On the Extremal Solutions of Superlinear Helmholtz Problems

Makkia Dammak, Majdi El Ghord and Saber Kharrati

Abstract

In this note, we deal with the Helmholtz equation $-\Delta u+c u=\lambda f(u)$ with Dirichlet boundary condition in a smooth bounded domain Ω of $\mathbb{R}^{n}, n>1$. The nonlinearity is superlinear that is $\lim _{t \longrightarrow \infty} \frac{f(t)}{t}=$ ∞ and f is a positive, convexe and C^{1} function defined on $[0, \infty)$. We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ^{*} such that the problem does not have solution for $\lambda>\lambda^{*}$ even in the weak sense. We also prove the existence of a type of stable solutions u^{*} called extremal solutions. We prove that for $f(t)=e^{t}, \Omega=B_{1}$ and $n \leq 9, u^{*}$ is regular.

Key Words: Extremal solution, Stable minimal solution, Regularity, Super-nonlinearity.

Contents

1 Introduction

2 Technical Lemmas 3
3 Proof of Theorem $1.4 \quad 5$
4 Proof of Theorem $1.5 \quad 7$
5 Proof of Theorem $1.6 \quad 7$

1. Introduction

Let Ω be a bounded smooth domain in $\mathbb{R}^{n}, n \geq 2, c>0$ a positive real parameter and $g: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a continuous function. The semilinear elliptic equation

$$
\left\{\begin{array}{rlrl}
-\Delta u+c u & =g(x, u) & & \text { in } \tag{1.1}\\
u & >0 & & \text { in } \\
u & =0 & & \text { on } \\
u & \partial \Omega
\end{array}\right.
$$

has by now been widely investigated under various assumption on the nonlinearity g.
In this paper, we will suppose that

$$
\begin{equation*}
g(x, t)=\lambda f(t) \tag{1.2}
\end{equation*}
$$

where f is C^{1}, positive, nondecreasing and convex function on $[0,+\infty)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\infty \tag{1.3}
\end{equation*}
$$

The condition (1.3) means that f is a superlinear function and the choice of the function g is motivated by the role of bifurcation problem in applied mathematics and which has been synthesized by Kielhöfer [6]. We say that a problem has a bifurcation if any change of its parameters cause a sudden change of regime and this is occur in nonlinear physics where the phenominon usually depends on a number of parameters, that control the evolution of the system.
If $g(x, t)=\lambda f(t)$ and f is asymptotically linear that is $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=a<\infty$,
the problem

$$
\left(P_{\lambda, c}\right) \quad\left\{\begin{align*}
-\Delta u+c u & =\lambda f(t) & \text { in } & \Omega \tag{1.4}\\
u & >0 & & \text { in }
\end{align*} \Omega\right.
$$

[^0]was treated by Dammak et al. in [1] where the hypothese $f(0)>0$ was fondamental. The authors prove the existence of a critical value λ^{*} such that for $\lambda<\lambda^{*}$, the problem (1.4) has at least one solution, for $\lambda>\lambda^{*}$ the problem (1.4) has no solution and for $\lambda=\lambda^{*}$, the existence of a solution, named extremal solution depends of the signe of $\lim _{t \longrightarrow \infty}(f(t)-a t)$.

If $c \equiv 0$ and $g(x, t)=\lambda f(t)$, the problem (1.4) has been treated by many authors. For the superlinear case, we can cite [3] and for the asymptotically linear and $f(0)>0$, we can see [8] and their references.
In this work, we take the following definition of a weak solution.
Definition 1.1. A weak solution of (1.4) is a function $u \in L^{1}(\Omega), u \geq 0$ such that $f(u) \in L^{1}(\Omega)$, and

$$
\begin{equation*}
-\int_{\Omega} u \Delta \zeta+c \int_{\Omega} \zeta u=\lambda \int_{\Omega} f(u) \zeta \tag{1.5}
\end{equation*}
$$

for all $\zeta \in C^{2}(\bar{\Omega})$ and $\zeta=0$ on $\partial \Omega$.
Moreover, we say that u is weak super solution of (1.4) if the " $=$ " is replaced by " " for all functions $\zeta \in C^{2}(\bar{\Omega})$, $\zeta=0$ on $\partial \Omega$ and $\zeta \geq 0$.

If a weak solution $u \in L^{\infty}(\Omega)$, we say that u is regular while if $u \notin L^{\infty}(\Omega)$, we say that u is singular. We say that a solution u of (1.4) is minimal if $u \leq v$ in Ω for any solution v of problem (1.4).

Remark 1.2. If u is a regular solution of (1.4), then by standard bootstrap argument and elliptic regularity, u is a classical solution.

For regular solution, we will study the stability properties. Let

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+c u^{2}\right) d x-\lambda \int_{\Omega} F(u) d x \tag{1.6}
\end{equation*}
$$

for $u \in H_{0}^{1}(\Omega)$ and where

$$
\begin{equation*}
F(u)=\int_{0}^{u} f(s) d s \tag{1.7}
\end{equation*}
$$

u is a solution of (1.4) if it is a critical point of the fonction I. The second variation of the energy is given by

$$
\begin{equation*}
Q(\varphi)=\int_{\Omega}|\nabla \varphi|^{2}+\int_{\Omega}\left(c-f^{\prime}(u)\right) \varphi^{2} \tag{1.8}
\end{equation*}
$$

for all $\varphi \in H_{0}^{1}(\Omega)$.
Definition 1.3. We say that a regular solution u of (1.4) is stable if the second variation of energy Q, satisfies $Q(\varphi) \geq 0$ for all $\varphi \in H_{0}^{1}(\Omega)$. Otherwise, we say that u is unstable.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$ a smooth bounded domain and assume that f is a function satisfying (1.3). Then there exists a critical value $\lambda^{*} \in(0, \infty)$ such that

1. For any $\lambda \in\left(0, \lambda^{*}\right)$, problem (1.4) has a minimal solution u_{λ}, which is regular and the map $\lambda \longmapsto u_{\lambda}$ is increasing.
Moreover, u_{λ} is the unique stable solution of (1.4).
2. For $\lambda=\lambda^{*}$, the problem (1.4) admits a unique weak solution $u^{*}, u^{*}=\lim _{\lambda \longrightarrow \lambda^{*}} u_{\lambda}$, called the extremal solution.
3. For $\lambda>\lambda^{*}$, (1.4) admits no weak solution.

Theorem 1.4 applies to the existence of stable solution for all $\lambda<\lambda^{*}$. For the case $\lambda=\lambda^{*}$, we prove the following result.

Theorem 1.5. Let $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ be a smooth bounded domain and assume that f satisfies condition (1.3). Let $v \in H_{0}^{1}(\Omega)$ be a singular weak solution of (1.4). Then, the following facts are equivalent: (i)

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2}+c \int_{\Omega} \varphi^{2} d x \geq \lambda \int_{\Omega} f^{\prime}(v) \varphi^{2} d x \quad \forall \varphi \in C_{0}^{1}(\Omega) \tag{1.9}
\end{equation*}
$$

(ii) $v=u^{*}$ and $\lambda=\lambda^{*}$.

As consequence if the problem (1.4) has a singular solution that is "stable" then necessary $\lambda=\lambda^{*}$ the extremal value for which the problem has solution.
In the case $c \equiv 0$, we prove the following result which assert that u^{*} is regular for $n \leq 9$.
Theorem 1.6. Assume that $\Omega=B_{1}, n \geq 2$, and that $f(u)=e^{u}$. Then $u^{*} \in L^{\infty}(\Omega)$, for all $n \leq 9$ and so it is a regular solution.

For $n \geq 10$ and $c=0, u^{*}$ is a singular solution of (1.4) [4,5] but for $c \neq 0$ the problem still an open one and this is due to the missing of an adequate Hardy ineguality.

2. Technical Lemmas

In all this section, we suppose that Ω is a smooth bounded subset of $\mathbb{R}^{n}, n \geq 2$. For proving our first theorem, we need to prove auxiliary results.

Lemma 2.1. Given $g \in L^{1}(\Omega)$, there exists a unique $v \in L^{1}(\Omega)$ which is a weak solution of

$$
\left\{\begin{array}{rllll}
-\Delta v+c v & = & g & \text { in } & \Omega \tag{2.1}\\
v & = & 0 & \text { on } & \partial \Omega
\end{array}\right.
$$

in the sense that

$$
\begin{equation*}
\int_{\Omega} v(-\Delta \zeta+c \zeta)=\int_{\Omega} g \zeta, \quad \text { for } \quad \text { all } \quad \zeta \in C^{2}(\bar{\Omega}) \text { and } \zeta=0 \text { on } \partial \Omega \tag{2.2}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\|v\|_{L^{1}(\Omega)} \leq c_{0}\|g\|_{L^{1}(\Omega, \delta(x) d x)} \tag{2.3}
\end{equation*}
$$

for some constant $c_{0}>0$ independent of g. In addition, if $g \geq 0$ in Ω, then $v \geq 0$ in Ω.
Proof. The uniqueness. Let v_{1} and v_{2} be two solutions of problem (2.1), then $v=v_{1}-v_{2}$ satisfies

$$
\begin{equation*}
\int_{\Omega} v(-\Delta \zeta+c \zeta)=0, \quad \forall \zeta \in C^{2}(\bar{\Omega}) \text { and } \zeta=0 \text { on } \partial \Omega \tag{2.4}
\end{equation*}
$$

Given any $\varphi \in \mathcal{D}(\Omega)$, let ζ be solution of

$$
\left\{\begin{array}{rllll}
-\Delta \zeta+c \zeta & = & \varphi & \text { in } & \Omega \tag{2.5}\\
\zeta & & 0 & \text { on } & \partial \Omega
\end{array}\right.
$$

$\zeta \in C^{2}(\bar{\Omega})$ and $\zeta=0$ on $\partial \Omega$. It follows that

$$
\int_{\Omega} v \varphi=\int_{\Omega} v(-\Delta \zeta+c \zeta)=0
$$

Since φ is arbitrary, we deduce that $v=0$.
The existence. We assume that $g \geq 0$, if not we write $g=g^{+}-g^{-}$.
Given an integer $k \geq 0$, and set $g_{k}(x)=\min \{g(x), k\}$. By the monotone convergence theorem, we have $g_{k} \xrightarrow[k \longrightarrow \infty]{\longrightarrow} g$ in $L^{1}(\Omega)$. Since g_{k} is in $L^{2}(\Omega)$, the following problem

$$
\left\{\begin{array}{rllll}
-\Delta v_{k}+c v_{k} & = & g_{k} & \text { in } & \Omega \tag{2.6}\\
v_{k} & = & 0 & \text { on } & \partial \Omega \\
v_{k} & > & 0 & \text { in } & \Omega
\end{array}\right.
$$

admits a unique solution v_{k}.
The sequence $\left(g_{k}\right)$ is nondecreasing, then $\left(v_{k}\right)$ is nondecreasing sequence also. Let $k>l>0$ two integers and ζ_{0} the solution of

$$
\left\{\begin{array}{rllll}
-\Delta \zeta_{0}+c \zeta_{0} & = & 1 & \text { in } & \Omega \tag{2.7}\\
\zeta_{0} & = & 0 & \text { on } & \partial \Omega
\end{array}\right.
$$

we have

$$
\int_{\Omega}\left(v_{k}-v_{l}\right)=\int_{\Omega}\left(g_{k}-g_{l}\right) \zeta_{0}
$$

hence

$$
\left|\int_{\Omega}\left(v_{k}-v_{l}\right)\right|=\int_{\Omega}\left|v_{k}-v_{l}\right| \leq C \int_{\Omega}\left|g_{k}-g_{l}\right| d x
$$

Since $g_{k} \xrightarrow[k \longrightarrow \infty]{ } g$ in $L^{1}(\Omega)$, the sequence $\left(v_{k}\right)$ is a Cauchy sequence in the Banach space $L^{1}(\Omega)$ then $\left(v_{k}\right)$ converges in $L^{1}(\Omega)$, denote by v its limit. Passing to the limit in (2.6), we oblain (2.2). So v is a weak solution of the equation (2.1). Finally, taking $\zeta=\zeta_{0}$ in (2.2), we obtaine (2.3).

Lemma 2.2. Suppose that f is a function satisfies (1.3) and let \bar{u} be a weak super solution of (1.4), then there exists a weak solution u of the problem (1.4) with $0 \leq u \leq \bar{u}$.

Proof. We use a standard monotone iteration argument. Let $u_{1}=0$ and let $\left(u_{n}\right)_{n}$ the sequences defined by:

$$
\left\{\begin{array}{rlll}
-\Delta u_{n}+c u_{n} & =\lambda f\left(u_{n-1}\right) & & \text { in } \tag{2.8}\\
u_{n} & =0 & & \Omega \\
\text { on } & \partial \Omega
\end{array}\right.
$$

By maximum principle we have $u_{1}=0 \leq u_{2} \leq \ldots \leq u_{n} \leq u_{n+1} \leq \ldots \leq \bar{u}$. Since the sequence u_{n} is nondecreasing, it converges to a limit $u \in L^{1}(\Omega)$, which is clearly a weak solution of (1.4). Moreover u is independent of the choice of the super solution \bar{u}.

Next, let φ_{1} the positive normalized eigenfunction associated to the first eigenvalue of $-\Delta+c$ in Ω with Dirichlet boundary condition, λ_{1}, that is

$$
\left\{\begin{array}{rllll}
-\Delta \varphi_{1}+c \varphi_{1} & & \lambda_{1} \varphi_{1} & \text { in } & \Omega \tag{2.9}\\
\varphi_{1} & =0 & & \text { on } & \partial \Omega \\
\left\|\varphi_{1}\right\|_{2} & =1, & &
\end{array}\right.
$$

and let $r_{0}=\inf _{t>0} \frac{f(t)}{t}$, we have the following result.
Lemma 2.3. Let f be a function satisfying (1.3), problem (1.4) has no solution for any $\lambda>\frac{\lambda_{1}}{r_{0}}$ but has solution provided λ is positive and small enough.
Proof. Let $\xi \in C^{2}(\bar{\Omega})$ satisfying $-\Delta \xi+c \xi=1$ in Ω and $\xi=0$ on $\partial \Omega$. For $\lambda \leq \frac{1}{f\left(\|\xi\|_{\infty}\right)}$, ξ is a super solution of (1.4), so from Lemma 2, equation (1.4) has a weak solution u such that $0 \leq u \leq \xi$. Also u is regular then classical solution of (1.4) and from the maximum principle, we have $u>0$ in Ω.
Now, if (1.4) has a solution u for some $\lambda>0$, take φ_{1} a test function, we have

$$
\begin{gathered}
\int_{\Omega}\left(-\Delta \varphi_{1}+c \varphi_{1}\right) u=\lambda \int_{\Omega} f(u) \varphi_{1} \\
\int_{\Omega} \lambda_{1} \varphi_{1} u=\lambda \int_{\Omega} f(u) \varphi_{1} \\
\int_{\Omega} \lambda_{1} \varphi_{1} u \geq r_{0} \lambda \int_{\Omega} \varphi_{1} u
\end{gathered}
$$

since $\varphi_{1}>0$ and $u>0$ we have $\lambda \leq \frac{\lambda_{1}}{r_{0}}$, this complete the proof.

We define now

$$
\Lambda=\left\{\lambda>0 \quad \text { such that problem }\left(P_{\lambda, c}\right) \text { has } a \text { solution }\right\}
$$

and

$$
\lambda^{*}=\sup \Lambda
$$

From Lemma 2.3 we know that $\lambda^{*}<\infty$ and we have the following result.
Lemma 2.4. Let f a reaction term satisfying (1.3), if the problem $\left(P_{\lambda, c}\right)$ has a solution for some λ. Then
(i) There exists a minimal solution denoted by u_{λ} for $\left(P_{\lambda, c}\right)$.
(ii) For any $\lambda^{\prime} \in(0, \lambda)$, the problem $\left(P_{\lambda^{\prime}, c}\right)$ has a solution.

Proof. (i) Let v be a solution of $\left(P_{\lambda, c}\right)$, by lemma 2 and since v is regular solution, there exist a solution u such that $0<u \leq v$ and by construction u is independent of the choice of v (see the proof of Lemma 2). We denote by u_{λ} this solution. u_{λ} is a minimal solution.
(ii) For any $\lambda^{\prime} \in(0, \lambda), u_{\lambda}$ is a super solution of $\left(P_{\lambda^{\prime}, c}\right)$. By Lemma 2 , $\left(P_{\lambda^{\prime}, c}\right)$ has a weak solution $u_{\lambda^{\prime}}$ such that $0 \leq u_{\lambda^{\prime}} \leq u_{\lambda}$ and so $u_{\lambda^{\prime}}$ is a regular solution for $\left(P_{\lambda^{\prime}, c}\right)$.

3. Proof of Theorem 1.4

(i) By lemma 2.3 and lemma 2.4, Λ is an interval. Then, by definition of λ^{*}, if $\lambda \in\left(0, \lambda^{*}\right)$, the problem (1.4) has a minimal solution u_{λ} and the map $\lambda \longmapsto u_{\lambda}$ is increasing.

To prove that u_{λ} is stable, we suppose that the first eigenvalue $\eta_{1}=\eta_{1}\left(c, \lambda, u_{\lambda}\right)$ of the operator $-\Delta+$ $c-\lambda f^{\prime}\left(u_{\lambda}\right)$ is negative. We define $\psi \in H_{0}^{1}(\Omega)$ a positive eigenfunction associate to η_{1} with Dirichlet boundary condition.

Consider $u^{\varepsilon}=u_{\lambda}-\varepsilon \psi, \varepsilon>0$, so

$$
\begin{aligned}
-\Delta u^{\varepsilon}+c u^{\varepsilon}-\lambda f\left(u^{\varepsilon}\right) & =-\varepsilon \eta_{1} \psi-\lambda\left[f\left(u_{\lambda}-\varepsilon \psi\right)-f\left(u_{\lambda}\right)+\varepsilon f^{\prime}\left(u_{\lambda}\right) \psi\right] \\
& =-\varepsilon \psi\left[-\eta_{1}+\theta_{\varepsilon}(1)\right]
\end{aligned}
$$

Since $\eta_{1}<0$, then $-\Delta u^{\varepsilon}+c u^{\varepsilon}-\lambda f\left(u^{\varepsilon}\right) \geq 0$ in Ω for ε small enough, and by Hopf's Lemma, $u^{\varepsilon} \geq 0$, so u^{ε} is a super solution of (1.4) for ε small enough, then from Lemma 2 we can get a solution u of (1.4) such that $u \leq u^{\varepsilon}$ in Ω. So we have $0 \leq u \leq u^{\varepsilon}<u_{\lambda}$ and this contradicts the minimality of u_{λ} and hence $\eta_{1} \geq 0$.

To prove that u_{λ} is the unique stable solution of (1.4), we suppose that there exists another stable solution $v \neq u_{\lambda}$ and we denote $\varphi=v-u_{\lambda}$.
We get from the stability properties

$$
\begin{align*}
\lambda \int_{\Omega} f^{\prime}(v) \varphi^{2} & \leq-\int_{\Omega} \varphi \Delta \varphi+c \int_{\Omega} \varphi^{2} \\
& \leq \int_{\Omega}(-\Delta \varphi+c \varphi) \varphi \tag{3.1}\\
& \leq \int_{\Omega} \lambda\left(f(v)-f\left(u_{\lambda}\right) \varphi\right.
\end{align*}
$$

So

$$
\begin{equation*}
\int_{\Omega}\left[f(v)-f\left(u_{\lambda}\right)-f^{\prime}(v)\left(v-u_{\lambda}\right)\right] \varphi \geq 0 \tag{3.2}
\end{equation*}
$$

We know that $\varphi>0$ by maximum principle and by convexity of f, we have

$$
\begin{equation*}
f(v)-f\left(u_{\lambda}\right)-f^{\prime}(v)\left(v-u_{\lambda}\right) \leq 0 \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we have

$$
f(v)-f\left(u_{\lambda}\right)=f^{\prime}(v)\left(v-u_{\lambda}\right)
$$

this means that f is affine over $\left[u_{\lambda}(x), v(x)\right]$ thus $f(x)=a x+b$ in $\left[0, \max _{\Omega} v\right]$ and we get two solutions u_{λ} and v of

$$
\left\{\begin{array}{rcccc}
-\Delta w+c w & = & \lambda(a w+b) & \text { in } & \Omega \\
w= & 0 & \text { on } & \partial \Omega .
\end{array}\right.
$$

This implies

$$
\begin{equation*}
0=\int_{\Omega}\left(u_{\lambda} \Delta v-v \Delta u_{\lambda}\right) d x=\lambda b \int_{\Omega}\left(v-u_{\lambda}\right) d x=\lambda b \int_{\Omega} \varphi(x) d x \tag{3.4}
\end{equation*}
$$

which implies $b=f(0)=0$, this is impossible since $f(0)>0$. So u_{λ} is the unique stable solution of ($P_{\lambda, c}$).
(ii) We denote by u^{*} the limit $u^{*}=\lim _{\lambda \longrightarrow \lambda^{*}} u_{\lambda}$ and in this step We use a technical proceeding inspired from [3].

For any $\lambda \in\left[\frac{\lambda^{*}}{2}, \lambda^{*}\right)$, taking φ_{1} defined by (2.9) as a test function, we obtain

$$
\begin{align*}
\lambda_{1} \int_{\Omega} u_{\lambda} \varphi_{1} & =\int_{\Omega}\left(-\Delta \varphi_{1}+c \varphi_{1}\right) u_{\lambda} \\
& =\int_{\Omega}\left(-\Delta u_{\lambda}+c u_{\lambda}\right) \varphi_{1} \\
& =\lambda \int_{\Omega} f\left(u_{\lambda}\right) \varphi_{1} \tag{3.5}\\
& \geq \frac{\lambda^{*}}{2} \int_{\Omega} f\left(u_{\lambda}\right) \varphi_{1} .
\end{align*}
$$

Since f is super linear, there exists $c_{1}>0$ such that $\lambda_{1} t \leq \frac{\lambda^{*}}{4} f(t)+c_{1}$ in \mathbf{R}_{+}. Using (3.5), we get

$$
\begin{align*}
\frac{\lambda^{*}}{2} \int_{\Omega} \varphi_{1} f\left(u_{\lambda}\right) d x & -\frac{\lambda^{*}}{4} \int_{\Omega} \varphi_{1} f\left(u_{\lambda}\right) d x \\
& \leq \lambda_{1} \int_{\Omega} \varphi_{1} u_{\lambda} d x-\frac{\lambda^{*}}{4} \int_{\Omega} \varphi_{1} u_{\lambda} d x \tag{3.6}\\
& \leq \int_{\Omega} c_{1} \varphi_{1} d x \leq c_{1} .
\end{align*}
$$

So (3.6) yields

$$
\begin{equation*}
\int_{\Omega} f\left(u_{\lambda}\right) \varphi_{1} d x \leq c_{2} \tag{3.7}
\end{equation*}
$$

Where $c_{2} \geq 0$ is a constant. Let ζ_{0} the function given by (2.7), we have

$$
\begin{aligned}
\int_{\Omega} u_{\lambda} d x & =\int_{\Omega} u_{\lambda} \cdot 1 d x=\int_{\Omega} u_{\lambda}\left(-\Delta \zeta_{0}+c \zeta_{0}\right) d x \\
& =\int_{\Omega}\left(-\Delta u_{\lambda}+c u_{\lambda}\right) \zeta_{0} d x \\
& =\lambda \int_{\Omega} f\left(u_{\lambda}\right) \zeta_{0} d x .
\end{aligned}
$$

Using the Hopf's Lemma we deduce that $\zeta_{0} \leq c_{3} \varphi_{1}$ and (3.7) implies

$$
\begin{equation*}
\int_{\Omega} u_{\lambda} d x \leq c_{3} \int_{\Omega} \varphi_{1} f\left(u_{\lambda}\right) \leq c_{4} . \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8), we deduce by passing to the limit that $u^{*} \in L^{1}(\Omega)$ and $f\left(u^{*}\right) \in L^{1}(\Omega)$ and u^{*} satisfy $\left(P_{\lambda^{*}, c}\right)$ and hence u^{*} is a weak solution of $\left(P_{\lambda^{*}, c}\right)$.

Now to prove the uniqueness of u^{*}, we can use the following result due to Martel [7] and the proof is not changed in our case, so we omit it.

Proposition 3.1. [7] Let $v \in L^{1}(\Omega)$ be a weak super solution of equation $\left(P_{\lambda^{*}, c}\right)$, then $v=u^{*}$.

4. Proof of Theorem 1.5

Recall that the extremal solution u^{*} is the increasing limit of classical stable solutions u_{λ} and we have

$$
\lambda \int_{\Omega} f^{\prime}\left(u_{\lambda}\right) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x+c \int_{\Omega} \varphi^{2} d x, \quad \forall \varphi \in C_{0}^{1}(\Omega)
$$

and so by passing to the limit, we obtain

$$
\lambda \int_{\Omega} f^{\prime}\left(u^{*}\right) \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x+c \int_{\Omega} \varphi^{2} d x, \quad \forall \varphi \in C_{0}^{1}(\Omega)
$$

Conversely, if we have a singular solution v satisfying (1.9) for some $\lambda>0$ and we shoud prove that $\lambda=\lambda^{*}$ and this solution is the extremal one u^{*}. We argue by contradiction, suppose that $\lambda<\lambda^{*}$. We take $\varphi=v-u_{\lambda}$ as test function in (1.9) where u_{λ} is the minimal solution. Exploiting the boundary conditions, we get

$$
\begin{aligned}
\lambda \int_{\Omega}\left(v-u_{\lambda}\right)\left(f(v)-f\left(u_{\lambda}\right)\right) d x & =\int_{\Omega}\left(v-u_{\lambda}\right)\left(-\Delta\left(v-u_{\lambda}\right)+c\left(v-u_{\lambda}\right)\right) d x \\
& =\int_{\Omega}\left|\nabla\left(v-u_{\lambda}\right)\right|^{2}+\int_{\Omega} c\left(v-u_{\lambda}\right)^{2} \\
& \geq \lambda \int_{\Omega} f^{\prime}(v)\left(v-u_{\lambda}\right)^{2} d x
\end{aligned}
$$

Then, by convexity of the function f, we have $v=u_{\lambda}$. But u_{λ} is regular, and this contradicts the fact that v is singular. So $\lambda=\lambda^{*}$ and by uniqueness of the solutions of problem $\left(P_{\lambda^{*}, c}\right), v=u^{*}$.

5. Proof of Theorem 1.6

For every $\lambda \in\left(0, \lambda^{*}\right)$, we know that the minimal solution u_{λ} satisfies the equation

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\lambda} \nabla v d x+c \int_{\Omega} u_{\lambda} v d x=\lambda \int_{\Omega} f\left(u_{\lambda}\right) v d x=\lambda \int_{\Omega} e^{u_{\lambda}} v d x \tag{5.1}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$.
Also u_{λ} satisfies the stability condition

$$
\begin{equation*}
\int_{\Omega}|\nabla w|^{2} d x+c \int_{\Omega} w^{2} d x \geq \lambda \int_{\Omega} f^{\prime}\left(u_{\lambda}\right) w^{2} d x=\lambda \int_{\Omega} e_{\lambda}^{u} w^{2} d x \tag{5.2}
\end{equation*}
$$

for all $w \in C_{0}^{1}(\Omega)$.
To prove the regularity of u^{*} for $n \leq 9$, we generalise the idea of [2].
In (5.1) we take $v=e^{(q-1) u_{\lambda}}$ as a test function and $w=e^{\frac{q-1}{2} u_{\lambda}}$, where $q>1$, we obtain

$$
\begin{equation*}
(q-1) \int_{\Omega} e^{(q-1) u_{\lambda}}\left|\nabla u_{\lambda}\right|^{2} d x+c \int_{\Omega} e^{(q-1) u_{\lambda}} d x=\lambda \int_{\Omega} e^{q u_{\lambda}} d x \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(q-1)^{2}}{4} \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2} e^{(q-1) u_{\lambda}} d x+c \int_{\Omega} e^{(q-1) u_{\lambda}} d x \geq \lambda \int_{\Omega} e^{q u_{\lambda}} d x \tag{5.4}
\end{equation*}
$$

By multiplying (5.4) with $\frac{4}{q-1}$ and putting together these inequalities, we obtain

$$
\frac{4 c}{q-1} \int_{\Omega} e^{(q-1) u_{\lambda}} d x-c \int_{\Omega} u_{\lambda} e^{(q-1) u_{\lambda}} d x \geq \lambda\left(\frac{4}{q-1}-1\right) \int_{\Omega} e^{q u_{\lambda}} d x
$$

Now assume that $1<q<5$, so that $\frac{4}{q-1}>1$. As $\lambda \longrightarrow \lambda^{*}$, the left hand side cannot blow-up since the leading term is $u_{\lambda} e^{(q-1) u_{\lambda}}$ and the right hand side remains bounded, this means that $e^{u_{\lambda}}$ is uniformly bounded in $L^{q}(\Omega)$, since u_{λ} solves the equation, by elliptic regularity this means that u_{λ} is uniformly bounded in $W^{2, q}(\Omega)$ for all $1<q<5$. Since $n \leq 9$, by Sobolev embedding, u_{λ} is uniformly bounded in $L^{\infty}(\Omega)$ so that $u^{*} \in L^{\infty}(\Omega)$.

References

1. I. Abid, M. Dammak and I. Douchich, Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations, Nonl. Funct. Anal. and Appl, 21 (2016), 15-31.
2. E Berchio, F. Gazzola, D. Pierotti, Gelfand type elliptic problems under Steklov boundary problem, Ann. I. H. Poincaré -AN. Vol. 27 (2010), 315-335.
3. H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Diff. Equa. 1 (1996), 73-90.
4. H. Brezis, J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469.
5. M. G. Crandall, P. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal. 58 (1975), 207-218.
6. H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations (SpringerVerlag), Berlin, 2003.
7. Y. Martel Uniqueness of weak extremal solutions of nonlinear elliptic problems Houston J. Math. 23 (1997), 161-168.
8. P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymtotically linear function, Nonlinear Anal. 26 (1996), 857-875.

Makkia Dammak,
Department of Mathematics, College of Science, Taibah University Medinah, SA.
E-mail address: makkia.dammak@gmail.com
and
Majdi El Ghord,
University of Tunis El Manar, Faculty of Sciences of Tunis,
University Campus, 2092 Tunisia.
E-mail address: ghord.majdi@gmail.com
and

Saber kharrati,

Mathematics Department, Faculty of Arts and Science in Qilwah,
Al Baha University, Baha, KSA
(b) University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus, 2092 Tunisia.
E-mail address: kharratisabeur@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: 35B65, 35B45, 53C21,35J60, 58J05.
 Submitted March 20, 2018. Published July 29, 2018

