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On the Extremal Solutions of Superlinear Helmholtz Problems

Makkia Dammak, Majdi El Ghord and Saber Kharrati

abstract: In this note, we deal with the Helmholtz equation −∆u+ cu = λf(u) with Dirichlet boundary

condition in a smooth bounded domain Ω of Rn, n > 1. The nonlinearity is superlinear that is limt−→∞

f(t)
t

=

∞ and f is a positive, convexe and C1 function defined on [0,∞). We establish existence of regular solutions
for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ∗ such that the
problem does not have solution for λ > λ∗ even in the weak sense.
We also prove the existence of a type of stable solutions u∗ called extremal solutions. We prove that for
f(t) = et, Ω = B1 and n ≤ 9, u∗ is regular.
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1. Introduction

Let Ω be a bounded smooth domain in R
n, n ≥ 2, c > 0 a positive real parameter and g : Ω×R+ → R

be a continuous function. The semilinear elliptic equation






−∆u+ cu = g(x, u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

has by now been widely investigated under various assumption on the nonlinearity g.
In this paper, we will suppose that

g(x, t) = λf(t), (1.2)

where f is C1, positive, nondecreasing and convex function on [0,+∞) satisfying

lim
t−→∞

f(t)

t
= ∞. (1.3)

The condition (1.3) means that f is a superlinear function and the choice of the function g is motivated
by the role of bifurcation problem in applied mathematics and which has been synthesized by Kielhöfer
[6]. We say that a problem has a bifurcation if any change of its parameters cause a sudden change of
regime and this is occur in nonlinear physics where the phenominon usually depends on a number of
parameters, that control the evolution of the system.

If g(x, t) = λf(t) and f is asymptotically linear that is lim
t−→∞

f(t)

t
= a <∞,

the problem

(Pλ,c)







−∆u+ cu = λf(t) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.4)

2010 Mathematics Subject Classification: 35B65, 35B45, 53C21,35J60, 58J05.
Submitted March 20, 2018. Published July 29, 2018

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.42087


2 M. Dammak, M. El Ghord and S. Kharrati

was treated by Dammak et al. in [1] where the hypothese f(0) > 0 was fondamental. The authors prove
the existence of a critical value λ∗ such that for λ < λ∗, the problem (1.4) has at least one solution, for
λ > λ∗ the problem (1.4) has no solution and for λ = λ∗, the existence of a solution, named extremal
solution depends of the signe of lim

t−→∞
(f(t)− at).

If c ≡ 0 and g(x, t) = λf(t), the problem (1.4) has been treated by many authors. For the super-
linear case, we can cite [3] and for the asymptotically linear and f(0) > 0, we can see [8] and their
references.
In this work, we take the following definition of a weak solution.

Definition 1.1. A weak solution of (1.4) is a function u ∈ L1(Ω), u ≥ 0 such that f(u) ∈ L1(Ω), and

−

∫

Ω

u∆ζ + c

∫

Ω

ζu = λ

∫

Ω

f(u)ζ, (1.5)

for all ζ ∈ C2(Ω) and ζ = 0 on ∂Ω.
Moreover, we say that u is weak super solution of (1.4) if the ” = ” is replaced by ” ≥ ” for all

functions ζ ∈ C2(Ω), ζ = 0 on ∂Ω and ζ ≥ 0.

If a weak solution u ∈ L∞(Ω), we say that u is regular while if u /∈ L∞(Ω), we say that u is singular.
We say that a solution u of (1.4) is minimal if u ≤ v in Ω for any solution v of problem (1.4).

Remark 1.2. If u is a regular solution of (1.4), then by standard bootstrap argument and elliptic regu-
larity, u is a classical solution.

For regular solution, we will study the stability properties.
Let

I(u) =
1

2

∫

Ω

(|∇u|2 + c u2)dx − λ

∫

Ω

F (u)dx, (1.6)

for u ∈ H1
0 (Ω) and where

F (u) =

∫ u

0

f(s)ds. (1.7)

u is a solution of (1.4) if it is a critical point of the fonction I. The second variation of the energy is
given by

Q(ϕ) =

∫

Ω

|∇ϕ|2 +

∫

Ω

(c− f ′(u))ϕ2, (1.8)

for all ϕ ∈ H1
0 (Ω).

Definition 1.3. We say that a regular solution u of (1.4) is stable if the second variation of energy Q,
satisfies Q(ϕ) ≥ 0 for all ϕ ∈ H1

0 (Ω). Otherwise, we say that u is unstable.

Theorem 1.4. Let Ω ⊂ R
n, n ≥ 2 a smooth bounded domain and assume that f is a function satisfying

(1.3). Then there exists a critical value λ∗ ∈ (0,∞) such that

1. For any λ ∈ (0, λ∗), problem (1.4) has a minimal solution uλ, which is regular and the map λ 7−→ uλ
is increasing.
Moreover, uλ is the unique stable solution of (1.4).

2. For λ = λ∗, the problem (1.4) admits a unique weak solution u∗, u∗ = lim
λ−→λ∗

uλ, called the extremal

solution.

3. For λ > λ∗, (1.4) admits no weak solution.

Theorem 1.4 applies to the existence of stable solution for all λ < λ∗. For the case λ = λ∗, we prove
the following result.
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Theorem 1.5. Let Ω ⊂ R
n (n ≥ 2) be a smooth bounded domain and assume that f satisfies condition

(1.3). Let v ∈ H1
0 (Ω) be a singular weak solution of (1.4). Then, the following facts are equivalent:

(i)
∫

Ω

|∇ϕ|2 + c

∫

Ω

ϕ2dx ≥ λ

∫

Ω

f ′(v)ϕ2dx ∀ϕ ∈ C1
0 (Ω) (1.9)

(ii) v = u∗ and λ = λ∗.

As consequence if the problem (1.4) has a singular solution that is ”stable” then necessary λ = λ∗

the extremal value for which the problem has solution.
In the case c ≡ 0, we prove the following result which assert that u∗ is regular for n ≤ 9.

Theorem 1.6. Assume that Ω = B1, n ≥ 2, and that f(u) = eu. Then u∗ ∈ L∞(Ω), for all n ≤ 9 and
so it is a regular solution.

For n ≥ 10 and c = 0, u∗ is a singular solution of (1.4) [4,5] but for c 6= 0 the problem still an open
one and this is due to the missing of an adequate Hardy ineguality.

2. Technical Lemmas

In all this section, we suppose that Ω is a smooth bounded subset of Rn, n ≥ 2. For proving our first
theorem, we need to prove auxiliary results.

Lemma 2.1. Given g ∈ L1(Ω), there exists a unique v ∈ L1(Ω) which is a weak solution of

{

−∆v + cv = g in Ω
v = 0 on ∂Ω,

(2.1)

in the sense that
∫

Ω

v(−∆ζ + cζ) =

∫

Ω

gζ, for all ζ ∈ C2(Ω) and ζ = 0 on ∂Ω. (2.2)

Moreover
‖v‖L1(Ω) ≤ c0‖g‖L1(Ω, δ(x)dx) (2.3)

for some constant c0 > 0 independent of g. In addition, if g ≥ 0 in Ω, then v ≥ 0 in Ω.

Proof. The uniqueness. Let v1 and v2 be two solutions of problem (2.1), then v = v1 − v2 satisfies
∫

Ω

v(−∆ζ + cζ) = 0, ∀ζ ∈ C2(Ω) and ζ = 0 on ∂Ω. (2.4)

Given any ϕ ∈ D(Ω), let ζ be solution of

{

−∆ζ + cζ = ϕ in Ω
ζ = 0 on ∂Ω,

(2.5)

ζ ∈ C2(Ω) and ζ = 0 on ∂Ω. It follows that
∫

Ω

vϕ =

∫

Ω

v(−∆ζ + cζ) = 0.

Since ϕ is arbitrary, we deduce that v = 0.
The existence. We assume that g ≥ 0, if not we write g = g+ − g−.

Given an integer k ≥ 0, and set gk(x) = min{g(x), k}. By the monotone convergence theorem, we have
gk −−−−→

k−→∞
g in L1(Ω). Since gk is in L2(Ω), the following problem







−∆vk + cvk = gk in Ω
vk = 0 on ∂Ω
vk > 0 in Ω,

(2.6)
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admits a unique solution vk.
The sequence (gk) is nondecreasing, then (vk) is nondecreasing sequence also. Let k > l > 0 two integers
and ζ0 the solution of

{

−∆ζ0 + cζ0 = 1 in Ω
ζ0 = 0 on ∂Ω,

(2.7)

we have
∫

Ω

(vk − vl) =

∫

Ω

(gk − gl)ζ0,

hence

|

∫

Ω

(vk − vl)| =

∫

Ω

|vk − vl| ≤ C

∫

Ω

|gk − gl|dx.

Since gk −−−−→
k−→∞

g in L1(Ω), the sequence (vk) is a Cauchy sequence in the Banach space L1(Ω) then (vk)

converges in L1(Ω), denote by v its limit. Passing to the limit in (2.6), we oblain (2.2). So v is a weak
solution of the equation (2.1). Finally, taking ζ = ζ0 in (2.2), we obtaine (2.3). ✷ ✷

Lemma 2.2. Suppose that f is a function satisfies (1.3) and let u be a weak super solution of (1.4), then
there exists a weak solution u of the problem (1.4) with 0 ≤ u ≤ u.

Proof. We use a standard monotone iteration argument. Let u1 = 0 and let (un)n the sequences defined
by:

{

−∆un + cun = λf(un−1) in Ω
un = 0 on ∂Ω

(2.8)

By maximum principle we have u1 = 0 ≤ u2 ≤ ... ≤ un ≤ un+1 ≤ ... ≤ u. Since the sequence un is
nondecreasing, it converges to a limit u ∈ L1(Ω), which is clearly a weak solution of (1.4). Moreover u is
independent of the choice of the super solution u. ✷

Next, let ϕ1 the positive normalized eigenfunction associated to the first eigenvalue of −∆+ c in Ω with
Dirichlet boundary condition, λ1, that is







−∆ϕ1 + cϕ1 = λ1ϕ1 in Ω
ϕ1 = 0 on ∂Ω

||ϕ1||2 = 1,
(2.9)

and let r0 = inf
t>0

f(t)

t
, we have the following result.

Lemma 2.3. Let f be a function satisfying (1.3), problem (1.4) has no solution for any λ > λ1

r0
but has

solution provided λ is positive and small enough.

Proof. Let ξ ∈ C2(Ω) satisfying −∆ξ + cξ = 1 in Ω and ξ = 0 on ∂Ω. For λ ≤ 1
f(||ξ||∞) , ξ is a super

solution of (1.4), so from Lemma 2, equation (1.4) has a weak solution u such that 0 ≤ u ≤ ξ. Also u is
regular then classical solution of (1.4) and from the maximum principle, we have u > 0 in Ω.
Now, if (1.4) has a solution u for some λ > 0, take ϕ1 a test function, we have

∫

Ω

(−∆ϕ1 + cϕ1)u = λ

∫

Ω

f(u)ϕ1

∫

Ω

λ1ϕ1u = λ

∫

Ω

f(u)ϕ1

∫

Ω

λ1ϕ1u ≥ r0λ

∫

Ω

ϕ1u

since ϕ1 > 0 and u > 0 we have λ ≤ λ1

r0
, this complete the proof. ✷
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We define now

Λ = {λ > 0 such that problem (Pλ,c) has a solution},

and
λ∗ = supΛ.

From Lemma 2.3 we know that λ∗ <∞ and we have the following result.

Lemma 2.4. Let f a reaction term satisfying (1.3), if the problem (Pλ,c) has a solution for some λ.
Then

(i) There exists a minimal solution denoted by uλ for (Pλ,c).

(ii) For any λ′ ∈ (0, λ), the problem (Pλ′,c) has a solution.

Proof. (i) Let v be a solution of (Pλ,c), by lemma 2 and since v is regular solution, there exist a solution
u such that 0 < u ≤ v and by construction u is independent of the choice of v (see the proof of
Lemma 2 ). We denote by uλ this solution. uλ is a minimal solution.

(ii) For any λ′ ∈ (0, λ), uλ is a super solution of (Pλ′,c). By Lemma 2, (Pλ′,c) has a weak solution uλ′

such that 0 ≤ uλ′ ≤ uλ and so uλ′ is a regular solution for (Pλ′,c).
✷

3. Proof of Theorem 1.4

(i) By lemma 2.3 and lemma 2.4, Λ is an interval. Then, by definition of λ∗, if λ ∈ (0, λ∗), the problem
(1.4) has a minimal solution uλ and the map λ 7−→ uλ is increasing.
To prove that uλ is stable, we suppose that the first eigenvalue η1 = η1(c, λ, uλ) of the operator −∆ +
c − λf ′(uλ) is negative. We define ψ ∈ H1

0 (Ω) a positive eigenfunction associate to η1 with Dirichlet
boundary condition.

Consider uε = uλ − εψ, ε > 0, so

−∆uε + cuε − λf(uε) = −εη1ψ − λ[f(uλ − εψ)− f(uλ) + εf ′(uλ)ψ]

= −εψ[−η1 + θε(1)].

Since η1 < 0, then −∆uε + cuε − λf(uε) ≥ 0 in Ω for ε small enough, and by Hopf’s Lemma, uε ≥ 0, so
uε is a super solution of (1.4) for ε small enough, then from Lemma 2 we can get a solution u of (1.4)
such that u ≤ uε in Ω. So we have 0 ≤ u ≤ uε < uλ and this contradicts the minimality of uλ and hence
η1 ≥ 0.

To prove that uλ is the unique stable solution of (1.4), we suppose that there exists another stable
solution v 6= uλ and we denote ϕ = v − uλ.
We get from the stability properties

λ

∫

Ω

f ′(v)ϕ2 ≤ −

∫

Ω

ϕ∆ϕ+ c

∫

Ω

ϕ2

≤

∫

Ω

(−∆ϕ+ cϕ)ϕ

≤

∫

Ω

λ(f(v)− f(uλ)ϕ.

(3.1)

So
∫

Ω

[f(v)− f(uλ)− f ′(v)(v − uλ)]ϕ ≥ 0. (3.2)

We know that ϕ > 0 by maximum principle and by convexity of f , we have

f(v)− f(uλ)− f ′(v)(v − uλ) ≤ 0. (3.3)
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From (3.2) and (3.3), we have

f(v)− f(uλ) = f ′(v)(v − uλ)

this means that f is affine over [uλ(x), v(x)] thus f(x) = ax + b in [0,maxΩ v] and we get two solutions
uλ and v of

{

−∆w + cw = λ(aw + b) in Ω
w = 0 on ∂Ω.

This implies

0 =

∫

Ω

(uλ∆v − v∆uλ)dx = λb

∫

Ω

(v − uλ)dx = λb

∫

Ω

ϕ(x)dx, (3.4)

which implies b = f(0) = 0, this is impossible since f(0) > 0. So uλ is the unique stable solution of
(Pλ,c). ✷

(ii) We denote by u∗ the limit u∗ = lim
λ−→λ∗

uλ and in this step We use a technical proceeding inspired

from [3].

For any λ ∈ [λ
∗

2 , λ
∗), taking ϕ1 defined by (2.9) as a test function, we obtain

λ1

∫

Ω

uλϕ1 =

∫

Ω

(−∆ϕ1 + cϕ1)uλ

=

∫

Ω

(−∆uλ + cuλ)ϕ1

= λ

∫

Ω

f(uλ)ϕ1

≥
λ∗

2

∫

Ω

f(uλ)ϕ1.

(3.5)

Since f is super linear, there exists c1 > 0 such that λ1t ≤
λ∗

4 f(t) + c1 in R+. Using (3.5), we get

λ∗

2

∫

Ω

ϕ1f(uλ)dx −
λ∗

4

∫

Ω

ϕ1f(uλ)dx

≤ λ1

∫

Ω

ϕ1uλdx −
λ∗

4

∫

Ω

ϕ1uλdx

≤

∫

Ω

c1ϕ1dx ≤ c1.

(3.6)

So (3.6) yields
∫

Ω

f(uλ)ϕ1dx ≤ c2. (3.7)

Where c2 ≥ 0 is a constant. Let ζ0 the function given by (2.7), we have

∫

Ω

uλdx =

∫

Ω

uλ.1dx =

∫

Ω

uλ(−∆ζ0 + cζ0)dx

=

∫

Ω

(−∆uλ + cuλ)ζ0dx

= λ

∫

Ω

f(uλ)ζ0dx.

Using the Hopf’s Lemma we deduce that ζ0 ≤ c3ϕ1 and (3.7) implies

∫

Ω

uλdx ≤ c3

∫

Ω

ϕ1f(uλ) ≤ c4. (3.8)
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By (3.7) and (3.8), we deduce by passing to the limit that u∗ ∈ L1(Ω) and f(u∗) ∈ L1(Ω) and u∗ satisfy
(Pλ∗,c) and hence u∗ is a weak solution of (Pλ∗,c).

Now to prove the uniqueness of u∗, we can use the following result due to Martel [7] and the proof is
not changed in our case, so we omit it.

Proposition 3.1. [7] Let v ∈ L1(Ω) be a weak super solution of equation (Pλ∗,c),
then v = u∗.

4. Proof of Theorem 1.5

Recall that the extremal solution u∗ is the increasing limit of classical stable solutions uλ and we have

λ

∫

Ω

f ′(uλ)ϕ
2dx ≤

∫

Ω

|∇ϕ|2dx+ c

∫

Ω

ϕ2dx, ∀ϕ ∈ C1
0 (Ω)

and so by passing to the limit, we obtain

λ

∫

Ω

f ′(u∗)ϕ2dx ≤

∫

Ω

|∇ϕ|2dx+ c

∫

Ω

ϕ2dx, ∀ϕ ∈ C1
0 (Ω).

Conversely, if we have a singular solution v satisfying (1.9) for some λ > 0 and we shoud prove that
λ = λ∗ and this solution is the extremal one u∗. We argue by contradiction, suppose that λ < λ∗. We
take ϕ = v − uλ as test function in (1.9) where uλ is the minimal solution. Exploiting the boundary
conditions, we get

λ

∫

Ω

(v − uλ)(f(v)− f(uλ))dx =

∫

Ω

(v − uλ)(−∆(v − uλ) + c(v − uλ))dx

=

∫

Ω

|∇(v − uλ)|
2 +

∫

Ω

c(v − uλ)
2

≥ λ

∫

Ω

f ′(v)(v − uλ)
2dx.

Then, by convexity of the function f , we have v = uλ. But uλ is regular, and this contradicts the fact
that v is singular. So λ = λ∗ and by uniqueness of the solutions of problem (Pλ∗,c), v = u∗. ✷

5. Proof of Theorem 1.6

For every λ ∈ (0, λ∗), we know that the minimal solution uλ satisfies the equation

∫

Ω

∇uλ∇vdx+ c

∫

Ω

uλvdx = λ

∫

Ω

f(uλ)vdx = λ

∫

Ω

euλvdx; (5.1)

for all v ∈ H1(Ω).
Also uλ satisfies the stability condition

∫

Ω

|∇w|2dx+ c

∫

Ω

w2dx ≥ λ

∫

Ω

f ′(uλ)w
2dx = λ

∫

Ω

euλw
2dx, (5.2)

for all w ∈ C1
0 (Ω).

To prove the regularity of u∗ for n ≤ 9, we generalise the idea of [2].

In (5.1) we take v = e(q−1)uλ as a test function and w = e
q−1

2
uλ , where q > 1, we obtain

(q − 1)

∫

Ω

e(q−1)uλ |∇uλ|
2dx+ c

∫

Ω

e(q−1)uλdx = λ

∫

Ω

equλdx (5.3)

and
(q − 1)2

4

∫

Ω

|∇uλ|
2e(q−1)uλdx+ c

∫

Ω

e(q−1)uλdx ≥ λ

∫

Ω

equλdx (5.4)
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By multiplying (5.4) with 4
q−1 and putting together these inequalities, we obtain

4c

q − 1

∫

Ω

e(q−1)uλdx− c

∫

Ω

uλe
(q−1)uλdx ≥ λ(

4

q − 1
− 1)

∫

Ω

equλdx

Now assume that 1 < q < 5, so that 4
q−1 > 1. As λ −→ λ∗, the left hand side cannot blow-up since the

leading term is uλe
(q−1)uλ and the right hand side remains bounded, this means that euλ is uniformly

bounded in Lq(Ω), since uλ solves the equation, by elliptic regularity this means that uλ is uniformly
bounded in W 2,q(Ω) for all 1 < q < 5. Since n ≤ 9, by Sobolev embedding, uλ is uniformly bounded in
L∞(Ω) so that u∗ ∈ L∞(Ω). ✷
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