
Bol. Soc. Paran. Mat. (3s.) v. 2022 (40) : 1–8.
c©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.51659

Cofficient Estimates for a General Subclass of Bi-univalent Functions
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abstract: In this paper, we introduce and investigate an interesting subclass Sh,p
Σ

(A,B, C, λ) of bi-univalent
functions in the open unit disk U. Furthermore, we find estimates on the |a2| and |a3| coefficients for functions
in this subclass. The coefficient bounds presented here generalize some recent works of several earlier authors.
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1. Introduction

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1},

that have the form:

f(z) = z +

∞
∑

n=2

anz
n. (1.1)

Further, we shall denote by S the class of functions in A which are univalent in U(for details see [1, 3, 5]).
Since univalent functions are one-to-one, they are invertible and inverse functions need not be defined

on the entire unit disk U. The Koebe one-quarter theorem [5] ensures that the image of U under every
univalent function f ∈ S contains a disk of radius 1

4 . So every function f ∈ S has an inverse f−1, which
is defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(

|w| < r0(f), r0(f) ≥
1

4

)

.

In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · ·. (1.2)

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in U (see [10]).
Let Σ denote the class of bi-univalent functions in U given by (1.1). The class of bi-univalent functions

was first introduced and studied by Lewin [6], where it was proved that |a2| ≤ 1.51.
Brannan and Taha [1](see also [2]), also investigated certain subclasses of bi-univalent functions and

found non-sharp estimates on the first two Taylor-Maclurin coefficients |a2| and |a3|. For a brief history
and interesting examples of functions in the class Σ, see [10].

Netanyahu [8], showed that max
f∈Σ

|a2| = 4
3 . The coefficient estimate problem for each of the following

Taylor-Maclaurin coefficients |an| for n = 3, 4, ... is presumably still an open problem.

2010 Mathematics Subject Classification: 30C45, 30C50.

Submitted December 30, 2019. Published April 23, 2020

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.51659


2 K. Hosseinzadeh

Two of the most famous subclasses of univalent functions are the class S∗(β) of starlike functions of
order β(0 ≤ β < 1) and the class K(β) of convex functions of order β(0 ≤ β < 1). By definition, we have

S
∗(β) =

{

f ∈ S : Re(
zf ′(z)

f(z)
) > β , z ∈ U

}

and

K(β) =

{

f ∈ S : Re(1 +
zf ′′(z)

f ′(z)
) > β , z ∈ U

}

.

For β(0 ≤ β < 1), a function f ∈ Σ is in the class S
∗
Σ(β) of strongly bi-starlike functions of order

β(0 ≤ β < 1), or KΣ(β) of strongly bi-convex functions of order β(0 ≤ β < 1), if both f and its inverse
map f−1 are, respectively, starlike or convex of order β(0 ≤ β < 1).

The object of the present paper is to introduce a new subclass of the function class Σ and find estimates
on the coefficients |a2| and |a3| for functions in this new subclass of the functions class Σ employing the
techniques used earlier by Srivastava et al. (see [9]).

Definition 1.1 ( [7]). A function f(z) given by (1.1) is said to be in the SΣ(α, λ) (0 < α ≤ 1, 0 ≤
λ ≤ 1), if the following conditions are satisfied:

f ∈ Σ,

∣

∣

∣

∣

arg

(

zf ′(z) + (2λ2 − λ)z2f ′′(z)

4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ+ 1)f(z)

)
∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, 0 ≤ λ ≤ 1, z ∈ U)

and
∣

∣

∣

∣

arg

(

wg′(w) + (2λ2 − λ)w2g′′(w)

4(λ− λ2)w + (2λ2 − λ)wg′(w) + (2λ2 − 3λ+ 1)g(w)

)
∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, 0 ≤ λ ≤ 1, w ∈ U),

where g is the extension of f−1 to U.

Theorem 1.1 ( [7]). Let the function f(z) given by (1.1) be in the SΣ(α, λ) (0 < α ≤ 1, 0 ≤ λ ≤ 1).
Then

|a2| ≤
2α

√

α(1− 2λ+ 25λ2 − 44λ3 + 20λ4) + (1 + 3λ− 2λ2)2

and

|a3| ≤
α

1 + 2λ2 +
4α2

(1 + 3λ− 2λ2)2
.

Definition 1.2 ( [7]). A function f(z) given by (1.1) is said to be in the SΣ(β, λ) (0 ≤ β < 1, 0 ≤
λ ≤ 1), if the following conditions are satisfied:

f ∈ Σ, Re

(

zf ′(z) + (2λ2 − λ)z2f ′′(z)

4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ+ 1)f(z)

)

> β(0 ≤ β < 1, 0 ≤ λ ≤ 1, z ∈ U)

and

Re

(

wg′(w) + (2λ2 − λ)w2g′′(w)

4(λ− λ2)w + (2λ2 − λ)wg′(w) + (2λ2 − 3λ+ 1)g(w)

)

> β(0 ≤ β < 1, 0 ≤ λ ≤ 1, w ∈ U),

where g is the extension of f−1 to U.
It is stated that in Theorem 3.1 in [7], the calculations done by Magesh for the bound |a3| are inaccu-

rate. To remove this remarkable mistake, we’ve revised the calculations appropriately (see Theorem1.2).

Theorem 1.2 ( [7]). Let the function f(z) given by (1.1) be in the SΣ(β, λ) (0 ≤ β < 1, 0 ≤ λ ≤ 1).
Then

|a2| ≤
√

2(1− β)

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

and

|a3| ≤
2(1− β)

12λ4 − 28λ3 + 15λ2 + 2λ+ 1
+

1− β

2λ2 + 1
.
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2. Coefficient bounds for the function class S
h,p
Σ (A,B,C, λ)

In this section, we introduce the subclass Sh,pΣ (A,B,C, λ) (0 ≤ λ ≤ 1) and find the estimates on the
coefficients |a2| and |a3| for functions in this subclass.

Definition 2.1. Let the functions h, p : U → C be analytic functions so that

min{R ((h(z)) ,R (p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

Also, let the continuous functions A,B,C : [0, 1] → R be so constrained that

A(λ) +B(λ) + C(λ) = 1, C(λ) 6= 2 and 3 + 3A(λ)− C(λ) 6= 0; λ ∈ [0, 1].

A function f(z) ∈ A given by (1.1) is said to be in the class S
h,p
Σ (A,B,C, λ) (0 ≤ λ ≤ 1), if the

following conditions are satisfied:

f ∈ Σ,
zf ′(z) +A(λ)z2f ′′(z)

B(λ)z +A(λ)zf ′(z) + C(λ)f(z)
∈ h(U) (z ∈ U) (2.1)

and
wg′(w) +A(λ)w2g′′(w)

B(λ)w +A(λ)wg′(w) + C(λ)g(w)
∈ p(U) (w ∈ U), (2.2)

where g is the extension of f−1 to U.

Remark 2.1. There are many choices of the functions h(z) and p(z) which would provide interesting
subclasses of the analytic function class A. For example, if we get

h(z) = p(z) =

(

1 + z

1− z

)α

(0 < α ≤ 1, z ∈ U),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If

f(z) ∈ S
h,p
Σ (A,B,C, λ), A(λ) = 2λ2 − λ, B(λ) = 4(λ− λ2) and C(λ) = 2λ2 − 3λ+ 1 then

f ∈ Σ,

∣

∣

∣

∣

arg

(

zf ′(z) + (2λ2 − λ)z2f ′′(z)

4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ+ 1)f(z)

)∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, 0 ≤ λ ≤ 1, z ∈ U)

and
∣

∣

∣

∣

arg

(

wg′(w) + (2λ2 − λ)w2g′′(w)

4(λ− λ2)w + (2λ2 − λ)wg′(w) + (2λ2 − 3λ+ 1)g(w)

)∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, 0 ≤ λ ≤ 1, w ∈ U).

In this case, the function f is said to be in the class SΣ(α, λ) introduced and studied by Magesh
and Yamini [7].

By putting λ = 0(A(λ) = B(λ) = 0 and C(λ) = 1), the class SΣ(α, λ) reduces to the class of strongly
bi-starlike functions of order α(0 < α ≤ 1) and denoted by S

∗
Σ(α).

By putting λ = 1
2 (A(λ) = C(λ) = 0 and B(λ) = 1), the class SΣ(α, λ) reduces to the class H

α
Σ

introduced and studied by Srivastava et al. [10] and for λ = 1(B(λ) = C(λ) = 0 and A(λ) = 1),
the class SΣ(α, λ) reduces to the class of strongly bi-convex functions of order α(0 < α ≤ 1) and
denoted by KΣ(α).

If we get

h(z) = p(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1, z ∈ U),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If

f(z) ∈ S
h,p
Σ (A,B,C, λ), A(λ) = 2λ2 − λ, B(λ) = 4(λ− λ2) and C(λ) = 2λ2 − 3λ+ 1 then
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f ∈ Σ, Re

(

zf ′(z) + (2λ2 − λ)z2f ′′(z)

4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ+ 1)f(z)

)

> β(0 ≤ β < 1, 0 ≤ λ ≤ 1, z ∈ U)

and

Re

(

wg′(w) + (2λ2 − λ)w2g′′(w)

4(λ− λ2)w + (2λ2 − λ)wg′(w) + (2λ2 − 3λ+ 1)g(w)

)

> β(0 ≤ β < 1, 0 ≤ λ ≤ 1, w ∈ U).

In this case, the function f is said to be in the class SΣ(β, λ) introduced and studied by Magesh
and Yamini [7].

By putting λ = 0(A(λ) = B(λ) = 0 and C(λ) = 1), the class SΣ(β, λ) reduces to the class of strongly
bi-starlike functions of order β(0 ≤ β < 1) and denoted by S

∗
Σ(β).

By putting λ = 1
2 (A(λ) = C(λ) = 0 and B(λ) = 1), the class SΣ(β, λ) reduces to the class HΣ(β)

introduced and studied by Srivastava et al. [10] and for λ = 1(B(λ) = C(λ) = 0 and A(λ) = 1),
the class SΣ(β, λ) reduces to the class of strongly bi-convex functions of order β(0 ≤ β < 1) and
denoted by KΣ(β).
Note: Let A := A(λ), B := B(λ) and C := C(λ).

Theorem 2.1. A function f(z) given by (1.1) is said to be in the S
h,p
Σ (A,B,C, λ) (0 ≤ λ ≤ 1). Then

|a2| ≤ min















√

|h′(0)|2+|p′(0)|2

2(C−2)2

1
2

√

|h′′(0)|+|p′′(0)|
|(3+3A−C)+(C−2)(2A+C)| ; (3 + 3A− C) + (C − 2)(2A+ C) 6= 0

and

|a3| ≤ min



















|h′′(0)|+|p′′(0)|
4|3+3A−C| + |h′(0)|2+|p′(0)|2

2(C−2)2

|h′′(0)|+|p′′(0)|
4|3+3A−C| + |h′′(0)|+|p′′(0)|

4|(3+3A−C)+(C−2)(2A+C)| ;

(3 + 3A− C) + (C − 2)(2A+ C) 6= 0.

Proof. First of all, we write the argument inequalities in (2.1) and (2.2) in their equivalent forms as
follows:

zf ′(z) +Az2f ′′(z)

Bz +Azf ′(z) + Cf(z)
= h(z) (z ∈ U) (2.3)

and
wg′(w) +Aw2g′′(w)

Bw +Awg′(w) + Cg(w)
= p(w) (w ∈ U), (2.4)

respectively, where functions h(z) and p(w) satisfy the conditions of Defintion 2.1. Furthermore, the
functions h(z) and p(w) have the following Taylor-Maclaurin series expensions:

h(z) = 1 + h1z + h2z
2 + h3z

3... (2.5)

and
p(w) = 1 + p1w + p2w

2 + p3w
3... , (2.6)

respectively. Now, upon substituting from (2.5) and (2.6) into (2.3) and (2.4), respectively, and equating
the coefficients, we get

(2− C)a2 = h1, (2.7)

(3 + 3A− C)a3 + (C − 2)(2A+ C)a22 = h2, (2.8)

− (2− C)a2 = p1 (2.9)
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and

− (3 + 3A− C)a3 + {2(3 + 3A− C) + (C − 2)(2A+ C)}a22 = p2. (2.10)

From (2.7) and (2.9), we obtain

p1 = −h1, (2.11)

a22 =
h2
1 + p21

2(2− C)2
. (2.12)

If (3 + 3A− C) + (C − 2)(2A+ C) 6= 0, then by adding (2.8) and (2.10), we get

a22 =
h2 + p2

2[(3 + 3A− C) + (C − 2)(2A+ C)]
. (2.13)

Therfore, we find from the equations (2.12) and (2.13) that

|a2|2 ≤ |h′(0)|2 + |p′(0)|2
2(C − 2)2

and

|a2|2 ≤ |h′′(0)|+ |p′′(0)|
4|(3 + 3A− C) + (C − 2)(2A+ C)| ,

respectively. So we get the desired estimate on the coefficient |a2| asserted. Next, in order to find the
bound on the coefficient |a3|, we subtract (2.10) from (2.8). We thus get

2(3 + 3A− C)a3 − 2(3 + 3A− C)a22 = h2 − p2. (2.14)

Upon substituting the value of a22 from (2.12) into (2.14), it follows that

a3 =
h2 − p2

2(3 + 3A− C)
+

h2
1 + p21

2(2− C)2
. (2.15)

We thus find that

|a3| ≤
|h′′(0)|+ |p′′(0)|
4|3 + 3A− C| +

|h′(0)|2 + |p′(0)|2
2(C − 2)2

.

If (3 + 3A− C) + (C − 2)(2A+ C) 6= 0, then by substituting the value of a22 from (2.13) into (2.14), it
follows that

a3 =
h2 − p2

2(3 + 3A− C)
+

h2 + p2

2[(3 + 3A− C) + (C − 2)(2A+ C)]
. (2.16)

Consequently, we have

|a3| ≤
|h′′(0)|+ |p′′(0)|
4|3 + 3A− C| +

|h′′(0)|+ |p′′(0)|
4|(3 + 3A− C) + (C − 2)(2A+ C)| .

✷

3. Corollaries and Consequences

By putting

A(λ) = 2λ2 − λ, B(λ) = 4(λ− λ2), C(λ) = 2λ2 − 3λ+ 1

and

h(z) = p(z) =

(

1 + z

1− z

)α

(0 < α ≤ 1, z ∈ U)

in Theorem 2.1, we obtain the following result.
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Corollary 3.1. Let the function f(z) given by (1.1) be in the bi-univalent function class SΣ(α, λ) (0 <

α ≤ 1, 0 ≤ λ ≤ 1). Then

|a2| ≤ min

{

2α

1 + 3λ− 2λ2 , α

√

2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

}

= α

√

2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

and

|a3| ≤ min

{

α2

2λ2 + 1
+

4α2

(1 + 3λ− 2λ2)2
,

α2

2λ2 + 1
+

2α2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

}

=
α2

2λ2 + 1
+

2α2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

Remark 3.1. The bounds on |a2| and |a3| given in Corollary 3.1 are better than those given in
Theorem 1.1. Because

α

√

2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1
≤ 2α

√

α(1 − 2λ+ 25λ2 − 44λ3 + 20λ4) + (1 + 3λ− 2λ2)2

(0 ≤ λ ≤ 1, 0 < α ≤ 1)

and
α2

2λ2 + 1
+

2α2

12λ4 − 28λ3 + 15λ2 + 2λ+ 1
≤ α2

2λ2 + 1
+

4α2

(1 + 3λ− 2λ2)2

≤ α

2λ2 + 1
+

4α2

(1 + 3λ− 2λ2)2
.

By putting λ = 1
2 in Corollary 3.1, we conclude the following corollary.

Corollary 3.2. Let the function f(z) given by (1.1) be in the bi-univalent function class Hα
Σ (0 < α ≤ 1).

Then

|a2| ≤ min

{

α,

√

2

3
α

}

=

√

2

3
α

and

|a3| ≤ min

{

5

3
α2,

4

3
α2

}

=
4

3
α2.

Remark 3.2. The bounds on |a2| and |a3| given in Corollary 3.2 are better than those given by
Srivastava [10, Theorem 1].
By putting λ = 1 in Corollary 3.1, we conclude the following corollary.

Corollary 3.3. Let the function f(z) given by (1.1) be in the bi-univalent function class KΣ(α) (0 <

α ≤ 1). Then

|a2| ≤ α and |a3| ≤
4

3
α2.

Remark 3.3. The bound on |a3| given in Corollary 3.3 is better than that given by Xiao-Fei-li [11,
Theorem 2.2], when λ = 1.
By putting λ = 0 in Corollary 3.1, we conclude the following corollary.

Corollary 3.4. Let the function f given by (1.1) be in the bi-univalent function class S∗Σ(α) (0 < α ≤ 1).
Then

|a2| ≤ min
{

2α,
√
2α

}

=
√
2α

and

|a3| ≤ min
{

5α2, 3α2
}

= 3α2.



Cofficient Estimates for a General Subclass of Bi-univalent Functions 7

Remark 3.4. The bounds on |a2| and |a3| given in Corollary 3.4 are better than those given by
Çağlar [4, Corollary 2.5]. Because

√
2α ≤ 2α√

α+ 1

and

3α2 ≤ 4α2 + α.

By putting

A(λ) = 2λ2 − λ, B(λ) = 4(λ− λ2), C(λ) = 2λ2 − 3λ+ 1

and

h(z) = p(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1, z ∈ U)

in Theorem 2.1, we obtain the following result.

Corollary 3.5. Let the function f(z) given by (1.1) be in the bi-univalent function class SΣ(β, λ) (0 ≤
β < 1, 0 ≤ λ ≤ 1). Then

|a2| ≤ min

{

2(1− β)

1 + 3λ− 2λ2 ,

√

2(1− β)

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

}

and

|a3| ≤ min

{

1− β

2λ2 + 1
+

4(1− β)2

(1 + 3λ− 2λ2)2
,

1− β

2λ2 + 1
+

2(1− β)

12λ4 − 28λ3 + 15λ2 + 2λ+ 1

}

.

By setting λ = 1
2 in Corollary 3.5, we conclude the following corollary.

Corollary 3.6. Let the function f(z) given by (1.1) be in the bi-univalent function class HΣ(β) (0 ≤
β < 1). Then

|a2| ≤











√

2
3 (1− β) ; 0 ≤ β ≤ 1

3

(1− β) ; 1
3 ≤ β < 1

and

|a3| ≤







4
3 (1− β) ; 0 ≤ β ≤ 1

3

(1−β)(5−3β)
3 ; 1

3 ≤ β < 1.

Remark 3.5. The bounds on |a2| and |a3| given in Corollary 3.6 are better than those given by
Srivastava [10, Theorem 2].

By putting λ = 1 in Corollary 3.5, we conclude the following corollary.

Corollary 3.7. Let the function f(z) given by (1.1) be in the bi-univalent function class KΣ(β) (0 ≤
β < 1). Then

|a2| ≤ min
{

(1− β),
√

1− β
}

= (1− β)

and

|a3| ≤ min

{

4

3
(1− β),

1

3
(1− β) + (1 − β)2

}

=
1

3
(1− β) + (1 − β)2.

Remark 3.6. The bound on |a2| given in Corollary 3.7 is better than that given by Xiao-Fei-li [11,
Theorem 3.2], when λ = 1.
By putting λ = 0 in Corollary 3.5, we conclude the following corollary.
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Corollary 3.8. Let the function f(z) given by (1.1) be in the bi-univalent function class S∗Σ(β) (0 ≤ β <

1). Then

|a2| ≤







√

2(1− β) ; 0 ≤ β ≤ 1
2

2(1− β) ; 1
2 ≤ β < 1

and

|a3| ≤







3(1− β) ; 0 ≤ β ≤ 1
2

(1 − β)(5− 4β) ; 1
2 ≤ β < 1.

Remark 3.7. The bounds on |a2| and |a3| given in Corollary 3.8 are better than those given by
Çağlar [4, Corollary 3.5].
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