda \beta+\lambda-\beta+1)^{2}}{8 t^{2}(6 \lambda \beta+2 \lambda-2 \beta+1)} \leq \mu \leq \frac{\left(8 t^{2}+2 t-1\right)(2 \lambda \beta+\lambda-\beta+1)^{2}}{8 t^{2}(6 \lambda \beta+2 \lambda-2 \beta+1)}\right\} \\
& \Leftrightarrow \quad \mu_{1} \leq \mu \leq \mu_{2}
\end{aligned}
$$

This proves Theorem 3.1.
For $\lambda=1$ in Theorem 3.1, we obtain the following corollary.
Corollary 3.2. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(1, \beta, t)$. Then for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{t}{4 \beta+3}, & \mu \in\left[\mu_{1}, \mu_{2}\right], \\ \frac{t}{4 \beta+3}\left|\frac{8 t^{2}-1}{2 t}-\mu \frac{4 t(4 \beta+3)}{(\beta+2)^{2}}\right|, & \mu \notin\left[\mu_{1}, \mu_{2}\right],\end{cases}
$$

where $\mu_{1}=\frac{\left(8 t^{2}-2 t-1\right)(\beta+2)^{2}}{8 t^{2}(4 \beta+3)}$ and $\mu_{2}=\frac{\left(8 t^{2}+2 t-1\right)(\beta+2)^{2}}{8 t^{2}(4 \beta+3)}$.
If we choose $\beta=0$ in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\lambda, 0, t)$. Then for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{t}{2 \lambda+1}, & \mu \in\left[\mu_{1}, \mu_{2}\right], \\ \frac{t}{2 \lambda+1}\left|\frac{8 t^{2}-1}{2 t}-\mu \frac{4 t(2 \lambda+1)}{(\lambda+1)^{2}}\right|, & \mu \notin\left[\mu_{1}, \mu_{2}\right],\end{cases}
$$

where $\mu_{1}=\frac{\left(8 t^{2}-2 t-1\right)(\lambda+1)^{2}}{8 t^{2}(2 \lambda+1)}$ and $\mu_{2}=\frac{\left(8 t^{2}+2 t-1\right)(\lambda+1)^{2}}{8 t^{2}(2 \lambda+1)}$.

For $\beta=\lambda$ in Theorem 3.1, we obtain the following corollary.
Corollary 3.4. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}(\beta, t)$. Then for some $\mu \in \mathbb{R}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{t}{6 \beta^{2}+1}, & \mu \in\left[\mu_{1}, \mu_{2}\right] \\ \frac{t}{6 \beta^{2}+1}\left|\frac{8 t^{2}-1}{2 t}-\mu \frac{4 t\left(6 \beta^{2}+1\right)}{\left(2 \beta^{2}+1\right)^{2}}\right|, & \mu \notin\left[\mu_{1}, \mu_{2}\right]\end{cases}
$$

where $\mu_{1}=\frac{\left(8 t^{2}-2 t-1\right)\left(2 \beta^{2}+1\right)^{2}}{8 t^{2}\left(6 \beta^{2}+1\right)}$ and $\mu_{2}=\frac{\left(8 t^{2}+2 t-1\right)\left(2 \beta^{2}+1\right)^{2}}{8 t^{2}\left(6 \beta^{2}+1\right)}$
Remark 3.5. For $\beta=0$ in Theorem 3.1, we obtain result of Mustafa and Akbulut [10].

Acknowledgments

The research was supported by the Commission for the Scientific Research Projects of Kyrgyz-Turkish Manas University, project number KTMU-BAP2020.FB. 0

We would like to thank the referees for their contributions.

References

1. Altınkaya, S., Yalçın, S., On the Chebyshev polynomial bounds for classes of univalent functions, Khayyam Journal of Mathematics 2(1), 1-5, (2016).
2. Altınkaya, S., Tokgöz, S. Y., On the Chebyshev coefficients for a general subclass of univalent functions, Turkish Journal of Mathematics 42(6), 2885-2890, (2018).
3. Bulut, S., Magesh, N., Balaji, V. K., Certain subclasses of analytic functions associated with the Chebyshev polynomials, Honam Mathematical Journal 40(4), 611-619, (2018).
4. Doha, E. H., The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differentiable function, Int. J. Comput. Math. 51, 21-35, (1994).
5. Dziok, J., Raina, R. K., Sokol, J., Application of Chebyshev polynomials to classes of analytic functions, C. R. Math. Acad. Sci. Paris 353(5), 433-438, (2015).
6. Fekete, M., Szegö, G., Eine Bemerkung Über ungerade schlichte Funktionen, J. London Math. Soc. 8, 85-89, (1933).
7. Magesh, N., Bulut, S., Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afrika Matematika 29(1-2), 203-209, (2018).
8. Mason, J. C., Chebyshev polynomial approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math. 15, 172-186, (1967).
9. Mustafa, N., Akbulut, E., Application of the second Chebyshev polinomials to coefficient estimates of analytic functions, Journal of Scientific and Engineering Research 5(6), 143-148, (2018).
10. Mustafa, N., Akbulut, E., Application of the second kind Chebyshev polinomial to the Fekete-Szegö problem of certain class analytic functions, Journal of Scientific and Engineering Research 6(2), 154-163, (2019).
11. Mustafa, N., Akbulut, E., Application of the second kind Chebyshev polynomials to coefficient estimates of certain class analytic functions, International Journal of Applied Science and Mathematics 6(2), 44-49, (2019).
12. Orhan, H., Magesh, N., Balaji, V. K., Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials, Asian-European Journal of Mathematics 1950017, (2018).
13. Orhan, H., Toklu, E., Kadığlu, E., Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials, Turkish Journal of Mathematics 42(4), 1927-1940, (2018).
14. Ramachandran, C., Dhanalaksmi, K., Fekete-Szegö inequality for the subclasses of analytic functions bounded by Chebyshev polynomial, Global Journal of Pure and Applied Mathematics 13(9), 4953-4958, (2017).
15. Whittaker, E. T., Watson, G. N., A Course on Modern Analysis: An Introduction to The General Theory of Infinite Process of Analytic Functions with an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press (1963).
16. Yousef, F., Frasin, B. A., Al-Hawary, T., Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, arXiv preprint arXiv:1801.09531, (2018).

Murat Çağlar,
Department of Mathematics,
Faculty of Science,
Erzurum Technical University,
25100, Erzurum, Turkey.
E-mail address: mcaglar25@gmail.com
and
Halit Orhan,
Department of Mathematics,
Faculty of Science,
Atatürk University,
Erzurum, Turkey.
E-mail address: horhan@atauni.edu.tr
and
Muhammet Kamali,
Department of Mathematics,
Faculty of Sciences,
Kyrgyz-Turkish Manas University,
Chyngz Aitmatov Avenue,
Bishkek, Kyrgyz Republic.
E-mail address: muhammet.kamali@manas.edu.kg

[^0]: 2010 Mathematics Subject Classification: 30C45, 30C50.
 Submitted November 18, 2019. Published May 06, 2020

