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Cofficient Estimates for a General Subclass of Bi-univalent Functions

Khosrow Hosseinzadeh

ABSTRACT: In this paper, we introduce and investigate an interesting subclass S%’p(A, B, C, \) of bi-univalent
functions in the open unit disk U. Furthermore, we find estimates on the |az| and |as| coefficients for functions
in this subclass. The coefficient bounds presented here generalize some recent works of several earlier authors.
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1. Introduction

Let A denote the class of analytic functions in the unit disk
U={zeC:|z| <1},

that have the form:
f(z) :z—i—Zanz". (1.1)
n=2

Further, we shall denote by 8 the class of functions in A which are univalent in U(for details see [1,3,5]).

Since univalent functions are one-to-one, they are invertible and inverse functions need not be defined
on the entire unit disk U. The Koebe one-quarter theorem [5] ensures that the image of U under every
univalent function f € 8§ contains a disk of radius %. So every function f € § has an inverse f !, which
is defined by

FHf) =2 (€U

and

).

FHw) = w — agw? + (2a3 — az)w® — (5a3 — 5agaz + as)w* + - - -. (1.2)

B~ =

S w)) = w (|w| < rolf), ro(f) >

In fact, the inverse function f~! is given by

A function f € A is said to be bi-univalent in U, if both f and f~! are univalent in U (see[10]).

Let 3 denote the class of bi-univalent functions in U given by (1.1). The class of bi-univalent functions
was first introduced and studied by Lewin [6], where it was proved that |as| < 1.51.

Brannan and Taha [1](see also [2]), also investigated certain subclasses of bi-univalent functions and
found non-sharp estimates on the first two Taylor-Maclurin coefficients |az| and |as|. For a brief history
and interesting examples of functions in the class X, see [10].

Netanyahu [8], showed that r}lg§|a2| = %. The coefficient estimate problem for each of the following

Taylor-Maclaurin coefficients |a,,| for n = 3,4, ... is presumably still an open problem.
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Two of the most famous subclasses of univalent functions are the class 8*(8) of starlike functions of
order 5(0 < 8 < 1) and the class K(/5) of convex functions of order 5(0 < g < 1). By definition, we have

oL res O
e /()
K(ﬁ)z{fES:Re(l—F f,(z))>ﬁ,zEU}.

For B(0 < 8 < 1), a function f € ¥ is in the class 8%(5) of strongly bi-starlike functions of order
B(0 < B < 1), or Kx(B) of strongly bi-convex functions of order 5(0 < 8 < 1), if both f and its inverse
map f~! are, respectively, starlike or convex of order (0 < 3 < 1).

The object of the present paper is to introduce a new subclass of the function class ¥ and find estimates
on the coefficients |az| and |as| for functions in this new subclass of the functions class ¥ employing the
techniques used earlier by Srivastava et al. (see [9]).

Definition 1.1 ([7]). A function f(z) given by (1.1) is said to be in the Sz (o, A) (0 < a <1, 0 <
A < 1), if the following conditions are satisfied:

2f'(2) + (23 = V22 (2)

fex, larg <4(A =AMz + (20 = Naf'(2) + (207 = 3A+ D f(2)

>‘<%(0<(1§1,0§)\§1726U)

and
arg ( wy'(w) + (23 = Nw?g"(w)

4 = A w + (202 = Nwg' (w) + (207 — 31 + 1)g(w)
where g is the extension of f~! to U.

Theorem 1.1 ([7]). Let the function f(z) given by (1.1) be in the Sx(a,\) (0 < o <1, 0 < A < 1).
Then

)’<%(O<a<l,0<)\<l,weU),

2
Vall = 20+ 2532 — 4433 4 20A1) + (143X — 2)%)2

las| <

and
402

a
+ .
142X (1431 —2)7%)2
Definition 1.2 ([7]). A function f(z) given by (1.1) is said to be in the Sx(5,A) (0 < <1, 0 <
A < 1), if the following conditions are satisfied:

las| <

2f(2) + (207 = N)22f"(2)
A=Az + (2N = N)zf'(2) + (2N = 3N+ 1) f(2)

er,Re(4 >>6(0§6<1,0§)\§1,zeU)

and
Re ( wy'(w) + (2A% = Nw’g"(w)
4 = 2w + (20 = Mwg' (w) 4+ (202 = 31 + 1)g(w)
where g is the extension of f~! to U.

It is stated that in Theorem 3.1 in [7], the calculations done by Magesh for the bound |as| are inaccu-
rate. To remove this remarkable mistake, we’ve revised the calculations appropriately (see Theoreml.2).

Theorem 1.2 ([7]). Let the function f(z) given by (1.1) be in the 8x(B,A) (0 < B <1, 0 <A <1).
Then

>>6(0§6<1,0§)\§1,weU),

2(1-p)
|ag| < 1 3 2
1207 — 28A° + 16" + 21 + 1

2(1-5) 1-p
I 3 2 + 32 :
1207 = 28X + 16X + 20 +1  2X" +1

and

las| <
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2. Coefficient bounds for the function class Sg’p(A, B,C,\)

In this section, we introduce the subclass Sg’p(A, B,C,)) (0 <A <1) and find the estimates on the
coefficients |az| and |ag| for functions in this subclass.

Definition 2.1. Let the functions h,p : U — C be analytic functions so that
min{R ((h(z)),R (p(2))} >0 (2 € U) and h(0) = p(0) = 1.
Also, let the continuous functions A, B, C': [0,1] — R be so constrained that
AN+ BXN)+CN) =1, C(A\) #2and 3+ 3A(N) —C(\) #£0; X e]0,1].

A function f(z) € A given by (1.1) is said to be in the class Sg’p(A,B,C,)\) (0 < X\ < 1), if the
following conditions are satisfied:

2f'(z) + AN)Z2f"(2)

fex, BNz 4+ AN)zf'(z) + C(N) f(z)

€ h(U) (z € U) (2.1)

nd
’ w' (1) + AN w?g"(w)
BMNw + AN wg' (w) + C(N)g(w)

where g is the extension of f~! to U.

€ p(U) (w € U), (2.2)

Remark 2.1. There are many choices of the functions h(z) and p(z) which would provide interesting
subclasses of the analytic function class A. For example, if we get

1+=2
1—=z

h(z):p(z):( )a O<a<l, zel),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If
f(z) € SEP(A, B,C,\), A(N) = 2)% — A, B(A) = 4(A — A\?) and C(\) = 2A% — 3A + 1 then

fex,

0<a<1,0<A<1, z€l)

. 2//(2) + (2X° = N2 (2) ar
g (4()\ T+ 202 Nzfi(2) + (202 —3A + 1)f(z)> ‘ <3

and

ur < wg'(w) + (2A* = Nw?g" (w)
TNA0 = ) w+ 202 — Nwg'(w) + 2N —3r+ 1

)‘<@(o<a<1,0<A<1,weU).
)g(w) 2

In this case, the function f is said to be in the class 8x(c, \) introduced and studied by Magesh
and Yamini [7].

By putting A = 0(A(\) = B(\) = 0 and C(\) = 1), the class 8s:(, \) reduces to the class of strongly
bi-starlike functions of order a(0 < a < 1) and denoted by 8%(«).

By putting A = £(A(\) = C(A) = 0 and B(\) = 1), the class 8x(a, A) reduces to the class Hg
introduced and studied by Srivastava et al. [10] and for A = 1(B(A\) = C(A) = 0 and A(X\) = 1),

the class 8s (o, A) reduces to the class of strongly bi-convex functions of order a(0 < « < 1) and
denoted by Ky («).

If we get
1+ (1-28)z

h(z) = p(2) T (0<B8<1, 2€0),
it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If

f(z) € 8EP(A, B, C,\), A(N) = 2)\% — A, B(A) = 4(A — A?) and C(\) = 2X* — 3\ + 1 then
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2f'(2) + (2% = N)22f7(2)
A=Az + (2N = N)zf'(2) + 2N = 3N+ 1)f(2)

feE,Re(4 >>6(0§6<1,0§)\§1,zeU)

and

Re ( wg' (w) + (23° = Nw?g" (w)
40 = AN w + (207 = Nwg' (w) 4+ (20% = 31 + 1)g(w)

>>[3(0§6<1,0§/\§1,weU).

In this case, the function f is said to be in the class 8x(5,\) introduced and studied by Magesh
and Yamini [7].

By putting A = 0(A(X) = B(A) = 0 and C'(X\) = 1), the class 85(5, A) reduces to the class of strongly
bi-starlike functions of order 8(0 < 8 < 1) and denoted by 8%(8).

By putting A = 1(A(A) = C(A\) = 0 and B()\) = 1), the class 8x(53, ) reduces to the class Hsx(3)
introduced and studied by Srivastava et al. [10] and for A = 1(B(\) = C(A\) = 0 and A(\) = 1),
the class 8x(8,\) reduces to the class of strongly bi-convex functions of order 5(0 < 8 < 1) and
denoted by Xx(3).

Note: Let A := A(\), B := B(A) and C := C(A).

Theorem 2.1. A function f(z) given by (1.1) is said to be in the Sg’p(A,B, C,\) (0<A<1). Then
[P (0)[2+p’ (0)[?

2(C—2)
laz| < min

[P (0)|+]p (0)] :
3\ Ao mearo B+34-C)+(C-2)(24+C)#0

and

KO O] | O+ ()
A3+34A—C| 2(C—2)2
lasl Sming oo | ool
A3+3A—C] B340 H(C 2 2ATO)
(3+34—C)+(C—2)24+C) £ 0.

Proof. First of all, we write the argument inequalities in (2.1) and (2.2) in their equivalent forms as
follows:

AR
Bz+ Azf'(z) + Cf(z) =h(z) (z€0) (2.3)
and
wg'(w) T Awg(w) o o e v, (2.4)

Bw + Awg’(w) + Cg(w)

respectively, where functions h(z) and p(w) satisfy the conditions of Defintion 2.1. Furthermore, the
functions h(z) and p(w) have the following Taylor-Maclaurin series expensions:

h(Z) = 1+h12+h22’2+h32’3... (25)
and
p(w) =1+ prw + pow® + psw’... (2.6)

respectively. Now, upon substituting from (2.5) and (2.6) into (2.3) and (2.4), respectively, and equating
the coefficients, we get
(2-C)az = h, (2.7)

(3+3A—Caz + (C —2)(2A + C)a2 = hy, (2.8)
— (2 — C)CLQ =DP1 (29)



COFFICIENT ESTIMATES FOR A GENERAL SUBCLASS OF BI-UNIVALENT FUNCTIONS 5

and
—(34+3A—-Claz + {23+ 34— C) + (C —2)(24 4+ C)}a3 = po. (2.10)
From (2.7) and (2.9), we obtain
p1 = —hi, (2.11)
h2 +p2
2 _ N1 TPy
ay = 2 =C) (2.12)

If 3+34A—-C)+(C—2)(2A+ C) # 0, then by adding (2.8) and (2.10), we get

2 hy + p2
27 2[B434-0)+(C—2)24+0)]

a (2.13)

Therfore, we find from the equations (2.12) and (2.13) that

W (0)]* + Ip' (0)?
2(C —2)2

las|® <

and

las]® < 7" (0)] + [p" (0)]
T AE+34-0)+ (C-2)2A+O)

respectively. So we get the desired estimate on the coefficient |as| asserted. Next, in order to find the
bound on the coefficient |as|, we subtract (2.10) from (2.8). We thus get

2(3+3A—C)az —2(3+3A—C)a3 = ha — pa. (2.14)
Upon substituting the value of a3 from (2.12) into (2.14), it follows that

e ha — p2 h+pi
PT2(3434-0C) " 202-0C)*

(2.15)

We thus find that
| (0)[ + [p"(0)] . W (0)]* + Ip' (0)[?
413+ 3A - C| 2(C —2)? '

If 3+3A—C)+ (C—2)(2A+ C) # 0, then by substituting the value of a3 from (2.13) into (2.14), it
follows that

las| <

e ha — p2 n ha + p2 (2.16)
PT2B434-0) 2(B+34-0)+(C—2)2A+0C)] '
Consequently, we have
la| < |h"(0)] + [p" (0)] A" (0)] + [p" (0)]
ETUB+3A-C T 4B+3A-0)+ (C-2)2A+0O)
O

3. Corollaries and Consequences

By putting
AN) =20 =X\, B(A) =4(A =A%), C(\) =222 =31 +1
and
1 «
h(z)=p(z) = <1tz) 0<a<l, z€l)

in Theorem 2.1, we obtain the following result.
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Corollary 3.1. Let the function f(z) given by (1.1) be in the bi-univalent function class 8x(a, A) (0 <
a<l1l, 0<A<1). Then

2 2 2
|a2|§min{ - 2’0‘\/ 1 3 2 } :O‘\/ 1 3 2
143\ —2)\ 12207 — 28X + 15X + 22X+ 1 12X0° — 28X + 15X + 20+ 1

and
lag| < min{ o + do? o + 207 }
= 2241 (143A—222" 227 11 1227 — 280 + 1502 1 20 + 1
a? 202

+
A7+ 1 1201 — 28X + 1502 + 20 + 1

Remark 3.1. The bounds on |as| and |as| given in Corollary 3.1 are better than those given in
Theorem 1.1. Because

2 20
a\/12/\4 SV T I a1
— AT 21T Ja(1 - 2042507 — 440° 4 200") + (143X — 20°)2

0<A<1,0<a<1)

and 2 2 2 2
« 2« le} 4o

+ < +
I +1 0 120 — 28X+ 15AT 4+ 204+ 1 7 203 41 (143X —2)%)2

- « n 402
T2 1 (14332032

By putting A = % in Corollary 3.1, we conclude the following corollary.

Corollary 3.2. Let the function f(z) given by (1.1) be in the bi-univalent function class Hg (0 < a < 1).
Then
laz] < min {a \/204} = \/g a
— ) 3 3

4 4
las| < min{gaz, —a2} = —a?.

and

3 3

Remark 3.2. The bounds on |az| and |as| given in Corollary 3.2 are better than those given by
Srivastava [10, Theorem 1].
By putting A = 1 in Corollary 3.1, we conclude the following corollary.

Corollary 3.3. Let the function f(z) given by (1.1) be in the bi-univalent function class Kx(a) (0 <
a <1). Then

4
las] < « and |as| < §a2.

Remark 3.3. The bound on |a3| given in Corollary 3.3 is better than that given by Xiao-Fei-li [11,
Theorem 2.2], when A = 1.
By putting A = 0 in Corollary 3.1, we conclude the following corollary.

Corollary 3.4. Let the function f given by (1.1) be in the bi-univalent function class 8%(a) (0 < a < 1).

Then
laz| < min {2a, \/504} =V2a

and
las| < min {5a°,3a%} = 3a°.
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Remark 3.4. The bounds on |az| and |as| given in Corollary 3.4 are better than those given by
Caglar [4, Corollary 2.5]. Because

2
200 <

vaa < NCES
and

3a? < 402 + a.
By putting

AN) =202 =X\, B(\) =4(A =A%), C(\) =22* =3\ + 1
and
1 1-2
h(z):p(z):% 0<B<1, 2cl)

in Theorem 2.1, we obtain the following result.

Corollary 3.5. Let the function f(z) given by (1.1) be in the bi-univalent function class 8s(5,\) (0 <
B<1, 0<A<1). Then

- T+3x—222"\ 120% — 2823 + 15)2 + 20 + 1

and

|a3|<mm{1—ﬁ+ 4(1 - B)? 1-p 2(1-7) }
- AT 41 (1430 =227)2" 2207 +1 120 — 280 + 1507 + 2\ + 1

By setting A = % in Corollary 3.5, we conclude the following corollary.

Corollary 3.6. Let the function f(z) giwven by (1.1) be in the bi-univalent function class Hx(8) (0 <
B < 1). Then

21-p8);0<B<t

and

las| <
U-5)6-3) . 1 < g1,

Remark 3.5. The bounds on |az| and |as| given in Corollary 3.6 are better than those given by
Srivastava [10, Theorem 2].

By putting A = 1 in Corollary 3.5, we conclude the following corollary.

Corollary 3.7. Let the function f(z) given by (1.1) be in the bi-univalent function class Ks(8) (0 <

B < 1). Then
jaz| < min {(1-8), V1= B} = (1-5)

and
ool < min { 30 - 00, 31= 9) 4 (1= 5P} = 301 9) + (1 - %

Remark 3.6. The bound on |as| given in Corollary 3.7 is better than that given by Xiao-Fei-li [11,
Theorem 3.2], when A = 1.
By putting A = 0 in Corollary 3.5, we conclude the following corollary.
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Corollary 3.8. Let the function f(z) given by (1.1) be in the bi-univalent function class 85(8) (0 < 8 <
1). Then

V20-5); 0<B< 3

20-8); 3 <B<1

las| <

and

31-p);0<8<4
las| <

(1-B)(5-48); s<B<L.

Remark 3.7. The bounds on |az| and |as| given in Corollary 3.8 are better than those given by

10.

11.

12.

13.

Caglar [4, Corollary 3.5].
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