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Mannheim Offsets of Ruled Surfaces under the 1-Parameter Motions ∗

Keziban Orbay and Tevfik Şahin

abstract: In this study, the situation of Mannheim offsets of ruled surfaces under the 1-parameter motions
is investigated. Firstly, relationships between geodesic Frenet trihedrons of Mannheim offsets of ruled surfaces
are obtained and the relationship between the curvatures of the surface pairs is examined. Also, change of
integral invariants the surface pairs under the 1-parameter motions is studied. Finally, the relevant example
is given for every Mannheim offsets of ruled surfaces.
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1. Introduction

Classical differential geometry is divided into two main sections: Curves and Surfaces. Properties of
curves and surfaces are examined over a point in the neighborhood of this curve and surface components
[3,6,11]. There are some special pairs of curves and pairs of surfaces. For example; pair of involute-
evolute curves which is tangent vectors perpendicular to each other in the corresponding points [7], pair
of Bertrand curves which is the principal normal vectors common [2] and pair of Mannheim curves which
is the principal normal vector corresponds to binormal vector in the corresponding points [12,13,20] are
pairs of curves recently studied. A pair of surfaces is defined using these pairs of curves [9,14,15].

Geometry is the theory of do not change under a transformation group. Kinematics is the geometry
of transformation protecting distances. It is obtained a curve with the continuous movement of a point
on a surface and a surface with a continuous movement in space of a curve. If a curve especially is a
line, in this case, the obtained surface is called Ruled surface. Examine the properties of the surface to
a period under a motion has attracted the attention of mathematicians. For example; the conoidal ruled
surface which is a special surface was examined under the helical and homothetic motions [1,5].

Movement on each of the curves or surfaces are not of concern to the geometry only. It is used
in physics, engineering, computer-aided design and manufacturing, robotics, and in many industrial
applications. Wang, Liu, and Xiao studied kinematic differential geometry of a rigid body in spatial
motion in three consecutive articles [17,18,19]. In these articles, the geometrical properties of a point
trajectory and a line trajectory in spatial motion are searched by means of a new adjoint approach. The
invariant of axoids are derived and their kinematic meanings are revealed. This new adjoint approach a
curve adjoint to a ruled surface is expanded for another ruled surface adjoint to a ruled surface. Based
on the results obtained from them, the kinematics conditions for the moving body to be connected
with a binary link by a kinematic pair are discussed and described by the geometrical properties of the
line trajectory and the constraint ruled surface. To explain the formation of a double curve, kinematic
decomposition of the coupler plane is done by Lan, Huijun, and Liuming [10]. The analysis of coupler
limit positions in a four-bar linkage, the formation of coupler curves are studied and the coupler plane
is divided into four zones. Shapes and features of coupler curves in different zones are explained. Also,
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recently, Cui and Dai extend the adjoint approach to a general surface and investigate the kinematics of
the relative motion of two rigid objects that maintain sliding-rolling contact [4].

In this study, the situation of Mannheim offsets of ruled surfaces under the 1-parameter motions is
investigated. Relationships between geodesic Frenet trihedrons of Mannheim offsets of ruled surfaces are
obtained and the relationship between the curvatures of the surface pairs is examined. Also, change of
integral invariants the surface pairs under the 1-parameter motions is studied.

2. Preliminaries

It has been defined as a ruled surface as a surface generated by the motion of a straight line, its
generating line, generator, or ruling. There are ∞1 generators on a ruled surface. Let e = e(s) be the
unit vector in the direction of the generating line passing through a point of an arbitrary nonisotropic
curve α, which is called the base curve, lying on the surface, of which the equation is α = α(s). The
ruled surface is given by a parametric representation

φ(s, v) = α(s) + ve(s) (2.1)

the vector e = e(s), drawn through the center 0 of the unit sphere, describe the director cone of the
surface. When α is a constant the surface is a cone, when e is a constant, the surface is a cylinder [16].
The vector e traces a curve on the surface of unit sphere S2 called spherical indicatrix of the ruled surface
[15]. The orthonormal system {e, t, g} is called the geodesic Frenet trihedron of the ruled surface φ such
that t = es

‖es‖
and g = e×es

‖es‖
are the central normal and the asymptotic normal direction of φ, respectively.

For the geodesic Frenet vectors e, t and g, we can write

eq = t

tq = γg − e (2.2)

gq = −γt

where q and γ are the arc-length of spherical indicatrix (e) and the geodesic curvature of (e) with respect
to S2, respectively [15].

The striction point on a ruled surface φ is the foot of the common normal between two consecutive
generators. The set of striction points defines the striction curve given by

c(s) = α(s)− 〈αs, es〉
〈es, es〉

es (2.3)

If consecutive generators of a ruled surface intersect, then the surface is said to be developable. The
spherical indicatrix e, of a developable surface is tangent of its striction curve [15].

The distribution parameter of the ruled surface φ is defined by

Pe =
det(αs, e, es)

‖es‖2
. (2.4)

The ruled surface is developable if and only if Pe = 0 [15].
In this paper, the striction curve of the ruled surface φ will be taken as the base curve. In this case,

for the parametric equation of φ, we can write

φ(s, v) = c(s) + ve(s) (2.5)

The ruled surface φ∗ is said to be Mannheim offset of the ruled surface φ if there exists a one to one
correspondence between their generators such that the asymptotic normal of φ is the central normal of
φ∗. In this case, (φ, φ∗) is called a pair of Mannheim ruled surface [14]. Let {e, t, g } and {e∗, t∗, g∗ }
be two geodesic Frenet triples at the point c(s) and c∗(s) of the striction curves (c) and (c∗) of the ruled
surface φ and φ∗, respectively. Let parametric representations of the ruled surface φ and φ∗ be given by

φ(s, v) = c(s) + ve(s), ‖e(s)‖ = 1
φ∗(s, v) = c∗(s) + ve∗(s), ‖e∗(s)‖ = 1

}

(2.6)
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respectively.
If φ∗ is a Mannheim Offset of φ, there is the equation





e∗

t∗

g∗



 =





cos θ sin θ 0
0 0 1

sin θ − cos θ 0









e

t

g



 (2.7)

between the geodesic Frenet triples {e, t, g} and {e∗, t∗, g∗}, where θ is the angle between corresponding
generators [14].

3. Mannheim Offsets under the 1-Parameter Motions

Let the ruled surface φ̄ roll on the ruled surface φ along curves (c) and (c̄) whose arc-length parameter
s and s̄ under 1- parameter spatial motion, respectively. While (φ, φ∗) is a pair of Mannheim ruled
surface, the pair of ruled surface

(

φ̄, φ̄
∗)

also continues to be a pair of Mannheim ruled surface during
movement.

Figure 1: The motion of the ruled surfaces along curves (c) and (c̄)

Let {e, t, g} and {ē, t̄, ḡ} be geodesic Frenet triples at the common point M of the striction curves
(c) and (c̄) of the ruled surface φ and φ̄, respectively. Where t = −t̄ and there is like an angle β between
e and ē. In this case, we can write

ē = e cosβ + g sinβ

t̄ = −t

ḡ = −e sinβ + g cosβ

or




ē

t̄

ḡ



 =





cosβ 0 sinβ
0 −1 0

− sinβ 0 cosβ









e

t

g



 . (3.1)

While there is the equation





e∗

t∗

g∗



 =





cos θ sin θ 0
0 0 1

sin θ − cos θ 0









e

t

g





between the geodesic Frenet triples {e, t, g } and {e∗, t∗, g∗} of the pair of Mannheim ruled surface(φ, φ∗),
there is the equation





ē∗

t̄∗

ḡ∗



 =





cosµ sinµ 0
0 0 1

sinµ − cosµ 0









ē

t̄

ḡ



 .
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between the geodesic Frenet triples {ē, t̄, ḡ} and {ē∗, t̄∗, ḡ∗} of the pair of Mannheim ruled surface
(

φ̄, φ̄
∗)

too, where µ is the angle between ē and ē∗.

If the necessary actions are done, we obtain





ē∗

t̄∗

ḡ∗



 =





cosµ cosβ − sinµ cosµ sinβ
− sinβ 0 cosβ

sinµ cosβ cosµ sinµ sinβ









e

t

g





between the geodesic Frenct triples of the ruled surface ϕ and ϕ̄∗,





ē∗

t̄∗

ḡ∗



 =





cos θ cosβ cosµ− sin θ sinµ cosµ sinβ cosβ cosµ sin θ + cos θ sinµ
− cos θ sinβ cosβ − sin θ sinβ

cos θ cosβ sinµ+ sin θ cosµ sinµ sinβ cosβ sin θ sinµ− cos θ cosµ









e∗

t∗

g∗





between the geodesic Frenet triples of the ruled surface ϕ∗ and ϕ̄∗, and





e∗

t∗

g∗



 =





cos θ cosβ − sin θ − cos θ sinβ
sinβ 0 cosβ

sin θ cosβ cos θ − sin θ sinβ









ē

t̄

ḡ





between the geodesic Frenet triples of the ruled surface ϕ∗ and ϕ̄.
If the derivative of the geodesic Frenet vectors of the ruled surface ϕ in the equations e = e, t = es

‖es‖

and g = e×es
‖es‖

with respect to the arc-length parameter s of the curve (c) is taken the derivative formulae

is given as follows [8]:

es = qst

ts = −qse+ γqsg (3.2)

gs = −γqst.

Similarly, if the derivative of the geodesic Frenet vectors of the ruled surface ϕ̄ in the equations ē = ē,
t̄ = ēs̄

‖ēs̄‖
and ḡ = ē×ēs̄

‖ēs̄‖
with respect to the arc-length parameter s̄ of the curve (c̄) is taken, we can give

the following equations:

ēs̄ = q̄s̄ t̄

t̄s̄ = −q̄s̄ē+ γ̄ q̄s̄ḡ (3.3)

ḡs̄ = −γ̄ q̄s̄ t̄

where q̄ and γ̄ are the arc-length of spherical indicatrix (ē) and the geodesic curvature of (ē) with respect
to S̄2, respectively. Taking the derivative of (3.1) with respect to s and using (3.2), (3.1) and (3.3),
respectively, we have

q̄s = −qs cosβ + γqs sinβ

βs̄ = 0 (3.4)

γ̄ q̄s = −qs sinβ − γ qs cosβ.

Theorem 3.1. There is the equation

γ̄ − γ − (1 + γγ̄) tanβ = 0 (3.5)

between the geodesic curvature of the curve (c) and (c̄).

Proof. Reorganizing the equations first and third of (3.4), we get

− γ̄ q̄q = sinβ + γ cosβ (3.6)
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and
q̄q = − cosβ + γ sinβ (3.7)

respectively. Considering together of (3.6) and (3.7), we obtain

(cosβ − γ sinβ) γ̄ = sinβ + γ cosβ

(1− γ tanβ)γ̄ = tanβ + γ

γ̄ − γ − γγ̄ tanβ − tanβ = 0

γ̄ − γ − (1 + γγ̄) tanβ = 0.

Corollary 3.2. If the curve (c) is a geodesic, the curve (c̄) is a circle.

Corollary 3.3. The angle between the directrixes of ruled surfaces ϕ and ϕ corresponds to the angle

between the directions of the slopes γ and γ directions.

Theorem 3.4. Let the ruled surface ϕ̄ rolls on the ruled surface ϕ along curves (c) and (c̄) under 1-

parameter spatial motion. While the curve (c) is a geodesic, the curve (c̄) is a geodesic if and only if

q = |q̄|.

Proof. Because (c) is a geodesic, using (3.5), we obtain

γ̄ = tanβ

γ̄2 =
1

cos2β
− 1.

After that, considering (3.7), we reach

γ̄2 = (qq̄)
2 − 1.

So,

(c̄) is a geodesic ⇔ γ̄ = 0

⇔ (qq̄)
2 = 1

⇔ q = |q̄| .

Theorem 3.5. Let the ruled surface ϕ̄ rolls on the ruled surface ϕ under 1- parameter spatial motion.

There is the following relation between distribution parameters Pe and P̄ē of the Mannheim ruled surfaces

ϕ and ϕ̄
Pe

P̄ē

=
Rs

R̄s

|q̄q| , (3.8)

where R and R̄ are distance between corresponding striction points of the pair of Mannheim ruled surface

(ϕ, ϕ∗) and (ϕ̄, ϕ̄∗), respectively.

Proof. The relation
‖es‖Pe +Rs = 0 (3.9)

was indicate between distance R between corresponding striction points c(s) and c∗(s) of the pair of
Mannheim ruled surface (ϕ, ϕ∗) and distribution parameter Pe of ruled surface ϕ by Orbay et al [14].

Similarly, there is the relation
‖ēs̄‖ P̄ē + R̄s̄ = 0 (3.10)

between distance R̄ between corresponding striction points c̄(s̄) and c̄∗(s̄) of the pair of Mannheim ruled
surface (ϕ̄, ϕ̄∗) and distribution parameter P̄ē of ruled surface ϕ̄. Using (3.2) and (3.3) in (3.9) and
(3.10), we can write

|qs|Pe +Rs = 0 and |q̄s̄| P̄ē + R̄s̄ = 0
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respectively. So, we have

Pe

P̄ē

=
Rs

R̄s̄

|q̄s̄|
|qs|

=
Rs

R̄s̄

∣

∣

∣

∣

∣

− qs
s̄s

cosβ + qs
s̄s
γ sinβ

qs

∣

∣

∣

∣

∣

=
Rs

R̄s̄

|ss̄ (− cosβ + γ sinβ)|

=
Rs

R̄s

|− cosβ + γ sinβ| .

From (3.7), we get Pe

P̄ē

= Rs

R̄s̄

|q̄q| .

Example 3.6. The ruled surface

ϕ∗(s, v) =

(

cos(s)−
√
2

2
sin(s)s− (1 +

√
2

2
)v cos(s) sin(s), sin(s)−

√
2

2
cos(s)s+

√
2

2
vcos2(s)− vsin2(s),

√
2

2
s+

√
2

2
v cos(s)

)

is a Mannheim offset of the ruled surface

ϕ(s, v) = (cos(s)−
√
2

2
v sin(s), sin(s) +

√
2

2
v cos(s),

√
2

2
v)

for R = R(s) = s.

The ruled surface ϕ̄(s̄, v̄) rolls on the ruled surface ϕ(s, v) along curves

c(s) =
(

cos(s), sin(s), 0
)

and c̄(s̄) =
(

cos(s) cos(s̄),− sin(s),− cos(s) sin(s̄)
)

under the 1- parameter spatial motion. Because of ϕ̄(s̄, v̄) = c̄(s̄) + v̄ē(s̄), we get

ϕ̄(s̄, v̄) =
(

cos(s) cos(s̄)−
√
2

2
sin(s) cos(s̄)v̄ +

√
2

2
sin(s) sin(s̄)v̄,

− sin(s) +

√
2

2
cos(s) cos(s̄)v̄ +

√
2

2
cos(s) sin(s̄)v̄,

− cos(s) sin(s̄) +

√
2

2
cos(s̄)v̄ +

√
2

2
sin(s̄)v̄

)

.

If we take R̄ = R̄(s̄) = s, we have the following Mannheim offset of the ruled surface ϕ̄(s̄, v̄)

ϕ̄∗(s̄, v̄) =
(

cos(s) cos(s̄) +

√
2

2
sin(s̄) sin(s)s+

√
2

2
cos(s̄) sin(s)s

−
√
2

2
sin(s)cos2(s̄)v̄ +

√
2

2
sin(s) sin(s̄) cos(s̄)v̄ + cos(s) sin(s̄)v̄,

sin(s)−
√
2

2
sin(s̄) cos(s)s+

√
2

2
cos(s̄) cos(s)s

+

√
2

2
cos(s)cos2(s̄)v̄ −

√
2

2
cos(s) sin(s̄) cos(s̄)v̄ + sin(s) sin(s̄)v̄,

− cos(s) sin(s̄) +

√
2

2
cos(s̄)s−

√
2

2
sin(s̄)s+

√
2

2
cos2(s̄)v̄ +

√
2

2
sin(s̄) cos(s̄)v̄

)

.

We can see the ruled surfaces ϕ(s, v), ϕ∗(s, v), ϕ̄(s, v) and ϕ̄∗(s, v) as follows:
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Figure 2: The ruled surfaces ϕ(s, v) and ϕ∗(s, v) under 1- parameter spatial motion

Figure 3: The ruled surfaces ϕ(s, v), ϕ∗(s, v) and ϕ̄∗(s, v)

Figure 4: The ruled surfaces ϕ(s, v), ϕ̄(s, v), ϕ∗(s, v) and ϕ̄∗(s, v)

4. Conclusions

In this study, it is investigated that relationship between the geodesic curvatures of these curves
when the couple of Mannheim ruled surfaces roll on along the striction curves under the 1-parameter
motions. If one of the curves is a geodesic, the other would be a circle. In order that while one of the
curves is geodesic, the other of the curve to be the geodesic too, the absolute value of the arc-lengths
of spherical indicatrix should be equal. Moreover, if the ratio of distribution parameters of the pair the
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Mannheim ruled surfaces and the ratio of the distance between corresponding striction points of the
pair of Mannheim ruled surface is proportional, it must be the arc-length of spherical indicatrix. With
these data, considering the couple of Mannheim ruled surfaces and using the relations obtained under
the 1-parameter motions, new surfaces can be formed. The physical relationships of these surfaces can
be examined. Studies on industrial use can be made. It can be used to obtain artistic products and
architectural designs.
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