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Global Existence and Stability of Solution for a p-Kirchhoff type Hyperbolic Equation
with Variable Exponents

Amar Ouaoua, Aya Khaldi and Messaoud Maouni

ABSTRACT: In this paper, we consider the following p-Kirchhoff type hyperbolic equation with variable
exponents

upt — M (/ [VulP da:) Apu + Jug ™72y, = u|" @72y,
Q

We prove the global existence of the solution with positive initial energy, the stability established based on
Komornik’s inequality.
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1. Introduction

We consider the following boundary value problem:

U — M (f [Vul? dx) Apu+ |ut|m(w)72 U = |u|r<gﬂ)72 u, (z,t) € Qx(0,T),
Q

u(z,t) =0, (z,t) € 00 x (0, T), (1.1)
u(x,0) =ug (), ut(x,0) =up (x) x €,

where © is a bounded domain in R”,n > 1 with smooth boundary 0Q2 and M (s) = a + bs with positive
parameters a, b, Apu = div(|Vu|P~2Vu), with p > 2. r(.) and m (.) are given measurable functions on
Q.

Equation (1.1) can be viewed as a generalization of a model introduced by Kirchhoff [6]. The following
Kirchhoff type equation

wie = M (IVull}) Au+ g (w) = f (u), (12)

have been discussed by many authors. For g (u;) = wuy, the global existence and blow up results can by
found in [14, 18], for g (u:) = |ut|p_2 ug, p > 2, the main results of existence and blow up are in [4, 13].
Many authors studied the existence and nonexistence of solutions for problem with variable exponents,
can refer [2, 4, 9, 10,15, 17, 19, 20]. Messaoudi et al. [13] considered the following equation:

w — Au A+ a g™ 2wy = w20, in Q% (0,7),

and used the Faedo Galerkin method to establish the existence of a unique weak local solution. They also
proved that the solutions with negative initial energy blow up in finite time. Messaoudi and Talahmeh
[11, 12], considered the following equation:

ugy — div (|Vu|r($)_2 Vu) talu|™ 2w = b [ufP 2w, inQx(0,7),
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where a, b is a nonnegative constant. They proved a finite-time blow-up result for the solution with
negative initial energy as well as for certain solutions with positive initial energy; in the cas where
m (z) = 2 and under suitable conditions on the exponents, they established a blow-up result for solutions
with arbitrary positive initial energy. Our objective in this paper is to study: In section 2, some notations,
assumptions and preliminaries are introduced, section 3 the global existence of solution is proved and the
main results of this article are shown in section 4.

2. Preliminaries

We begin this section with some notations and definitions. Denote by ||. |, , the L? (£2) norm of a Lebesgue
function u € L? (Q) . We use W, * (Q) to the well-known sobolev space such that u and |Vu| are in L? (£2)
equipped with the norm ||uHW01,p(Q) = [[Vul,, .

Let ¢ : Q@ — [1, + oo] be a measurable function, where  is adomain of R”. We define the Lebesque
space with a variale exponent ¢ (.) by:

L0 (Q) = {v 10— R: measurable in €, o,y (Av) < +o0, for some A > O} ,

where g,y (v) = [ |v ()| da.
)

The set L) (Q) equipped with the norm ( Luxemburg’s norm)

q(w)

v () de <1

A

foll,, == inf{ A >0 /
Q

3

L) (Q) is a Banach space [8].
Next,we define the variable-exponent Sobolev space W14() (Q) as follows:

Wil (Q) = {v € L90) (Q) such that Vv exists and |Vo| € L) (Q)} .

This is a Banach space with respect to the norm [[vlyy1.40) () = [vllacy + [V[[ac) -

Furthemore, we set Wol’q(') (2) to be the closure of C§° (Q2) in the space W4() (Q). Let us note that the
space W4() (Q) has a differenet definition in the case of variable exponents.

However, under the log-Holder continuity condition, both definitions are equivalent [8]. The space
W14 () (Q), dual of Wol’q(') (Q), is defined in the same way as the classical Sobolev spaces, where

1 1
oty =t
Lemma 2.1 If
1< g :=essinfq(x) < q(x) < go:=esssupq (z) < oo,
zeN zeQ

then we have
min {Jullfy,) Nl b < og0 () < max { ), )},

for any u € L1V (Q).

Lemma 2.2 ( Holder’s Inequality) Suppose that p, q, s > 1 are measurable functions defined on  such
that

1
W P aw) forae. e

For the existence of the local solution of problem (1.1), we refer the reader to [13]. Their result is given
in the following theorem:
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Theorem 2.1 Suppose that r, m € C (ﬁ) with

-1
2 < rlgr(x)§r2<2n—2, if n>3,
n—
T(x) > 2a Zf’flzl, 2,
and
2 < m<m(x)<me<——=, if n>3,
m(x) 2 2) an:L 2,
r1 : =essinfr(x), ro:=esssupr(z),
zeQ 2EQ
mi : =essinfm(x), mgy:=esssupm (z).
zeQ €N

We also assume that m (.) and r(.) satisfy the log-Holder continuity condition:

A

<——— forae. z, y€Q, with |z —y| <4, (2.1)
log |z —y|

A>0,0<0<1.
Then, for any (ug, u1) € Wy? (Q) x L? (), problem (1.1) has a unique weak local solution
uw € L™ ((O,T), wlv (Q)) ,
ug € L>((0,7), L*(Q))nL™O (2 x (0, T)),
we € L2 ((O,T), and (Q)) .
3. Exponential growth

In the order to state and prove our result, we define the potential energy functional and the Nehari’s
functional, respectively, by the following

1 2 a b 2 1 r(z)

E(t) = E I Z Py~ P — . 1
(0= E@(0) = 3 lu O+ 5 V@I + IV = [ =@ @de @

Q
I(t)=T(u(t))=al|Vu®)+b|Vu@)]? - / lu ()" da. (3.2)

Q
We can considering a = b = 1, and this does not change the general result.
Lemma 3.1 Under the assumptions of theorem 2.1, we have

E (t) = —/ lug (1) dz <0, telo, T]. (3.3)

Q
and
E(t) < E(0).
Proof: We multiply the first equation of (1.1) by u; and integrating over the domain 2, we get

2
d |1 5 1 , 1 . / 1 r(z)
=15 |ut|2+pé|w )| dx + % Z|Vu )| dx Qr(x) lu|"*) da

— / g (8)™) i,
Q
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then
E (t) = —/ lug (£)™) da < 0.
Q

Integratying (3.3) over (0, ¢), we obtain
E(t) < E(0).
Lemma 3.2 Assume that the assumptions of theorem 2.1 and ry > 2p, hold,
1(0)>0,

and
B+ By <1, (3.4)

where

T1—P 2P
B, = max{acil < P E(O)) ’ , acl? ( P E(O)) ' },
T —p ™ =D

3, : :max{a—a)c:l (ME(O)) T (1—a)c:2< 217 E(O)) }

rL—2p

with 0 < o < 1, ¢, is the best embedding constant of Wy * (Q) < L™ (Q), then I (t) > 0, for all
telo, T].

Proof: By continuity, there exists T, such that
I(t)>0, foralltel0, T.]. (3.5)
Now, we have for all t € [0, T7:

1

— | r(z) T
Ty eI

J (t)

JW@»=§Wu@M+%ﬂvwmﬁ—/
Q

1 1 2 1 2

> p [Vu @)} + % Vu (@), — o (IIVu Oy +IVu @I, — I(t))
TL—p p  T1—2p 2, 1

> —1

> S EIVu )l + T IV Ol + T (0)

using (3.5), we obtain

ry—2p

r —p D 2p
—prl [[Vu (t)||p + Spr) IVu (t)||p < J(t), for all t € [0, T.]. (3.6)
By Lemma 3.1, we get
pri pri
Vu ()P < E(t) < E(0 3.7
IVu @l < LB < B () (37)
and ) 5
2p pri pri
t <—F)< E .
[Vu @)l < B (1) < B (0) (33)

On the other hand, by Lemma 2.1, we have

/ (0@ da

Q

IN

Mazx {||u (t)||:%) ;| (ﬂ”:%)}

= aMa{lu@,, luolz,}

+ (1= a) Maz {Ju @7, Tz, }-
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By the embedding of W, ? (Q) < L"() (), we obtain

Jlu@Or®as < oMaa{e IVu@l, e Va ;)
Q
+ (1 =) Maz {2 [Vu @)}, 2 [V @)}
<

o Maz {2 [Vu @I 7, e [Fu )57} x IV @)
+ (1= a) Maz {2 [Vu ()57, o2 [V )27 | x |9 (1))
By (3.7) and (3.8), we get

/ u ()" da < By [Vu @)%+ By [Vu ®)|P,  forall t €0, To]. (3.9)
Q

Since 8; + B, < 1, then

/|u(t)|r<f‘> dr < |[Vu ()2 + |Vu @], forallte 0, T.].
Q

This implies that
I(t) >0, for all t € [0, T.].

By repeating the above procedure, we can extend T to T.

Theorem 3.1 Under the assumptions of lemma 3.2, the local solution of (1.1) is global.
Proof: We have

Blu®) = 3 lu @3+ IVu@l+ 5 [V - / 0 do.
> 5l O + 22 Va0l + S [ vu 01
So that
e (I3 + 1 9u () < © B (1), (3.10)
By Lemma 3.1, we obtain
e ()13 + 190 () < C B (0). (311)

This implies that the local solution is global in time.
4. Stability solution

In this section our main result is based a Komornik’s inequality [7], as in [5]. For this, we need the
following Lemma:

Lemma 4.1 Suppose that the assumptions of Lemma 3.2 and mi > p, hold, then there exists a positive
constant ¢ such that

/|u ()™ dz < ¢ (1). (4.1)
Q

Proof: We have
/ fu ()™ de
Q

mas {Ju (2, a5}

IN

max {c;m [Vu @), e [|Vu (t)ll;'”}

N

max {c [[Vu (@77, e [Vu @l } < [V @)
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By using (3.7), we obtain

/|u (0™ dz < cB (1).
Q

Now, we state our main result:

Theorem 4.1 Let the assumptions of Lemma 3.2, then, there exists constants C, ( > 0, such that
C
E(t) < —————, forallt>0 if mg>2.
(1+1¢t)m=—2
E{t) < Ce ¢,

forall t >0 if mg=2.
Proof: Multiplying first equation of (1.1) by u (t) E4(t) (¢ > 0) and integrating over Q x (S, T'), we
obtain
T

//Eq () [ () ue (8) —u (t) (M </|Vu|pdx) Apu+ |ut|m(w)2ut)] dzdt
S Q Q

T
_ Z EY(t) é lu (£)]"®) dzdt

So that
T

[ [Er O @ @), - lu@F +19u@F + IVa @I [Fu @)
S Q

T

+u (t)|ut|m($)_2ut} dadt = / E°(t) / lu (8)]"®) dadt
S Q

We add and substract the term

T
JE1® [ [0 + 3 [Vu @I (96 (O + 2+ 8, + B Jus (0] o
S Q

and use (3.9), to get

T
(1—ﬁ1)/E‘1 (t)/ [|Vu )P + |uy (t)|2] dxdt
S Q
T
+(1—/32)/Eq (t)/ IV ()8 1Va OF + u ()] dudt
. S Q
+[E10) [ [w®u®), - 8y - 8) lus (O] dacs
S Q
T
+ [ E9(t) / w (t) ug (t) |ug ()™ 72 dadt
S Q

S

= [Er@) [ 8 Vu P + 5, Va1 9u OF  u @] dodt < 0
Q

(4.2)
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It is clear that

T

1 p, L P p Jw (t)|2_
p|VU(f)| +2p|\vu(t)|\p|vu(t)| +—

Ve |
S Q
< oo [omor 22
+(1—62/ /l—lvu 02| Vu (>|”+M]dmt
Q

dxdt

where v = Min ((1 — 5,), (1—3,)). By (4.2), (4.3) and definition of E (t), we get

T T
- g B (mdt < — { B9 (1) g (u (t) s (), dedt
+3B—-08,— / /|ut |dmdt
T

S

Using the definition of E (¢) and the following expression

% (Eq (t) /u () ug (t) d;r,) = qBT( /U ) ut (
Q

Inequality (4.4), becomes

T T
q+1 q—1 d
7/E+ Wdt < q/E (t)EE(t)/u(t)ut(t)dx
S S Q
ra
/dt (Eq()/u(t)u ()dm) dt
Q

We denote by ¢ the various constants.

We estimate the terms in the right-hand side of (4.5) as follow:

Ju ()]
.

_ / B (1) / w (t) g (8) g ()2 dadt.
Q

(4.3)
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By (3.3) and Young’s inequality, we obtain

T
q/Eq—l ) %E () /u (£) s (1) de
S Q
T
< aferw(-Fo) [ L—ﬁ 0O + P s (0)]7°7 | das
S Q

Since, 1 < -23 < 2, by the embedding of L? (Q) — L1 (Q), we have

T
q/EfH () th () /u (#) e (1) do
S Q
T
< afpro(-Fo) [ L—l) ()7 + P g (1) 2] dede
S Q

Thus, by (3.10), we find

q/Eq_1 (t) ;ltE (t) /u (t) ue (t) dx
S Q
T
< ¢|EI@)(-E (t))adt
[m(-# )

cET(S) — cETTH(T)
cE1(0)E (S) < cE(9).

IAIA

For the second term, we have

y d
/d_ (Eq w(t)ug (L )dw) dzdt
s

/u dx—Eq()/u(T)ut(T)da:
Q

Q

IN

IN

EY(t)| [ u(z,S) u (z,S)dz| + E(t)

0~

/u (2, T)uy (z,T)dx
Q

cET(S) + BT (T)
cET(0)E(S) <cE(S).

IAIA

For the third term, we use the following Young inequality:

1 1
XY < —XM 4 ——Y™, X,V >0, e>0and & + — =1,
N IYRDY

with A\ (z) = m (z), A2 (z) = m(z)

m(xz)—1"

(4.6)

(4.7)
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By (3.3) and Lemma 4.1, we have

T
—/Eq (t)
s

7Eq (t) (

S

w () ug () |ue ()™ 72 dadt

c/|u(t)|m(‘r) dx+c€/|ut ()™ dx) dt
Q Q

T T
c[E1@) [ Ju@)|™ dedt +c. [ EC(t) (—E (t)) dt
<[ frraare [0

T
ac/Eq“ (t)dt + c.E(S).
S

{3\

IN
%)

IN

IN

For the last term of (4.5), we have

T
(3= By — Bs) / 0 / g (£)? dvdt
S Q
s _
< (3—/31—/32)/Eq (1) [/ " <t>|2dx+/|ut (O de | dt
S Q- O+ a
T [ ) T
< c/Eq ) (/mt ()™ dx) + (/ e )™ da | | dt
s | \o- Q+
T [ T i
< ¢[E@®) ( |ut(t)|m(z)dx) +( |ut(t)|m(z)dx> dt.
ol /

This implies

T
(3—61—62)/E‘1 (L‘)/|ut (t)|? dadt
. S 2 Q . 2
< Bt (—E @) dt+c[E @) (-E @)™ dt.
[Po(-r ) aefpo (50

First, if we use Young’s inequality with \y = (¢ + 1) /¢ and A2 = ¢ + 1, we have

T 5 T
/Eq (t) (—E’ (t)) "t < gc/Eq“ (t) dt + c.
S

S

2(g+1)

(—E' (t)) "t

(fl\’ﬂ

We take ¢ = %52 — 1 to find

T

T T
E1(t) (—E ()™ dt <ec [ BT () dt+c. | (—E (1)) dt.
[0 (s azafe v ] (0)

S

(4.9)

(4.10)
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This implies

/Eq E ) ™ dt < sc/E‘I“ t)dt + c.E (S). (4.11)
On the other hand, we have

T 2

/ E9 (1) (—E’ (t)) "dt < e [ BT (8)dt + B (S). (4.12)

S

Indeed,
e if my = 2 then

/ B9 (t) (—E’ (t)) gt < B (9) < gchqH (t)dt + c.E (S).

e if m; > 2, we use the Young’s inequality Ay = mTiQ and Ay = 75+, to obtain

T T T
/Eq (t) (—E' (t))m dt < sc/Eq—w%'l”—2 (t) dt + cs/ (—E' (t)) dt
S S S
T
< e / B (1) dt + . B (S).
S

—q—l—l—i—"” 52, then

T
/Eq(t) (—E’ (t))“dt < ec(E(S)) T /Eq+1 )dt + c. B (S)
S
T
< ce(B(0)FE / B (8) dt + ¢ E (S)
S
<

sc/Eq“ (t)dt + c.E(9).

We substituting (4.11) and (4.12) in (4.10), we obtain

T T
3-8, — E1t) [ |uy (t)]? dadt < ec | BT (t) dt + c.E (S) . 4.13
(3-4 @)Z <>£| (0 l 0 (s) (4.13)
By insert (4.7), (4.8), (4.9) and (4.13) in (4.5), we arrive at
T
/E dt<gc/E' () dt + . E(S).
S

Choosing ¢ small enough for that

NS~

&

NE
=

Y

~

A

o

&=
-
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By taking T goes to oo, we get

/E% (£)dt < cE(S).
S

By Komornik’s integral inequality yields the result.
Acknowledgement The authors wish to thank deeply the anonymous referee for useful remarks and
careful reading of the proofs presented in this paper.
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