Derivatives with Respect to Horizontal and Vertical Lifts of the Deformed Complete Lift Metric \tilde{G}_{f} on Tangent Bundle

Haşim Çauir and Rabia Cakan Akpinar

ABSTRACT: In this paper, we define the deformed complete lift metric \tilde{G}_{f} on tangent bundle, which is completely determined by its action on vector fields of type X^{H} and ω^{V}. Later, we obtain the covarient and Lie derivatives applied to the deformed complete lift metric \tilde{G}_{f} with respect to the horizontal and vertical lifts of vector fields, respectively.

Key Words: Covarient derivative, Lie derivative, Ddeformed complete lift metric \tilde{G}_{f}, Horizontal Lift, Vertical lift, Tangent bundle.

Contents

1 Introduction

2 Main Results

1. Introduction

Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and denote by π : $T M \rightarrow M$ its tangent bundle with fiber the tangent spaces to $M . T M$ is then a $2 n$-dimensional smooth manifold and some local charts induced naturally from local charts on M may be used. Namely, a system of local coordinates $\left(U, x^{i}\right)$ in M induces on $T M$ a system of local coordinates ($\pi^{-1}(U), x^{i}, x^{\bar{i}}$ $=y^{i}$), where $\left(x^{i}\right), i=1, \ldots, n$ is a local coordinate system defined in the neighborhood U and $\left(y^{i}\right)$ is the Cartesian coordinates in each tangent space $T_{P} M$ at an arbitrary point P in U with respect to the natural basis $\left\{\left.\frac{\partial}{\partial x^{2}} \right\rvert\, P\right\}$. Summation over repeated indices in always implied. The Riemannian manifolds and the tangent bundles studyed a lot of authors $[1,2,7,8]$ too.

Let $X=X^{i} \frac{\partial}{\partial x^{i}}$ be the local expressions in U of a vector field X on M. The vertical lift X^{V}, the horizontal lift X^{H}, and the complete lift X^{C} of X are then given respectively by [6]

$$
\begin{gather*}
X^{V}=X^{i} \partial_{\bar{\imath}} \tag{1.1}\\
X^{H}=X^{i} \partial_{i}-y^{j} \Gamma_{j k}^{i} X^{k} \partial_{\bar{\imath}} \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
X^{C}=X^{i} \partial_{i}+y^{j} \partial_{j} X^{i} \partial_{\bar{\imath}} \tag{1.3}
\end{equation*}
$$

with respect to the induced coordinates, where $\partial_{i}=\frac{\partial}{\partial x^{2}}, \partial_{\bar{\imath}}=\frac{\partial}{\partial y^{i}}$ and $\Gamma_{j k}^{i}$ are the coefficients of the Levi-Civita connection ∇ of g.

Given a (p, q)-tensor field S on $M, q>1$, we then consider a tensor field $\gamma S \in \Im_{q-1}^{p}(T M)$ on $\pi^{-1}(U)$ by

$$
\gamma S=\left(y^{s} S_{s i_{2} \ldots i_{q}}^{j_{1} \ldots j_{p}}\right) \partial_{\bar{j}_{1}} \otimes \ldots \otimes \partial_{\overline{j_{p}}} \otimes d x^{i_{2}} \otimes \ldots \otimes d x^{i q}
$$

with respect to the induced coordinates $\left(x^{i}, y^{i}\right)$ ([11], p.12).
2010 Mathematics Subject Classification: 15A 72, 53A45, 47B47, 53C15.
Submitted November 30, 2010. Published April 21, 2020

1.1. The deformed complete lift metric \tilde{G}_{f}

In this section, we give the Levi-Civita connection $\tilde{\nabla}$ of the tangent bundle $T M$ with the deformed complete lift metric \tilde{G}_{f} and study fiber-preserving Killing vector fields on $T M$. The deformed complete lift metric \tilde{G}_{f} is defined by [6]

$$
\begin{align*}
& \tilde{G}\left(X^{H}, Y^{H}\right)=f g(X, Y) \\
& \tilde{G}\left(X^{H}, Y^{V}\right)=\tilde{G}\left(X^{V}, Y^{H}\right)=g(X, Y) \tag{1.4}\\
& \tilde{G}\left(X^{V}, Y^{V}\right)=0
\end{align*}
$$

for all $X, Y \in \Im_{0}^{1}(M)$. We now give expressions of the deformed complete lift metric \tilde{G}_{f} and its inverse $\tilde{G}_{f}{ }^{-1}$ with respect to the adapted frame $\left\{E_{\beta}\right\}$:

$$
\tilde{G}_{f}=\left(\begin{array}{cc}
f g_{i j} & g_{i j} \\
g_{i j} & 0
\end{array}\right) \text { and } \tilde{G}_{f}^{-1}=\left(\begin{array}{cc}
0 & g^{j h} \\
g^{j h} & -f g^{j h}
\end{array}\right)
$$

for all vector fields X and Y on M, and $f>0, f \in C^{\infty}(M)$ [6]. For $f=1$, it follows that $\tilde{g}={ }^{S} g$, i.e. the metric \tilde{g} is generalization of Sasakian metric ${ }^{S} g$ [10].

Determining both the deformed complete metric \tilde{G}_{f} and the almost complex structure J^{H}, and using the facts $X^{V}(f g(Y, Z))=0$ and $X^{H}(f g(Y, Z))=X(f) g(Y, Z)+f X(g(Y, Z))$, we calculate

2. Main Results

Definition 2.1. Let M be an n-dimensional diferentiable manifold. Differential transformation $D=L_{X}$ is called as Lie derivation with respect to vector field $X \in \Im_{0}^{1}(M)$ if

$$
\begin{align*}
L_{X} f & =X f, \forall f \in \Im_{0}^{0}\left(M^{n}\right) \tag{2.1}\\
L_{X} Y & =[X, Y], \forall X, Y \in \Im_{0}^{1}\left(M^{n}\right)
\end{align*}
$$

$[X, Y]$ is called by Lie bracked. The Lie derivative $L_{X} F$ of a tensor field F of type $(1,1)$ with respect to a vector field X is defined by $[3,4,11]$

$$
\begin{equation*}
\left(L_{X} F\right) Y=[X, F Y]-F[X, Y] \tag{2.2}
\end{equation*}
$$

Definition 2.2. The bracket operation of vertical and horizontal vector fields is given by the following formulas:

$$
\begin{align*}
{\left[X^{H}, Y^{H}\right] } & =[X, Y]^{H}-(R(X, Y) u)^{V} \tag{2.3}\\
{\left[X^{H}, Y^{V}\right] } & =\left(\nabla_{X} Y\right)^{V} \\
{\left[X^{V}, Y^{V}\right] } & =0, X^{H} f^{V}=(X f)^{V}
\end{align*}
$$

for all $X, Y \in \Im_{0}^{1}(M), f \in \Im_{0}^{0}(M)$ [5], where R is the Riemannian curvature of g defined by

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}
$$

Theorem 2.3. Let \tilde{G}_{f} be the deformed complete lift metric, is defined by (1.4) and L_{X} the operator Lie derivation with respect to X. From (1.4), Definition (2.1) and Definition (2.2), we get the following results
i) $\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right)=0$,
ii) $\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right)=0$,
iii) $\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right)=0$,
iv) $\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right)=0$,
v) $\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right)=\left(L_{X} g\right)(Y, Z)-g\left(Y,\left(\nabla_{Z} X\right)\right)$,
vi) $\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)=g\left(\left(\hat{\nabla}_{Y} X\right), Z\right)+g\left(Y,\left(\hat{\nabla}_{Z} X\right)\right)$,
vii) $\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right)=\left(L_{X} g\right)(Y, Z)-g\left(\left(\nabla_{Y} X\right), Z\right)$,
viii) $\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)=\left(L_{X} f g\right)(Y, Z)+g((R(X, Y) U, Z)+g(Y,(R(X, Z) U))$,
where the vertical, horizontal and complete lifts $X^{V}, X^{H}, X^{C}, \in \Im_{0}^{1}(T M)$ of $X \in \Im_{0}^{1}(M)$, defined by (1.1),(1.2),(1.3), respectively.

Proof. i)

$$
\begin{aligned}
\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right) & =L_{X^{V}} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(L_{X^{V}} Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V}, L_{X^{V}} Z^{V}\right) \\
& =L_{X^{V}} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right) \\
& =0
\end{aligned}
$$

ii)

$$
\begin{aligned}
\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right) & =L_{X^{V}} \tilde{G}_{f}\left(Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(L_{X^{V}} Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{V}, L_{X^{V}} Z^{H}\right) \\
& =X^{V} g(Y, Z)-\tilde{G}_{f}\left(Y^{V},[X, Z]^{V}-\left(\nabla_{X} Z\right)^{V}\right) \\
& =-\tilde{G}_{f}\left(Y^{V},[X, Z]^{V}\right)+\tilde{G}_{f}\left(Y^{V},\left(\nabla_{X} Z\right)^{V}\right) \\
& =0
\end{aligned}
$$

iii)

$$
\begin{aligned}
\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right) & =L_{X^{V}} \tilde{G}_{f}\left(Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(L_{X^{V}} Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{H}, L_{X^{V}} Z^{V}\right) \\
& =X^{V} g(Y, Z)-\tilde{G}_{f}\left([X, Y]^{V}-\left(\nabla_{X} Y\right)^{V}, Z^{V}\right) \\
& =-\tilde{G}_{f}\left([X, Y]^{V}, Z^{V}\right)+\tilde{G}_{f}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right) \\
& =0
\end{aligned}
$$

iv)

$$
\begin{aligned}
\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right) & =L_{X^{H}} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(L_{X^{H}} Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V}, L_{X^{H}} Z^{V}\right) \\
& =-\tilde{G}_{f}\left(\left(\hat{\nabla}_{X} Y\right)^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V},\left(\hat{\nabla}_{X} Z\right)^{V}\right) \\
& =0
\end{aligned}
$$

$v)$

$$
\begin{aligned}
\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right)= & L_{X^{H}} \tilde{G}_{f}\left(Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(L_{X^{H}} Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{H}, L_{X^{H}} Z^{V}\right) \\
= & X g(Y, Z)-\tilde{G}_{f}\left([X, Y]^{H}-(R(X, Y) U)^{V}, Z^{V}\right) \\
& -\tilde{G}_{f}\left(Y^{H},[X, Z]^{V}+\left(\nabla_{Z} X\right)^{V}\right) \\
= & X g(Y, Z)-g([X, Y], Z)-g(Y,[X, Z])-g\left(Y,\left(\nabla_{Z} X\right)\right) \\
= & \left(L_{X} g\right)(Y, Z)-g\left(Y,\left(\nabla_{Z} X\right)\right)
\end{aligned}
$$

$v i)$

$$
\begin{aligned}
\left(L_{X^{V}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)= & L_{X^{V}} \tilde{G}_{f}\left(Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(L_{X V} Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{H}, L_{X^{V}} Z^{H}\right) \\
= & X^{V}(f g(Y, Z))-\tilde{G}_{f}\left([X, Y]^{V}-\left(\nabla_{X} Y\right)^{V}, Z^{H}\right) \\
& -\tilde{G}_{f}\left(Y^{H},[X, Z]^{V}-\left(\nabla_{X} Z\right)^{V}\right) \\
= & -\tilde{G}_{f}\left([X, Y]^{V}, Z^{H}\right)+\tilde{G}_{f}\left(\left(\nabla_{X} Y\right)^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{H},[X, Z]^{V}\right) \\
& +\tilde{G}_{f}\left(Y^{H},\left(\nabla_{X} Z\right)^{V}\right) \\
= & g\left(-[X, Y]+\left(\nabla_{X} Y\right), Z\right)+g\left(Y,-[X, Z]+\left(\nabla_{X} Z\right)\right) \\
= & g\left([Y, X]+\left(\nabla_{X} Y\right), Z\right)+g\left(Y,[Z, X]+\left(\nabla_{X} Z\right)\right) \\
= & g\left(\left(\hat{\nabla}_{Y} X\right), Z\right)+g\left(Y,\left(\hat{\nabla}_{Z} X\right)\right)
\end{aligned}
$$

vii)

$$
\begin{aligned}
\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right)= & L_{X^{H}} \tilde{G}_{f}\left(Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(L_{X^{H}} Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{V}, L_{X^{H}} Z^{H}\right) \\
= & X^{H} g(Y, Z)-\tilde{G}_{f}\left([X, Y]^{V}+\left(\nabla_{X} Y\right)^{V}, Z^{H}\right) \\
& -\tilde{G}_{f}\left(Y^{V},[X, Z]^{H}-(R(X, Z) U)^{V}\right) \\
= & X g(Y, Z)-\tilde{G}_{f}\left([X, Y]^{V}, Z^{H}\right)-\tilde{G}_{f}\left(\left(\nabla_{Y} X\right)^{V}, Z^{H}\right) \\
& -\tilde{G}_{f}\left(Y^{V},[X, Z]^{H}\right)+\tilde{G}_{f}\left(Y^{V}(R(X, Z) U)^{V}\right) \\
= & X g(Y, Z)-g([X, Y], Z)-g\left(\left(\nabla_{Y} X\right), Z\right)-g(Y,[X, Z]) \\
= & \left(L_{X} g\right)(Y, Z)-g\left(\left(\nabla_{Y} X\right), Z\right)
\end{aligned}
$$

viii)

$$
\begin{aligned}
\left(L_{X^{H}} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)= & L_{X^{H}} \tilde{G}_{f}\left(Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(L_{X^{H}} Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{H}, L_{X^{H}} Z^{H}\right) \\
= & X^{H}(f g(Y, Z))-\tilde{G}_{f}\left([X, Y]^{H}-(R(X, Y) U)^{V}, Z^{H}\right) \\
& -\tilde{G}_{f}\left(Y^{H},[X, Z]^{H}-(R(X, Z) U)^{V}\right) \\
= & X(f) g(Y, Z)+f X g(Y, Z)-f g([X, Y], Z)+g((R(X, Y) U), Z) \\
& -f g(Y,[X, Z])+g(Y,(R(X, Z) U)) \\
= & \left(L_{X} f g\right)(Y, Z)+g((R(X, Y) U, Z)+g(Y,(R(X, Z) U))
\end{aligned}
$$

Definition 2.4. Differantial transformation of algebra $T(M)$, deffined by

$$
D=\nabla_{X}: T(M) \rightarrow T(M), X \in \Im_{0}^{1}(M)
$$

is called as covarient derivation with respect to vector field X if

$$
\begin{align*}
\nabla_{f X+g Y} t & =f \nabla_{X} t+g \nabla_{Y} t \tag{2.4}\\
\nabla_{X} f & =X f
\end{align*}
$$

where $\forall f, g \in \Im_{0}^{0}(M), \forall X, Y \in \Im_{0}^{1}(M), \forall t \in \Im(M)$.
On the other hand, a transformation deffined by

$$
\nabla: \Im_{0}^{1}(M) \times \Im_{0}^{1}(M) \rightarrow \Im_{0}^{1}(M)
$$

is called as affin connection $[9,11]$. In addition, the horizontal lift of an affine connection ∇ in M to $T(M)$, denoted by ∇^{H}, defined by

$$
\begin{align*}
\nabla_{X}^{H} Y^{V} & =0, \nabla_{X}^{H} Y^{H}=0 \tag{2.5}\\
\nabla_{X^{H}}^{H} Y^{V} & =\left(\nabla_{X} Y\right)^{V}, \nabla_{X}^{H} Y^{H}=\left(\nabla_{X} Y\right)^{H}
\end{align*}
$$

for any $X, Y \in \Im_{0}^{1}(M)$.
Theorem 2.5. Let \tilde{G}_{f} be the deformed complete lift metric, is defined by (1.4) and the horizontal lift ∇^{H} of a symetric affine connection ∇ in M to $T(M)$. From (1.4) and Definition 2.4, we get the following results
i) $\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right)=0$,
ii) $\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right)=0$,
iii) $\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right)=0$,
iv) $\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)=0$,
v) $\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right)=0$,
vi) $\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right)=\left(\nabla_{X} g\right)(Y, Z)$,
vii) $\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right)=\left(\nabla_{X} g\right)(Y, Z)$,
viii) $\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)=\left(\nabla_{X} f g\right)(Y, Z)$,
where the vertical, horizontal and complete lifts $X^{V}, X^{H}, X^{C}, \in \Im_{0}^{1}(T M)$ of $X \in \Im_{0}^{1}(M)$, defined by (1.1), (1.2), (1.3), respectively.

Proof. i)

$$
\begin{aligned}
\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right) & =\nabla_{X^{V}}^{H} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(\nabla_{X^{V}}^{H} Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V}, \nabla_{X^{V}}^{H} Z^{V}\right) \\
& =X^{V} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right) \\
& =0
\end{aligned}
$$

ii)

$$
\begin{aligned}
\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right) & =\nabla_{X^{V}}^{H} \tilde{G}_{f}\left(Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(\nabla_{X^{V}}^{H} Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{V}, \nabla_{X^{V}}^{H} Z^{H}\right) \\
& =X^{V} g(Y, Z) \\
& =0
\end{aligned}
$$

iii)

$$
\begin{aligned}
\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right) & =\nabla_{X^{V}}^{H} \tilde{G}_{f}\left(Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(\nabla_{X^{V}}^{H} Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{H}, \nabla_{X^{V}}^{H} Z^{V}\right) \\
& =X^{V} g(Y, Z) \\
& =0
\end{aligned}
$$

$i v)$

$$
\begin{aligned}
\left(\nabla_{X^{V}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right) & =\nabla_{X^{V}}^{H} \tilde{G}_{f}\left(Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(\nabla_{X^{V}}^{H} Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{H}, \nabla_{X^{V}}^{H} Z^{H}\right) \\
& =X^{V} f g(Y, Z) \\
& =0
\end{aligned}
$$

v)

$$
\begin{aligned}
\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{V}\right) & =\nabla_{X^{H}}^{H} \tilde{G}_{f}\left(Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(\nabla_{X}^{H} Y^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V}, \nabla_{X^{H}}^{H} Z^{V}\right) \\
& =-\tilde{G}_{f}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{V},\left(\nabla_{X} Z\right)^{V}\right) \\
& =0
\end{aligned}
$$

$v i)$

$$
\begin{aligned}
\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{V}, Z^{H}\right) & =\nabla_{X}^{H} \tilde{G}_{f}\left(Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(\nabla_{X^{H}}^{H} Y^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{V}, \nabla_{X^{H}}^{H} Z^{H}\right) \\
& =X g(Y, Z)-\tilde{G}_{f}\left(\left(\nabla_{X} Y\right)^{V}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{V},\left(\nabla_{X} Z\right)^{H}\right) \\
& =X g(Y, Z)-g\left(\left(\nabla_{X} Y\right), Z\right)-g\left(Y,\left(\nabla_{X} Z\right)\right) \\
& =\left(\nabla_{X} g\right)(Y, Z)
\end{aligned}
$$

vii)

$$
\begin{aligned}
\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{V}\right) & =\nabla_{X}^{H}{ }_{H} \tilde{G}_{f}\left(Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(\nabla_{X}^{H} Y^{H}, Z^{V}\right)-\tilde{G}_{f}\left(Y^{H}, \nabla_{X^{H}}^{H} Z^{V}\right) \\
& =X g(Y, Z)-g\left(\left(\nabla_{X} Y\right), Z\right)-g\left(Y,\left(\nabla_{X} Z\right)\right) \\
& =\left(\nabla_{X} g\right)(Y, Z)
\end{aligned}
$$

viii)

$$
\begin{aligned}
\left(\nabla_{X^{H}}^{H} \tilde{G}_{f}\right)\left(Y^{H}, Z^{H}\right)= & \nabla_{X^{H}}^{H} \tilde{G}_{f}\left(Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(\nabla_{X^{H}}^{H} Y^{H}, Z^{H}\right)-\tilde{G}_{f}\left(Y^{H}, \nabla_{X^{H}}^{H} Z^{H}\right) \\
= & X(f) g(Y, Z)+f X g(Y, Z)-\tilde{G}_{f}\left(\left(\nabla_{X} Y\right)^{H}, Z^{H}\right) \\
& -\tilde{G}_{f}\left(Y^{H},\left(\nabla_{X} Z\right)^{H}\right) \\
= & X(f) g(Y, Z)+f X g(Y, Z)-f g\left(\left(\nabla_{X} Y\right), Z\right)-g\left(Y,\left(\nabla_{X} Z\right)\right) \\
= & \left(\nabla_{X} f g\right)(Y, Z)
\end{aligned}
$$

Acknowledgments

The authors are grateful to the referee for his/her valuable comments and suggestions.

References

1. M.A. Akyol, Metallic maps between metallic Riemannian manifolds and constancy of certain maps, Honam J. of Math., 41(2), (2019), 343-356.
2. M.A. Akyol and B. Şahin, Conformal semi-invariant Riemannian maps to Kaehler manifolds, Revista De la Union Matematica Argentina, 60 (2), (2019), 459-468.
3. H. Çayır and K. Akdağ, Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Math. Sci., 4 (4), (2016), 42-50.
4. H. Çayır and G. Köseoğlu, Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to X^{C} and X^{V} on Tangent Bundle $T(M)$, New Trends in Math. Sci., 4 (1), (2016), 153-159.
5. P. Dombrowski, On the geometry of the tangent bundles, J Reine Angew Math., 210, (1962), 73-88.
6. A. Gezer and M. Özkan, Notes on the tangent bundle with deformed complete lift metric, 38, (2014), 1038-1049.
7. b. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math., 3, (2010), 437-447.
8. B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56, (2013), 173-183.
9. A.A. Salimov, Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
10. S. Sasaki, On the diferential geometry of tangent bundles of Riemannian manifolds, Tohoku Math J., 10, (1958), 338-358.
11. K. Yano and S. Ishihara, Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.
```
Haşim Çayir,
Department of Mathematics,
Faculty of Arts and Sciences,
Giresun University, 28100, Giresun, Turkey.
E-mail address: hasim.cayir@giresun.edu.tr
and
Rabia Cakan Akpinar,
Department of Mathematics,
Faculty of Arts and Sciences,
Kafkas University, Kars, Turkey.
E-mail address: rabiacakan@kafkas.edu.tr
```

