

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2022 (40)** : 1–8. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.42087

On the Extremal Solutions of Superlinear Helmholtz Problems

Makkia Dammak, Majdi El Ghord and Saber Kharrati

ABSTRACT: In this note, we deal with the Helmholtz equation $-\Delta u + cu = \lambda f(u)$ with Dirichlet boundary condition in a smooth bounded domain Ω of \mathbb{R}^n , n > 1. The nonlinearity is superlinear that is $\lim_{t \to \infty} \frac{f(t)}{t} = \infty$ and f is a positive, convexe and C^1 function defined on $[0, \infty)$. We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ^* such that the problem does not have solution for $\lambda > \lambda^*$ even in the weak sense.

We also prove the existence of a type of stable solutions u^* called extremal solutions. We prove that for $f(t) = e^t$, $\Omega = B_1$ and $n \leq 9$, u^* is regular.

Key Words: Extremal solution, Stable minimal solution, Regularity, Super-nonlinearity.

Contents

1	Introduction	1
2	Technical Lemmas	3
3	Proof of Theorem 1.4	5
4	Proof of Theorem 1.5	7
5	Proof of Theorem 1.6	7

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^n , $n \ge 2$, c > 0 a positive real parameter and $g : \Omega \times \mathbb{R}_+ \to \mathbb{R}$ be a continuous function. The semilinear elliptic equation

has by now been widely investigated under various assumption on the nonlinearity g. In this paper, we will suppose that

$$g(x,t) = \lambda f(t), \tag{1.2}$$

where f is C^1 , positive, nondecreasing and convex function on $[0, +\infty)$ satisfying

$$\lim_{t \to \infty} \frac{f(t)}{t} = \infty.$$
(1.3)

The condition (1.3) means that f is a superlinear function and the choice of the function g is motivated by the role of bifurcation problem in applied mathematics and which has been synthesized by Kielhöfer [6]. We say that a problem has a bifurcation if any change of its parameters cause a sudden change of regime and this is occur in nonlinear physics where the phenominon usually depends on a number of parameters, that control the evolution of the system.

If $g(x,t) = \lambda f(t)$ and f is asymptotically linear that is $\lim_{t \to \infty} \frac{f(t)}{t} = a < \infty$, the problem

$$(P_{\lambda,c}) \qquad \begin{cases} -\Delta u + cu &= \lambda f(t) \quad \text{in} \quad \Omega\\ u &> 0 \quad \text{in} \quad \Omega\\ u &= 0 \quad \text{on} \quad \partial\Omega, \end{cases}$$
(1.4)

²⁰¹⁰ Mathematics Subject Classification: 35B65, 35B45, 53C21,35J60, 58J05. Submitted March 20, 2018. Published July 29, 2018

was treated by Dammak et al. in [1] where the hypothese f(0) > 0 was fondamental. The authors prove the existence of a critical value λ^* such that for $\lambda < \lambda^*$, the problem (1.4) has at least one solution, for $\lambda > \lambda^*$ the problem (1.4) has no solution and for $\lambda = \lambda^*$, the existence of a solution, named extremal solution depends of the signe of $\lim_{t \to \infty} (f(t) - at)$.

If $c \equiv 0$ and $g(x,t) = \lambda f(t)$, the problem (1.4) has been treated by many authors. For the superlinear case, we can cite [3] and for the asymptotically linear and f(0) > 0, we can see [8] and their references.

In this work, we take the following definition of a weak solution.

Definition 1.1. A weak solution of (1.4) is a function $u \in L^1(\Omega)$, $u \ge 0$ such that $f(u) \in L^1(\Omega)$, and

$$-\int_{\Omega} u\Delta\zeta + c\int_{\Omega} \zeta u = \lambda \int_{\Omega} f(u)\zeta, \qquad (1.5)$$

for all $\zeta \in C^2(\overline{\Omega})$ and $\zeta = 0$ on $\partial \Omega$.

Moreover, we say that u is weak super solution of (1.4) if the " = " is replaced by " \geq " for all functions $\zeta \in C^2(\overline{\Omega}), \zeta = 0$ on $\partial\Omega$ and $\zeta \geq 0$.

If a weak solution $u \in L^{\infty}(\Omega)$, we say that u is regular while if $u \notin L^{\infty}(\Omega)$, we say that u is singular. We say that a solution u of (1.4) is minimal if $u \leq v$ in Ω for any solution v of problem (1.4).

Remark 1.2. If u is a regular solution of (1.4), then by standard bootstrap argument and elliptic regularity, u is a classical solution.

For regular solution, we will study the stability properties. Let

$$I(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + c u^2) dx - \lambda \int_{\Omega} F(u) dx, \qquad (1.6)$$

for $u \in H_0^1(\Omega)$ and where

$$F(u) = \int_0^u f(s)ds. \tag{1.7}$$

u is a solution of (1.4) if it is a critical point of the fonction I. The second variation of the energy is given by

$$Q(\varphi) = \int_{\Omega} |\nabla \varphi|^2 + \int_{\Omega} (c - f'(u))\varphi^2, \qquad (1.8)$$

for all $\varphi \in H_0^1(\Omega)$.

Definition 1.3. We say that a regular solution u of (1.4) is stable if the second variation of energy Q, satisfies $Q(\varphi) \ge 0$ for all $\varphi \in H_0^1(\Omega)$. Otherwise, we say that u is unstable.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$ a smooth bounded domain and assume that f is a function satisfying (1.3). Then there exists a critical value $\lambda^* \in (0, \infty)$ such that

- For any λ ∈ (0, λ^{*}), problem (1.4) has a minimal solution u_λ, which is regular and the map λ → u_λ is increasing. Moreover, u_λ is the unique stable solution of (1.4).
- 2. For $\lambda = \lambda^*$, the problem (1.4) admits a unique weak solution u^* , $u^* = \lim_{\lambda \longrightarrow \lambda^*} u_{\lambda}$, called the extremal solution.
- 3. For $\lambda > \lambda^*$, (1.4) admits no weak solution.

Theorem 1.4 applies to the existence of stable solution for all $\lambda < \lambda^*$. For the case $\lambda = \lambda^*$, we prove the following result.

Theorem 1.5. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be a smooth bounded domain and assume that f satisfies condition (1.3). Let $v \in H_0^1(\Omega)$ be a singular weak solution of (1.4). Then, the following facts are equivalent: (i)

$$\int_{\Omega} |\nabla \varphi|^2 + c \int_{\Omega} \varphi^2 dx \ge \lambda \int_{\Omega} f'(v) \varphi^2 dx \quad \forall \varphi \in C_0^1(\Omega)$$
(1.9)

(*ii*) $v = u^*$ and $\lambda = \lambda^*$.

As consequence if the problem (1.4) has a singular solution that is "stable" then necessary $\lambda = \lambda^*$ the extremal value for which the problem has solution.

In the case $c \equiv 0$, we prove the following result which assert that u^* is regular for $n \leq 9$.

Theorem 1.6. Assume that $\Omega = B_1$, $n \ge 2$, and that $f(u) = e^u$. Then $u^* \in L^{\infty}(\Omega)$, for all $n \le 9$ and so it is a regular solution.

For $n \ge 10$ and c = 0, u^* is a singular solution of (1.4) [4,5] but for $c \ne 0$ the problem still an open one and this is due to the missing of an adequate Hardy ineguality.

2. Technical Lemmas

In all this section, we suppose that Ω is a smooth bounded subset of \mathbb{R}^n , $n \ge 2$. For proving our first theorem, we need to prove auxiliary results.

Lemma 2.1. Given $g \in L^1(\Omega)$, there exists a unique $v \in L^1(\Omega)$ which is a weak solution of

$$\begin{cases} -\Delta v + cv = g & in \quad \Omega\\ v = 0 & on \quad \partial\Omega, \end{cases}$$
(2.1)

in the sense that

$$\int_{\Omega} v(-\Delta\zeta + c\zeta) = \int_{\Omega} g\zeta, \quad \text{for all} \quad \zeta \in C^2(\overline{\Omega}) \text{ and } \zeta = 0 \text{ on } \partial\Omega.$$
(2.2)

Moreover

$$\|v\|_{L^1(\Omega)} \le c_0 \|g\|_{L^1(\Omega,\,\delta(x)dx)} \tag{2.3}$$

for some constant $c_0 > 0$ independent of g. In addition, if $g \ge 0$ in Ω , then $v \ge 0$ in Ω .

Proof. The uniqueness. Let v_1 and v_2 be two solutions of problem (2.1), then $v = v_1 - v_2$ satisfies

$$\int_{\Omega} v(-\Delta\zeta + c\zeta) = 0, \quad \forall \zeta \in C^2(\overline{\Omega}) \text{ and } \zeta = 0 \text{ on } \partial\Omega.$$
(2.4)

Given any $\varphi \in \mathcal{D}(\Omega)$, let ζ be solution of

$$\begin{cases} -\Delta\zeta + c\zeta &= \varphi \quad \text{in} \quad \Omega\\ \zeta &= 0 \quad \text{on} \quad \partial\Omega, \end{cases}$$
(2.5)

 $\zeta \in C^2(\overline{\Omega})$ and $\zeta = 0$ on $\partial \Omega$. It follows that

$$\int_{\Omega} v\varphi = \int_{\Omega} v(-\Delta\zeta + c\zeta) = 0$$

Since φ is arbitrary, we deduce that v = 0.

The existence. We assume that $g \ge 0$, if not we write $g = g^+ - g^-$.

Given an integer $k \ge 0$, and set $g_k(x) = \min\{g(x), k\}$. By the monotone convergence theorem, we have $g_k \xrightarrow[k \to \infty]{} g$ in $L^1(\Omega)$. Since g_k is in $L^2(\Omega)$, the following problem

$$\begin{cases}
-\Delta v_k + cv_k &= g_k \quad \text{in} \quad \Omega \\
v_k &= 0 \quad \text{on} \quad \partial\Omega \\
v_k &> 0 \quad \text{in} \quad \Omega,
\end{cases}$$
(2.6)

admits a unique solution v_k .

The sequence (g_k) is nondecreasing, then (v_k) is nondecreasing sequence also. Let k > l > 0 two integers and ζ_0 the solution of

$$\begin{cases} -\Delta\zeta_0 + c\zeta_0 = 1 & \text{in} & \Omega\\ \zeta_0 = 0 & \text{on} & \partial\Omega, \end{cases}$$
(2.7)

we have

$$\int_{\Omega} (v_k - v_l) = \int_{\Omega} (g_k - g_l) \zeta_0,$$

hence

$$\left|\int_{\Omega} (v_k - v_l)\right| = \int_{\Omega} |v_k - v_l| \le C \int_{\Omega} |g_k - g_l| dx.$$

Since $g_k \xrightarrow[k \to \infty]{} g$ in $L^1(\Omega)$, the sequence (v_k) is a Cauchy sequence in the Banach space $L^1(\Omega)$ then (v_k) converges in $L^1(\Omega)$, denote by v its limit. Passing to the limit in (2.6), we obtain (2.2). So v is a weak solution of the equation (2.1). Finally, taking $\zeta = \zeta_0$ in (2.2), we obtain (2.3).

Lemma 2.2. Suppose that f is a function satisfies (1.3) and let \overline{u} be a weak super solution of (1.4), then there exists a weak solution u of the problem (1.4) with $0 \le u \le \overline{u}$.

Proof. We use a standard monotone iteration argument. Let $u_1 = 0$ and let $(u_n)_n$ the sequences defined by:

$$\begin{cases} -\Delta u_n + cu_n = \lambda f(u_{n-1}) & \text{in} \quad \Omega \\ u_n = 0 & \text{on} \quad \partial\Omega \end{cases}$$
(2.8)

By maximum principle we have $u_1 = 0 \le u_2 \le ... \le u_n \le u_{n+1} \le ... \le \overline{u}$. Since the sequence u_n is nondecreasing, it converges to a limit $u \in L^1(\Omega)$, which is clearly a weak solution of (1.4). Moreover u is independent of the choice of the super solution \overline{u} .

Next, let φ_1 the positive normalized eigenfunction associated to the first eigenvalue of $-\Delta + c$ in Ω with Dirichlet boundary condition, λ_1 , that is

$$\begin{cases} -\Delta \varphi_1 + c\varphi_1 &= \lambda_1 \varphi_1 \quad \text{in} \quad \Omega\\ \varphi_1 &= 0 \quad \text{on} \quad \partial \Omega\\ ||\varphi_1||_2 &= 1, \end{cases}$$
(2.9)

and let $r_0 = \inf_{t>0} \frac{f(t)}{t}$, we have the following result.

Lemma 2.3. Let f be a function satisfying (1.3), problem (1.4) has no solution for any $\lambda > \frac{\lambda_1}{r_0}$ but has solution provided λ is positive and small enough.

Proof. Let $\xi \in C^2(\overline{\Omega})$ satisfying $-\Delta \xi + c\xi = 1$ in Ω and $\xi = 0$ on $\partial \Omega$. For $\lambda \leq \frac{1}{f(||\xi||_{\infty})}$, ξ is a super solution of (1.4), so from Lemma 2, equation (1.4) has a weak solution u such that $0 \leq u \leq \xi$. Also u is regular then classical solution of (1.4) and from the maximum principle, we have u > 0 in Ω . Now, if (1.4) has a solution u for some $\lambda > 0$, take φ_1 a test function, we have

$$\int_{\Omega} (-\Delta \varphi_1 + c\varphi_1) u = \lambda \int_{\Omega} f(u) \varphi_1$$
$$\int_{\Omega} \lambda_1 \varphi_1 u = \lambda \int_{\Omega} f(u) \varphi_1$$
$$\int_{\Omega} \lambda_1 \varphi_1 u \ge r_0 \lambda \int_{\Omega} \varphi_1 u$$

since $\varphi_1 > 0$ and u > 0 we have $\lambda \leq \frac{\lambda_1}{r_0}$, this complete the proof.

We define now

$$\Lambda = \{\lambda > 0 \text{ such that problem } (P_{\lambda,c}) \text{ has } a \text{ solution}\},\$$

and

$$\lambda^* = \sup \Lambda.$$

From Lemma 2.3 we know that $\lambda^* < \infty$ and we have the following result.

Lemma 2.4. Let f a reaction term satisfying (1.3), if the problem $(P_{\lambda,c})$ has a solution for some λ . Then

- (i) There exists a minimal solution denoted by u_{λ} for $(P_{\lambda,c})$.
- (ii) For any $\lambda' \in (0, \lambda)$, the problem $(P_{\lambda',c})$ has a solution.
- *Proof.* (i) Let v be a solution of $(P_{\lambda,c})$, by lemma 2 and since v is regular solution, there exist a solution u such that $0 < u \le v$ and by construction u is independent of the choice of v (see the proof of Lemma 2). We denote by u_{λ} this solution. u_{λ} is a minimal solution.
 - (ii) For any $\lambda' \in (0, \lambda)$, u_{λ} is a super solution of $(P_{\lambda',c})$. By Lemma 2, $(P_{\lambda',c})$ has a weak solution $u_{\lambda'}$ such that $0 \le u_{\lambda'} \le u_{\lambda}$ and so $u_{\lambda'}$ is a regular solution for $(P_{\lambda',c})$.

3. Proof of Theorem 1.4

(i) By lemma 2.3 and lemma 2.4, Λ is an interval. Then, by definition of λ^* , if $\lambda \in (0, \lambda^*)$, the problem (1.4) has a minimal solution u_{λ} and the map $\lambda \mapsto u_{\lambda}$ is increasing.

To prove that u_{λ} is stable, we suppose that the first eigenvalue $\eta_1 = \eta_1(c, \lambda, u_{\lambda})$ of the operator $-\Delta + c - \lambda f'(u_{\lambda})$ is negative. We define $\psi \in H_0^1(\Omega)$ a positive eigenfunction associate to η_1 with Dirichlet boundary condition.

Consider $u^{\varepsilon} = u_{\lambda} - \varepsilon \psi$, $\varepsilon > 0$, so

$$-\Delta u^{\varepsilon} + cu^{\varepsilon} - \lambda f(u^{\varepsilon}) = -\varepsilon \eta_1 \psi - \lambda [f(u_{\lambda} - \varepsilon \psi) - f(u_{\lambda}) + \varepsilon f'(u_{\lambda})\psi]$$

= $-\varepsilon \psi [-\eta_1 + \theta_{\varepsilon}(1)].$

Since $\eta_1 < 0$, then $-\Delta u^{\varepsilon} + cu^{\varepsilon} - \lambda f(u^{\varepsilon}) \ge 0$ in Ω for ε small enough, and by Hopf's Lemma, $u^{\varepsilon} \ge 0$, so u^{ε} is a super solution of (1.4) for ε small enough, then from Lemma 2 we can get a solution u of (1.4) such that $u \le u^{\varepsilon}$ in Ω . So we have $0 \le u \le u^{\varepsilon} < u_{\lambda}$ and this contradicts the minimality of u_{λ} and hence $\eta_1 \ge 0$.

To prove that u_{λ} is the unique stable solution of (1.4), we suppose that there exists another stable solution $v \neq u_{\lambda}$ and we denote $\varphi = v - u_{\lambda}$.

We get from the stability properties

$$\lambda \int_{\Omega} f'(v)\varphi^{2} \leq -\int_{\Omega} \varphi \Delta \varphi + c \int_{\Omega} \varphi^{2}$$

$$\leq \int_{\Omega} (-\Delta \varphi + c\varphi)\varphi$$

$$\leq \int_{\Omega} \lambda (f(v) - f(u_{\lambda})\varphi.$$

(3.1)

So

$$\int_{\Omega} [f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda})]\varphi \ge 0.$$
(3.2)

We know that $\varphi > 0$ by maximum principle and by convexity of f, we have

$$f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) \le 0.$$
 (3.3)

From (3.2) and (3.3), we have

$$f(v) - f(u_{\lambda}) = f'(v)(v - u_{\lambda})$$

this means that f is affine over $[u_{\lambda}(x), v(x)]$ thus f(x) = ax + b in $[0, \max_{\Omega} v]$ and we get two solutions u_{λ} and v of

$$\begin{cases} -\Delta w + cw = \lambda(aw + b) & \text{in } \Omega\\ w = 0 & \text{on } \partial\Omega. \end{cases}$$

This implies

$$0 = \int_{\Omega} (u_{\lambda} \Delta v - v \Delta u_{\lambda}) dx = \lambda b \int_{\Omega} (v - u_{\lambda}) dx = \lambda b \int_{\Omega} \varphi(x) dx, \qquad (3.4)$$

which implies b = f(0) = 0, this is impossible since f(0) > 0. So u_{λ} is the unique stable solution of $(P_{\lambda,c})$. (ii) We denote by u^* the limit $u^* = \lim_{\lambda \longrightarrow \lambda^*} u_{\lambda}$ and in this step We use a technical proceeding inspired from [3].

For any $\lambda \in [\frac{\lambda^*}{2}, \lambda^*)$, taking φ_1 defined by (2.9) as a test function, we obtain

$$\lambda_{1} \int_{\Omega} u_{\lambda} \varphi_{1} = \int_{\Omega} (-\Delta \varphi_{1} + c\varphi_{1}) u_{\lambda}$$

$$= \int_{\Omega} (-\Delta u_{\lambda} + cu_{\lambda}) \varphi_{1}$$

$$= \lambda \int_{\Omega} f(u_{\lambda}) \varphi_{1}$$

$$\geq \frac{\lambda^{*}}{2} \int_{\Omega} f(u_{\lambda}) \varphi_{1}.$$
(3.5)

Since f is super linear, there exists $c_1 > 0$ such that $\lambda_1 t \leq \frac{\lambda^*}{4} f(t) + c_1$ in \mathbf{R}_+ . Using (3.5), we get

$$\frac{\lambda^*}{2} \int_{\Omega} \varphi_1 f(u_\lambda) dx - \frac{\lambda^*}{4} \int_{\Omega} \varphi_1 f(u_\lambda) dx
\leq \lambda_1 \int_{\Omega} \varphi_1 u_\lambda dx - \frac{\lambda^*}{4} \int_{\Omega} \varphi_1 u_\lambda dx
\leq \int_{\Omega} c_1 \varphi_1 dx \leq c_1.$$
(3.6)

So (3.6) yields

$$\int_{\Omega} f(u_{\lambda})\varphi_1 dx \le c_2. \tag{3.7}$$

Where $c_2 \ge 0$ is a constant. Let ζ_0 the function given by (2.7), we have

$$\int_{\Omega} u_{\lambda} dx = \int_{\Omega} u_{\lambda} \cdot 1 dx = \int_{\Omega} u_{\lambda} (-\Delta \zeta_0 + c\zeta_0) dx$$
$$= \int_{\Omega} (-\Delta u_{\lambda} + cu_{\lambda}) \zeta_0 dx$$
$$= \lambda \int_{\Omega} f(u_{\lambda}) \zeta_0 dx.$$

Using the Hopf's Lemma we deduce that $\zeta_0 \leq c_3 \varphi_1$ and (3.7) implies

$$\int_{\Omega} u_{\lambda} dx \le c_3 \int_{\Omega} \varphi_1 f(u_{\lambda}) \le c_4.$$
(3.8)

By (3.7) and (3.8), we deduce by passing to the limit that $u^* \in L^1(\Omega)$ and $f(u^*) \in L^1(\Omega)$ and u^* satisfy $(P_{\lambda^*,c})$ and hence u^* is a weak solution of $(P_{\lambda^*,c})$.

Now to prove the uniqueness of u^* , we can use the following result due to Martel [7] and the proof is not changed in our case, so we omit it.

Proposition 3.1. [7] Let $v \in L^1(\Omega)$ be a weak super solution of equation $(P_{\lambda^*,c})$, then $v = u^*$.

4. Proof of Theorem 1.5

Recall that the extremal solution u^* is the increasing limit of classical stable solutions u_{λ} and we have

$$\lambda \int_{\Omega} f'(u_{\lambda}) \varphi^2 dx \leq \int_{\Omega} |\nabla \varphi|^2 dx + c \int_{\Omega} \varphi^2 dx, \quad \forall \varphi \in C_0^1(\Omega)$$

and so by passing to the limit, we obtain

$$\lambda \int_{\Omega} f'(u^*) \varphi^2 dx \le \int_{\Omega} |\nabla \varphi|^2 dx + c \int_{\Omega} \varphi^2 dx, \quad \forall \varphi \in C_0^1(\Omega).$$

Conversely, if we have a singular solution v satisfying (1.9) for some $\lambda > 0$ and we should prove that $\lambda = \lambda^*$ and this solution is the extremal one u^* . We argue by contradiction, suppose that $\lambda < \lambda^*$. We take $\varphi = v - u_{\lambda}$ as test function in (1.9) where u_{λ} is the minimal solution. Exploiting the boundary conditions, we get

$$\begin{split} \lambda \int_{\Omega} (v - u_{\lambda}) (f(v) - f(u_{\lambda})) dx &= \int_{\Omega} (v - u_{\lambda}) (-\Delta (v - u_{\lambda}) + c(v - u_{\lambda})) dx \\ &= \int_{\Omega} |\nabla (v - u_{\lambda})|^2 + \int_{\Omega} c(v - u_{\lambda})^2 \\ &\geq \lambda \int_{\Omega} f'(v) (v - u_{\lambda})^2 dx. \end{split}$$

Then, by convexity of the function f, we have $v = u_{\lambda}$. But u_{λ} is regular, and this contradicts the fact that v is singular. So $\lambda = \lambda^*$ and by uniqueness of the solutions of problem $(P_{\lambda^*,c})$, $v = u^*$.

5. Proof of Theorem 1.6

For every $\lambda \in (0, \lambda^*)$, we know that the minimal solution u_{λ} satisfies the equation

$$\int_{\Omega} \nabla u_{\lambda} \nabla v dx + c \int_{\Omega} u_{\lambda} v dx = \lambda \int_{\Omega} f(u_{\lambda}) v dx = \lambda \int_{\Omega} e^{u_{\lambda}} v dx;$$
(5.1)

for all $v \in H^1(\Omega)$.

Also u_{λ} satisfies the stability condition

$$\int_{\Omega} |\nabla w|^2 dx + c \int_{\Omega} w^2 dx \ge \lambda \int_{\Omega} f'(u_{\lambda}) w^2 dx = \lambda \int_{\Omega} e_{\lambda}^u w^2 dx,$$
(5.2)

for all $w \in C_0^1(\Omega)$.

To prove the regularity of u^* for $n \leq 9$, we generalise the idea of [2].

In (5.1) we take $v = e^{(q-1)u_{\lambda}}$ as a test function and $w = e^{\frac{q-1}{2}u_{\lambda}}$, where q > 1, we obtain

$$(q-1)\int_{\Omega} e^{(q-1)u_{\lambda}} |\nabla u_{\lambda}|^2 dx + c \int_{\Omega} e^{(q-1)u_{\lambda}} dx = \lambda \int_{\Omega} e^{qu_{\lambda}} dx$$
(5.3)

and

$$\frac{(q-1)^2}{4} \int_{\Omega} |\nabla u_{\lambda}|^2 e^{(q-1)u_{\lambda}} dx + c \int_{\Omega} e^{(q-1)u_{\lambda}} dx \ge \lambda \int_{\Omega} e^{qu_{\lambda}} dx \tag{5.4}$$

By multiplying (5.4) with $\frac{4}{q-1}$ and putting together these inequalities, we obtain

$$\frac{4c}{q-1}\int_{\Omega}e^{(q-1)u_{\lambda}}dx - c\int_{\Omega}u_{\lambda}e^{(q-1)u_{\lambda}}dx \ge \lambda(\frac{4}{q-1}-1)\int_{\Omega}e^{qu_{\lambda}}dx$$

Now assume that 1 < q < 5, so that $\frac{4}{q-1} > 1$. As $\lambda \longrightarrow \lambda^*$, the left hand side cannot blow-up since the leading term is $u_{\lambda}e^{(q-1)u_{\lambda}}$ and the right hand side remains bounded, this means that $e^{u_{\lambda}}$ is uniformly bounded in $L^q(\Omega)$, since u_{λ} solves the equation, by elliptic regularity this means that u_{λ} is uniformly bounded in $W^{2,q}(\Omega)$ for all 1 < q < 5. Since $n \leq 9$, by Sobolev embedding, u_{λ} is uniformly bounded in $L^{\infty}(\Omega)$ so that $u^* \in L^{\infty}(\Omega)$.

References

- 1. I. Abid, M. Dammak and I. Douchich, Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations, Nonl. Funct. Anal. and Appl, 21 (2016), 15-31.
- E Berchio, F. Gazzola, D. Pierotti, Gelfand type elliptic problems under Steklov boundary problem, Ann. I. H. Poincaré -AN. Vol. 27 (2010), 315-335.
- 3. H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Diff. Equa. 1 (1996), 73-90.
- H. Brezis, J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469.
- 5. M. G. Crandall, P. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal. 58 (1975), 207-218.
- 6. H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations (Springer-Verlag), Berlin, 2003.
- 7. Y. Martel Uniqueness of weak extremal solutions of nonlinear elliptic problems Houston J. Math. 23 (1997), 161-168.
- P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal. 26 (1996), 857-875.

Makkia Dammak, Department of Mathematics, College of Science, Taibah University Medinah, SA. E-mail address: makkia.dammak@gmail.com

and

Majdi El Ghord, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus, 2092 Tunisia. E-mail address: ghord.majdi@gmail.com

and

Saber kharrati,
Mathematics Department, Faculty of Arts and Science in Qilwah,
Al Baha University, Baha, KSA
^(b) University of Tunis El Manar, Faculty of Sciences of Tunis,
University Campus, 2092 Tunisia.
E-mail address: kharratisabeur@yahoo.fr