A Generalized Common Fixed Point Theorem in Complex Valued b-Metric Spaces

Brahim Marzouki, Noreddine Makran, Abdelhak El Haddouchi

Abstract

In this work we are interested in the generalization of coincidence point and fixed point theorem

 for a 4-tuple of mappings satisfying a new type of implicit relation in complex valued b-metric spaces.Key Words: Metric space, Complex valued b-metric, Fixed point, Implicit relation, $\left(P_{n, m}\right)$.

Contents

1 Introduction

2 Main Results

3 Consequences

1. Introduction

The study of fixed point theory in metric spaces has done a great service in several areas of mathematics, namely, in solving differential and functional equations, in the field of approximation theory, in optimization etc. In 2011 Azam A. et al (see [3]) introduced and studied complex valued metric spaces wherein some fixed point theorems for mappings satisfying a rational inequality were established and obtained several results in fixed point theory. The concept of complex valued b-metric space as a generalization of complex valued metric space. Subsequently, many authors proved fixed and common fixed point results in complex valued b-metric spaces (for example [5], [17]).

In this work we are interested in the generalization of coincidence point and fixed point theorem for a 4 -tuple of mappings satisfying a new type of implicit relation in complex valued b-metric spaces.

Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$. Define a partial order \precsim on \mathbb{C} as follows:
$z_{1} \precsim z_{2}$ if and only if $\operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)$.
Consequently, one can infer that $z_{1} \precsim z_{2}$ if one of the following conditions is satisfied:
(i) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(ii) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$,
(iii) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(iv) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.

In particular, we write $z_{1} \prec z_{2}$ if $z_{1} \neq z_{2}$ and one of (i), $(i i)$, and (iii) is satisfied and we will write $z_{1} \prec z_{2}$ if only (iii) is satisfied.

Definition 1.1 ([4]). Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \longrightarrow$ \mathbb{R}^{+}is said to be a b-metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) $d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.

Definition 1.2. [17] Let X be a nonempty set and $s \geq 1$ a given real number. A function $d: X \times X \rightarrow \mathbb{C}$, satisfies the following conditions:
$\left(d_{1}\right) 0 \precsim d(x, y)$, for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
$\left(d_{2}\right) d(x, y)=d(y, x)$ for all $x, y \in X$,
$\left(d_{3}\right) d(x, y) \precsim s[d(x, z)+d(z, y)]$, for all $x, y, z \in X$.
Then (X, d) is called a complex valued b-metric space.

[^0]Note that every complex valued metric space is a complex valued b-metric space with $s=1$. But the converse need not be true.

Example 1.3. Let $X=\mathbb{C}$. Define $d: X \times X \rightarrow \mathbb{C}^{+}$by $d(x, y)=\left((\operatorname{Re}(x-y))^{2}+i \times(\operatorname{Im}(x-y))^{2}\right.$ for all $x, y \in X$. Then (X, d) is a complex valued b-metric space with $s=2$.

Definition 1.4. [16] let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a given mapping, we say that f is a non-decreasing mapping with respect \precsim if for every $x, y \in \mathbb{C}, x \precsim y$ implies $f x \precsim f y$.

Definition 1.5. Let (X, d) be a complex valued b-metric space and let

1) $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.
2) $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.
3) $A \subset X$ is said to be bounded is $\sup _{x, y \in A}|d(x, y)|<+\infty$.

Definition 1.6. Let $f, F: X \rightarrow X$

1) A point $x \in X$ is said to be a coincidence point of f and F if $f x=F x$. We denote by $C_{f, F}$ the set of all coincidence points of f and F.
2) A point $x \in X$ is a fixed point of F if $x=F x$.

If $f=I d$ we have $C_{I d, F}$ the set of all fixed points of F.
Definition 1.7. [2] The pair $f, F: X \longrightarrow X$ is occasionally weakly compatible (owc) if $f F x=F f x$ for some $x \in C_{f, F}$.

Definition 1.8. [8] The pair $f: X \longrightarrow X$ and $F: X \longrightarrow B(X)$ satisfies $\left(P_{n, m}\right)$ if $\exists x \in X$ such that $f^{m} x \in F x$ and $f^{n} x \in\left(F f^{n-m} x \cap F f^{m} x\right)$, with $n, m \in \mathbb{N}$ and $n>m$. $\left(f^{0} x=x\right)$.
$B(X)$ the set of all nonempty bounded subset of X.
Remark 1.9. [8] If f and F are owc, then (f, F) satisfies $\left(P_{2,1}\right)$.
Example 1.10. [8] Let $f:[0,1] \longrightarrow[0,1]$ and $F:[0,1] \longrightarrow B([0,1])$, such that
$f(x)=\left\{\begin{array}{l}1 \text { if } x \in\{0,1\} \\ 0 \text { else }\end{array} \quad\right.$ and $F x=\left\{\begin{array}{l}10,1] \text { if } x \in\{0,1\} \\ 0 \text { else }\end{array}\right.$
then $f(0) \in F 0$ and $f^{3}(0) \in\left(F f^{2}(0)\right) \cap(F f(0))$, so (f, F) satisfies $\left(P_{3,1}\right)$.
Example 1.11. Let $f:[0,1] \longrightarrow[0,1]$ and $F:[0,1] \longrightarrow[0,1]$, such that
$f(x)=\left\{\begin{array}{l}\frac{1}{2} \text { if } x=0 \\ 1 \text { if } x=\frac{1}{2} \\ 0 \text { else }\end{array}\right.$ and $F x=\left\{\begin{array}{l}0 \text { if } x \in\left\{\frac{1}{2}, 1\right\} \\ \frac{1}{2} \text { else }\end{array}\right.$
then $f(0)=F 0$ and $f^{3}(0)=F f^{2}(0)=F f(0)$, so (f, F) satisfies $\left(P_{3,1}\right)$.
Definition 1.12. [7][Altering Distance Function] A function $\psi:[0,1) \longrightarrow[0,1)$ is called an altering distance function if the following properties are satisfied:
(i) is continuous and strictly increasing,
(ii) $\psi(t)=0$ if and only if $t=0$.

Notations(see [12])

$$
\Psi=\{\psi:[0,1) \longrightarrow[0,1) \mid \psi \text { is an altering distance function }\}
$$

$\Phi_{1}=\left\{\varphi:[0, \infty) \longrightarrow[0, \infty), \varphi\right.$ is continuous, $\varphi(t)=0 \Leftrightarrow t=0$, and $\left.\varphi\left(\liminf _{n \rightarrow \infty} a_{n}\right) \leq \liminf _{n \rightarrow \infty} \varphi\left(a_{n}\right)\right\}$.

$$
\Phi_{2}=\left\{\begin{array}{l}
\varphi:[0, \infty) \times[0, \infty) \longrightarrow[0, \infty), \varphi \text { is continuous, } \varphi(x, y)=0 \Leftrightarrow x=y=0 \\
\text { and } \varphi\left(\liminf _{n \rightarrow \infty} a_{n}, \liminf _{n \rightarrow \infty} b_{n}\right) \leq \liminf _{n \rightarrow \infty} \varphi\left(a_{n}, b_{n}\right)
\end{array}\right\}
$$

Theorem 1.13 (theorem $4[18])$. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let $T: X \longrightarrow X$ be such that

$$
d(T(x), T(y)) \leq \alpha d(x, y)+\beta d(x, T(x))+\gamma d(y, T(y))
$$

for every $x, y \in X$, where $\alpha, \beta, \gamma \geq 0$ with $\alpha+\beta+\gamma<\frac{1}{s}$. Then T has a unique fixed point in X.
Theorem 1.14 (theorem $2.1[15])$. If S and T are self-mappings defined on a complete complex valued metric space (X, d) satisfying the condition

$$
d(S x, T y) \precsim \lambda d(x, y)+\frac{\mu d(x, S x) d(y, T y)+\gamma d(y, S x) d(x, T y)}{1+d(x, y)}
$$

for all $x, y \in X$ where λ, μ, γ are nonnegative reals with $\lambda+\mu+\gamma<1$, then S and T have a unique common fixed point.

Theorem 1.15 (theorem $3.1[5])$. Let (X, d) be a complete complex valued b-metric space with the coefficient $s \geq 1$ and $x_{0} \in X$. Let $0 \prec r \in \mathbb{C}$ and A, B, C, D and E are nonnegative reals such that $A+B+C+2 s D+2 s E<1$. Let $S, T: X \longrightarrow X$ are mappings satisfying:
$d(S x, T y) \precsim A d(x, y)+B \frac{d(x, S x) d(y, T y)}{1+d(x, y)}+C \frac{d(y, S x) d(x, T y)}{1+d(x, y)}+D \frac{d(x, S x) d(x, T y)}{1+d(x, y)}+E \frac{d(y, S x) d(y, T y)}{1+d(x, y)}$
for all $x, y \in \overline{B\left(x_{0}, r\right)}$. If $\left|d\left(x_{0}, S x_{0}\right)\right| \leq(1-\lambda)|r|$ where $\lambda=\max \left\{\frac{A+s D}{1-B-s D}, \frac{A+s E}{1-B-s E}\right\}$, then there exists a unique point $u \in \overline{B\left(x_{0}, r\right)}$ such that $u=S u=T u$.

2. Main Results

Definition 2.1. Let $s \geq 1$ and \mathcal{F}_{s} be the set of all functions $\phi\left(t_{1}, t_{2}, \ldots, t_{6}\right): \mathbb{C}_{+}^{6} \longrightarrow \mathbb{C}$ satisfying the following conditions:
$\left(\phi_{1}\right) \phi$ continuous on \mathbb{C}_{+}^{6},
$\left(\phi_{2}\right) \exists \alpha, \beta \in \mathbb{R}_{+}$such that $\alpha+2 s \beta<1, \forall u, v, w \in \mathbb{C}_{+}$:

$$
\phi(u, v, u, v, 0, w) \precsim 0 \text { or } \phi(u, v, v, u, w, 0) \precsim 0 \Rightarrow|u| \leq \alpha|v|+\beta|w|,
$$

$\left(\phi_{3}\right) \exists \gamma, \mu \in \mathbb{R}_{+}$such that $s \gamma+s^{2} \mu<1, \forall u, v, w \in \mathbb{C}_{+}$:

$$
\phi(u, 0, v, 0,0, w) \precsim 0 \Rightarrow|u| \leq \gamma|v|+\mu|w|
$$

$\left(\phi_{4}\right) \phi(u, 0, u, 0,0, u) \precsim 0$ or $\phi(u, u, 0,0, u, u) \precsim 0 \Rightarrow u=0$.
Example 2.2. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\eta t_{1}-\left(\alpha t_{2}+\beta t_{3}+\gamma t_{4}\right)$.
Where $\eta, \alpha, \beta, \gamma \in \mathbb{C}_{+}$, with $s(\alpha+\beta+\gamma) \prec \eta$.
Example 2.3. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=a t_{1}-r t_{2}$.
Where $r, a \in \mathbb{C}_{+}$, with $s r \prec a$.
Example 2.4.

$$
\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\eta t_{1}-\left(\alpha t_{2}+\beta t_{3}+\gamma t_{4}+\mu\left[t_{5}+t_{6}\right]\right)
$$

Where $\mu \in \mathbb{R}_{+}, \eta, \alpha, \beta, \gamma \in \mathbb{C}_{+}$, with $s(\alpha+\beta)+\gamma+\left(s^{2}+s\right) \mu \precsim \eta$.

Example 2.5.

$$
\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-r \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2 s}\right\} .
$$

Where $0 \leq r<1$, with $r s<1$.

Example 2.6. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-r \max \left\{t_{2}, t_{3}, t_{4}\right\}$.
With $0 \leq r<\frac{1}{s}$.
Example 2.7. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\mu\left[t_{3}+t_{4}\right]$.
With $\mu<\min \left\{\frac{1}{2}, \frac{1}{s}\right\}$,
Example 2.8. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\left(\lambda t_{2}+\frac{\mu t_{3} t_{4}+\gamma t_{5} t_{6}}{1+t_{2}}\right)$. Where λ, μ, γ are nonnegative reals with $\lambda+\mu+\gamma<1$,
Example 2.9. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\left(A t_{2}+B \frac{t_{3} t_{4}}{1+t_{2}}+C \frac{t_{5} t_{6}}{1+t_{2}}+D \frac{t_{3} t_{5}}{1+t_{2}}+E \frac{t_{4} t_{6}}{1+t_{2}}\right)$. Where A, B, C, D, E are nonnegative reals with $A+B+C+2 s D+2 s E<1$,
Example 2.10. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\frac{t_{2}}{s^{3}}$.
Example 2.11. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\left(\frac{t_{5}}{s+1}+\frac{t_{6}}{s^{4}(s+1)}\right)$.
Theorem 2.12. Let (X, d) be a complex valued b-metric space with constant s, f,g,F and $G: X \longrightarrow X$ satisfying $G X \subseteq f X, F X \subseteq g X$, and

$$
\begin{equation*}
\phi(d(F x, G y), d(f x, g y), d(f x, F x), d(g y, G y), d(f x, G y), d(F x, g y)) \precsim 0, \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_{s}$, if one of $F X, G X, f X$ or $g X$ is a complete subspace of X,
then $C_{f, F} \neq \emptyset, C_{g, G} \neq \emptyset$ and $f\left(C_{f, F}\right)=F\left(C_{f, F}\right)=g\left(C_{g, G}\right)=G\left(C_{g, G}\right)=\{f x\}=\{g y\}=\{$.$\} , for all$ $x \in C_{f, F}, y \in C_{g, G}$.

Proof.

Let x_{0} be an arbitrary point in X. Since $F X \subseteq g X$, we find a point x_{1} in X such that $F x_{0}=g x_{1}$. Also, since $G X \subseteq f X$, we choose a point x_{2} with $G x_{1}=f x_{2}$. Thus in general for the point $x_{2 n-2}$ one find a point $x_{2 n-1}$ such that $F x_{2 n-2}=g x_{2 n-1}$ and then a point $x_{2 n}$ with $G x_{2 n-1}=f x_{2 n}$ for $n=1,2, \ldots \ldots$.

Repeating such arguments one can construct sequences x_{n} and y_{n} in X such that,

$$
\begin{equation*}
y_{2 n-1}=F x_{2 n-2}=g x_{2 n-1}, y_{2 n}=G x_{2 n-1}=f x_{2 n}, n=1,2, \ldots \ldots \tag{2.2}
\end{equation*}
$$

For $x=x_{2 n}$ and $y=x_{2 n+1}$ By the inequality (2.1) we have:

$$
\phi\binom{d\left(F x_{2 n}, G x_{2 n+1}\right), d\left(f x_{2 n}, g x_{2 n+1}\right), d\left(f x_{2 n}, F x_{2 n}\right)}{, d\left(g x_{2 n+1}, G x_{2 n+1}\right), d\left(f x_{2 n}, G x_{2 n+1}\right), d\left(g x_{2 n+1}, F x_{2 n}\right)} \precsim 0 .
$$

Implies

$$
\phi\left(d\left(y_{2 n+1}, y_{2 n+2}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n+2}\right), d\left(y_{2 n}, y_{2 n+2}\right), 0\right) \precsim 0 .
$$

So, by (ϕ_{2}) we have

$$
\begin{aligned}
\left|d\left(y_{2 n+1}, y_{2 n+2}\right)\right| & \leq \alpha\left|d\left(y_{2 n}, y_{2 n+1}\right)\right|+\beta\left|d\left(y_{2 n}, y_{2 n+2}\right)\right| \\
& \leq \alpha\left|d\left(y_{2 n}, y_{2 n+1}\right)\right|+\beta s\left[\left|d\left(y_{2 n}, y_{2 n+1}\right)\right|+\left|d\left(y_{2 n+1}, y_{2 n+2}\right)\right|\right] .
\end{aligned}
$$

So

$$
\begin{equation*}
\left|d\left(y_{2 n+1}, y_{2 n+2}\right)\right| \leq h\left|d\left(y_{2 n}, y_{2 n+1}\right)\right| \text { with } h=\frac{\alpha+s \beta}{1-s \beta}<1 . \tag{2.3}
\end{equation*}
$$

For $x=x_{2 n+2}$ and $y=x_{2 n+1}$, by the inequality (2.1) we have :

$$
\phi\binom{d\left(F x_{2 n+2}, G x_{2 n+1}\right), d\left(f x_{2 n+2}, g x_{2 n+1}\right), d\left(f x_{2 n+2}, F x_{2 n+2}\right)}{, d\left(g x_{2 n+1}, G x_{2 n+1}\right), d\left(f x_{2 n+2}, G x_{2 n+1}\right), d\left(g x_{2 n+1}, F x_{2 n+2}\right)} \precsim 0 .
$$

Implies

$$
\phi\left(d\left(y_{2 n+3}, y_{2 n+2}\right), d\left(y_{2 n+2}, y_{2 n+1}\right), d\left(y_{2 n+3}, y_{2 n+2}\right), d\left(y_{2 n+2}, y_{2 n+1}\right), 0, d\left(y_{2 n+1}, y_{2 n+3}\right)\right) \precsim 0 \text {. }
$$

So, by (ϕ_{2}) we have

$$
\begin{align*}
\left|d\left(y_{2 n+3}, y_{2 n+2}\right)\right| \leq & \alpha\left|d\left(y_{2 n+2}, y_{2 n+1}\right)\right|+\beta\left|d\left(y_{2 n+3}, y_{2 n+1}\right)\right| \\
\leq & \alpha\left|d\left(y_{2 n+2}, y_{2 n+1}\right)\right|+s \beta\left[\left|d\left(y_{2 n+3}, y_{2 n+2}\right)\right|+\left|d\left(y_{2 n+2}, y_{2 n+1}\right)\right|\right] . \\
& \left|d\left(y_{2 n+3}, y_{2 n+2}\right)\right| \leq h\left|d\left(y_{2 n+2}, y_{2 n+1}\right)\right| . \tag{2.4}
\end{align*}
$$

By (2.3) and (2.4) we have

$$
\left|d\left(y_{n+1}, y_{n}\right)\right| \leq h^{n-1}\left|d\left(y_{1}, y_{2}\right)\right|, n=2,3, \ldots \ldots
$$

Therefore, for any $n, m \in \mathbb{N}^{*}$ with $n \geq 2$, we have

$$
\begin{aligned}
\left|d\left(y_{n}, y_{n+m}\right)\right| \leq & s\left|d\left(y_{n}, y_{n+1}\right)\right|+s^{2}\left|d\left(y_{n+1}, y_{n+2}\right)\right|+s^{3}\left|d\left(y_{n+2}, y_{n+3}\right)\right|+ \\
& \ldots+s^{m-1}\left|d\left(y_{n+m-2}, y_{n+m-1}\right)\right|+s^{m-1}\left|d\left(y_{n+m-1}, y_{n+m}\right)\right| .
\end{aligned}
$$

On the other hand we have :

$$
\begin{aligned}
\left|d\left(y_{n}, y_{n+m}\right)\right| & \leq\left(s h^{n-1}\left|d\left(y_{1}, y_{2}\right)\right|+\ldots+s^{m-1} h^{n+m-3}\left|d\left(y_{1}, y_{2}\right)\right|+s^{m-1} h^{n+m-2}\left|d\left(y_{1}, y_{2}\right)\right|\right) \\
& \leq s h^{n-1}\left(1+(s h)+(s h)^{2}+\ldots+(s h)^{m-2}+s^{m-2} h^{m-1}\right)\left|d\left(y_{1}, y_{2}\right)\right| \\
& =s h^{n-1}\left(\frac{1-(s h)^{m-1}}{1-s h}+s^{m-2} h^{m-1}\right)\left|d\left(y_{1}, y_{2}\right)\right| \\
& \leq h^{n-1}\left(\frac{s}{1-s h}+(s h)^{m-1}\right)\left|d\left(y_{1}, y_{2}\right)\right|
\end{aligned}
$$

from where $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+m}\right)=0$ for $m \in \mathbb{N}^{*}$. By definition 1.5 then $\left(y_{n}\right)$ is a Cauchy sequence in (X, d).
If $f X$ is a complete subspace of X, there exists $u \in f X$ such that $\lim _{n \rightarrow \infty} d\left(y_{2 n}, u\right)=0$. Then we can find $v \in X$ such that

$$
\begin{equation*}
f v=u \tag{2.5}
\end{equation*}
$$

We claim that $u=F v$.

$$
\begin{aligned}
\left|d\left(F v, y_{2 n}\right)\right| & \leq s\left|d\left(F v, y_{2 n+1}\right)\right|+s\left|d\left(y_{2 n+1}, y_{2 n}\right)\right| \\
& \leq s^{2}\left[|d(F v, u)|+\left|d\left(u, y_{2 n+1}\right)\right|\right]+s\left|d\left(y_{2 n+1}, y_{2 n}\right)\right|
\end{aligned}
$$

we deduce that the sequence $\left(d\left(F v, y_{2 n}\right)\right)$ is bounded, similarly, we obtain $\left(d\left(F v, y_{2 n-1}\right)\right)$ is bounded.
Then there exists a strictly increasing application $\theta: \mathbb{N} \longrightarrow \mathbb{N}$ such that $\left(d\left(F v, y_{2 \theta(n)-1}\right)\right)$ and $\left(d\left(F v, y_{2 \theta(n)}\right)\right)$ are convergent.

Using inequality (2.1) and (2.5), we have

$$
\phi\binom{d\left(F v, G x_{2 \theta(n)-1}\right), d\left(f v, g x_{2 \theta(n)-1}\right), d(f v, F v)}{, d\left(g x_{2 \theta(n)-1}, G x_{2 \theta(n)-1}\right), d\left(f v, G x_{2 \theta(n)-1}\right), d\left(F v, g x_{2 \theta(n)-1}\right)} \precsim 0 .
$$

We have successively

$$
\phi\left(d\left(F v, y_{2 \theta(n)}\right), d\left(u, y_{2 \theta(n)-1}\right), d(u, F v), d\left(y_{2 \theta(n)-1}, y_{2 \theta(n)}\right), d\left(u, y_{2 \theta(n)}\right), d\left(F v, y_{2 \theta(n)-1}\right)\right) \precsim 0 \text {. }
$$

letting $n \rightarrow \infty$ by (ϕ_{1}) we obtain

$$
\phi\left(\lim _{n \rightarrow+\infty} d\left(F v, y_{2 \theta(n)}\right), 0, d(u, F v), 0,0, \lim _{n \rightarrow+\infty} d\left(F v, y_{2 \theta(n)-1}\right)\right) \precsim 0 .
$$

Then by $\left(\phi_{3}\right)$, we have

$$
\begin{aligned}
\left|\lim _{n \rightarrow+\infty} d\left(F v, y_{2 \theta(n)}\right)\right| & \leq \gamma|d(u, F v)|+\mu\left|\lim _{n \rightarrow+\infty} d\left(F v, y_{2 \theta(n)-1}\right)\right| \\
& \leq \gamma|d(u, F v)|+s \mu\left|\lim _{n \rightarrow+\infty}\left[d(F v, u)+d\left(u, y_{2 \theta(n)-1}\right)\right]\right|
\end{aligned}
$$

so

$$
\begin{equation*}
\left|\lim _{n \rightarrow+\infty} d\left(F v, y_{2 \theta(n)}\right)\right| \leq(\gamma+s \mu)|d(F v, u)| \tag{2.6}
\end{equation*}
$$

On the other hand we have

$$
|d(u, F v)| \leq s\left[\left|d\left(u, y_{2 \theta(n)}\right)\right|+\left|d\left(y_{2 \theta(n)}, F v\right)\right|\right]
$$

By (2.6) we have

$$
\begin{aligned}
|d(u, F v)| & \leq \lim _{n \rightarrow+\infty} s\left[\left|d\left(u, y_{2 \theta(n)}\right)\right|+\left|d\left(y_{2 \theta(n)}, F v\right)\right|\right] \\
& =s \lim _{n \rightarrow+\infty}\left|d\left(y_{2 \theta(n)}, F v\right)\right| \\
& \leq\left(s \gamma+s^{2} \mu\right)|d(u, F v)| \\
& <|d(u, F v)|
\end{aligned}
$$

so $d(F v, u)=0$, that is $u=f v=F v$.
By $F X \subset g X$ we have $w \in X$ such that $g w=u$. Then we have also $w \in C_{g, G} \neq \emptyset$, and $f\left(C_{f, F}\right) \cap$ $g\left(C_{g, G}\right) \neq \emptyset$.

For $x=v \in C_{f, F}$ and $y=w \in C_{g, G}$ by (2.1) we have successively

$$
\phi(d(F v, G w), d(f v, g w), d(f v, F v), d(g w, G w), d(f v, G w), d(F v, g w)) \precsim 0,
$$

so

$$
\phi(d(f v, G w), d(f v, G w), 0,0, d(f v, G w), d(f v, G w)) \precsim 0,
$$

then by $\left(\phi_{4}\right)$, we have $d(f v, G w)=0$, there is $g\left(C_{g, G}\right)=G\left(C_{g, G}\right)=g w=f v=F v$. Similarly, we have $f\left(C_{f, F}\right)=F\left(C_{f, F}\right)=g\left(C_{g, G}\right)=G\left(C_{g, G}\right)=g w=f v$, for all $v \in C_{f, F}, w \in C_{g, G}$.

If $G X$ is a complete subspace of X, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} d\left(y_{2 n}, u\right)=0$. Then we can find $w \in X$ such that

$$
G w=u
$$

And like $G X \subset f X$, there exists $v \in X$ such that $f v=u$. In the same previous way we find $u=F v$ and there exists $w^{\prime} \in X$ such that $g w^{\prime}=G w^{\prime}=u$.

If $F X$ or $g X$ is complete, then by permuting the roles of f with g and F with G, we find the proof.
Corollary 2.13. Let (X, d) be a complex valued b-metric space with constant s, let $F, G: X \longrightarrow X$ satisfying

$$
\begin{equation*}
\phi(d(F x, G y), d(x, y), d(x, F x), d(y, G y), d(x, G y), d(F x, y)) \precsim 0 \tag{2.7}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_{s}$, if one of $F X, G X$, or X is a complete subspace of X, then F and G have a unique common fixed point.

Proof. Suppose $f=g=I d$, so $(2.7) \Rightarrow(2.1)$, by theorem 2.12 we have $C_{I d, F}=C_{I d, G} \neq \emptyset$ and $C_{I d, F}=F\left(C_{I d, F}\right)=C_{I d, G}=G\left(C_{I d, G}\right)=\{x\}=\{y\}=\{$.$\} , for all x \in C_{I d, F}, y \in C_{I d, G}$.

Theorem 2.14. Let (X, d) be a complex valued b-metric space with constant s, let $f, g, F, G: X \longrightarrow X$ satisfying $G X \subseteq f^{m_{1}} X, F X \subseteq g^{m_{2}} X, m_{1}, m_{2} \in \mathbb{N}$ and

$$
\begin{equation*}
\phi\left(d(F x, G y), d\left(f^{m_{1}} x, g^{m_{2}} y\right), d\left(f^{m_{1}} x, F x\right), d\left(g^{m_{2}} y, G y\right), d\left(f^{m_{1}} x, G y\right), d\left(F x, g^{m_{2}} y\right)\right) \precsim 0, \tag{2.8}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_{s}$, if one of $F X, G X, f^{m_{1}} X$ or $g^{m_{2}} X$ is a complete subspace of X. Then
(i) $C_{f^{m_{1}}, F} \neq \emptyset, C_{g^{m_{2}}, G} \neq \emptyset$ and $f^{m_{1}}\left(C_{f^{m_{1}}, F}\right)=F\left(C_{f^{m_{1}}, F}\right)=g^{m_{2}}\left(C_{g^{m_{2}}, G}\right)=G\left(C_{g^{m_{2}}, G}\right)=\{$.$\} .$
(ii) If the pair (F, f) satisfies $\left(P_{n_{1}, m_{1}}\right)$, and (G, g) satisfies $\left(P_{n_{2}, m_{2}}\right)$, then F, G, $f^{n_{1}-m_{1}}$ and $g^{n_{2}-m_{2}}$ have common fixed point $u \in X$.

Moreover, if $n_{1}=2 m_{1}$ or $n_{2}=2 m_{2}$, then u is unique.
Proof. (i) For $f=f^{m_{1}}$ and $g=g^{m_{2}}$ we have $(2.8) \Rightarrow(2.1)$, so by theorem 2.12, $C_{f^{m_{1}, F}} \neq \emptyset$, $C_{g^{m_{2}}, G} \neq \emptyset$ and $f^{m_{1}}\left(C_{f^{m_{1}}, F}\right)=F\left(C_{f^{m_{1}}, F}\right)=g^{m_{2}}\left(C_{g^{m_{2}}, G}\right)=G\left(C_{g^{m_{2}}, G}\right)=\{$.$\} .$
(ii) Now, we prove that $F, G, f^{n_{1}-m_{1}}$ and $g^{n_{2}-m_{2}}$, have a common fixed point. Since (F, f) satisfies $\left(P_{n_{1}, m_{1}}\right)$, and (G, g) satisfies $\left(P_{n_{2}, m_{2}}\right)$, there exist $v, w \in X$ such that $f^{m_{1}} v=F v, f^{n_{1}} v=F f^{m_{1}} v=$ $F f^{n_{1}-m_{1}} v, g^{m_{2}} w=G w$ and $g^{n_{2}} w=G g^{m_{2}} w=G g^{n_{2}-m_{2}} w$, then $v \in C_{f^{m_{1}}, F}, w \in C_{g^{m_{2}, G}}$ and we have (i). So $u=f^{m_{1}} v=F v=g^{m_{2}} w=G w$.

For $x=f^{n_{1}-m_{1}} v, y=w$, by (2.1) we have successively :

$$
\begin{gathered}
\phi\binom{d\left(F f^{n_{1}-m_{1}} v, G w\right), d\left(f^{n_{1}} v, g^{m_{2}} w\right), d\left(f^{n_{1}} v, F f^{n_{1}-m_{1}} v\right)}{, d\left(g^{m_{2}} w, G w\right), d\left(f^{n_{1}} v, G w\right), d\left(F f^{n_{1}-m_{1}} v, g^{m_{2}} w\right)} \precsim 0, \\
\phi\left(d\left(F f^{n_{1}-m_{1}} v, G w\right), d\left(F f^{n_{1}-m_{1}} v, G w\right), 0,0, d\left(F f^{n_{1}-m_{1}} v, G w\right), d\left(F f^{n_{1}-m_{1}} v, G w\right)\right) \precsim 0,
\end{gathered}
$$

by $\left(\phi_{3}\right)$, we have $d\left(F f^{n_{1}-m_{1}} v, G w\right)=0$, this implies that $F f^{n_{1}-m_{1}} v=G w=u . f^{n_{1}-m_{1}} u=f^{n_{1}} v=$ $F f^{m_{1}} v=F f^{n_{1}-m_{1}} v=F u=u$. Similarly, we have $u=g^{n_{2}-m_{2}} u=G u$.

Suppose that $n_{1}=2 m_{1}$ and u^{\prime} is an other common fixed point of $f^{n_{1}-m_{1}}, g^{n_{2}-m_{2}}, F$ and G.
Then $u^{\prime}=f^{n_{1}-m_{1}} u^{\prime}=f^{m_{1}} u^{\prime}=F u^{\prime}$, so $u^{\prime} \in C_{f^{m_{1}, F}}$ and we have $F u=u=f^{n_{1}-m_{1}} u=f^{m_{1}} u$ by theorem 2.12 we have $f^{m_{1}}\left(C_{f^{m_{1}}, F}\right)=F\left(C_{f^{m_{1}}, F}\right)=g^{m_{2}}\left(C_{g^{m_{2}}, G}\right)=G\left(C_{g^{m_{2}}, G}\right)=\left\{g^{m_{2}} u\right\}=\left\{f^{m_{1}} u^{\prime}\right\}$, hence $u=u^{\prime}$.

Note that if $(F, f),(G, g)$ are owc, then $(F, f),(G, g)$ satisfies $\left(P_{2,1}\right)$, so by theorem 2.14 we obtain :
Corollary 2.15. Let (X, d) be a complex valued b-metric space with constant s, let $f, g, F, G: X \longrightarrow X$ satisfying $G X \subseteq f X, F X \subseteq g X$ and

$$
\begin{equation*}
\phi(d(F x, G y), d(f x, g y), d(f x, F x), d(g y, G y), d(f x, G y), d(F x, g y)) \precsim 0, \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_{s}$, if one of $F X, G X, f X$ or $g X$ is a complete subspace of X. Then
(i) $C_{f, F} \neq \emptyset, C_{g, G} \neq \emptyset$ and $f\left(C_{f, F}\right)=F\left(C_{f, F}\right)=g\left(C_{g, G}\right)=G\left(C_{g, G}\right)=\{$.$\} .$
(ii) If the pair $(F, f),(G, g)$ are occasionally weakly compatible (owc). Then F, G, f and g have a unique common fixed point.

Proof.

$(F, f),(G, g)$ are owc, then $(F, f),(G, g)$ are satisfies $\left(P_{2,1}\right)$. So all conditions of theorem 2.14 are satisfied with $m_{1}=m_{2}=1$ and $n_{1}=n_{2}=2$, then $F, G, f=f^{2-1}$ and $g=g^{2-1}$ have a unique common fixed point.

3. Consequences

By corollary 2.13 and example 2.10 we obtain:
Theorem 3.1. Let (X, d) be a complex valued b-metric space with constant s, let $F, G: X \longrightarrow X$ satisfying

$$
\begin{equation*}
d(F x, G y) \precsim \frac{d(x, y)}{s^{3}} \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, if one of $F X, G X$, or X is a complete subspace of X, then F and G have a unique common fixed point.

Corollary 3.2 (theorem $2.1[6])$. Let (X, d) be a complet b-metric space with constant s, let $T: X \longrightarrow X$ be a self-mapping satisfying the (ψ, φ)-weakly contractive condition

$$
\begin{equation*}
\psi(s d(T x, T y)) \leq \psi\left(\frac{d(x, y)}{s^{2}}\right)-\varphi(d(x, y)) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$, where $\psi \in \Psi, \varphi \in \Phi_{1}$. Then T has a unique fixed point.
Proof. we have

$$
\psi(s d(T x, T y)) \leq \psi\left(\frac{d(x, y)}{s^{2}}\right)-\varphi(d(x, y)) \leq \psi\left(\frac{d(x, y)}{s^{2}}\right)
$$

implies

$$
s d(T x, T y) \leq \frac{d(x, y)}{s^{2}}
$$

then $(3.2) \Rightarrow(3.1)$.
By corollary 2.13 and example 2.11 we obtain:
Theorem 3.3. Let (X, d) be a complex valued b-metric space with constant s, let $F, G: X \longrightarrow X$ satisfying

$$
\begin{equation*}
d(F x, G y) \precsim \frac{s^{3} d(x, G y)+d(y, F x)}{s^{4}(s+1)} \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$, if one of $F X, G X$, or X is a complete subspace of X, then F and G have a unique common fixed point.

Corollary 3.4 (theorem $3.1[6])$. Let (X, d) be a complet b-metric space with constant s, let $F, G: X \longrightarrow$ X be a self-mapping satisfying the (ψ, φ)-generalized Chatterajea-type contractive condition

$$
\begin{equation*}
\psi(s d(F x, G y)) \leq \psi\left(\frac{s^{3} d(x, G y)+d(y, F x)}{s^{3}(s+1)}\right)-\varphi(d(x, G y), d(y, F x)) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$, where $\psi \in \Psi, \varphi \in \Phi_{2}$. Then F and G have a unique common fixed point.
Proof. we have

$$
\psi(s d(F x, G y)) \leq \psi\left(\frac{s^{3} d(x, G y)+d(y, F x)}{s^{3}(s+1)}\right)-\varphi(d(x, G y), d(y, F x)) \leq \psi\left(\frac{s^{3} d(x, G y)+d(y, F x)}{s^{3}(s+1)}\right)
$$

implies

$$
d(F x, G y) \leq \frac{s^{3} d(x, G y)+d(y, F x)}{s^{4}(s+1)}
$$

then $(3.4) \Rightarrow(3.3)$.
By corollary 2.13 and example 2.2 with $F=G$ we obtain theorem 1.13
By corollary 2.13 and example 2.3 with $F=G$ we obtain theorem 1 [13]
By corollary 2.13 and example 2.4 with $F=G$ we obtain theorem 3.1.2 [14]
By corollary 2.13 and example 2.5 with $F=G$ we obtain theorem 3.1.8 [14]
By theorem 2.14 and example 2.5 with $r=\frac{1}{s+a}$ we obtain corollary 2.3 [19]
By theorem 2.14 and example 2.5 with $r=\frac{1}{s^{2}}$ we obtain corollary 2.4 [19]
By corollary 2.13 and example 2.8 we obtain theorem 1.14
By corollary 2.13 and example 2.9 we obtain theorem 1.15

References

1. Abbas M., Rhoades B.E., "Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings," Pan Amer. Math. J., 18(2003), 56-62.
2. Al-Thagafi M.A., Shahzad N., Generalized I-nonexpansive maps and invariant approximations, Acta Math. Sinica, 24(5)(2008), 867-876.
3. Azam A., Fisher B. and Khan M., "Common Fixed Point Theorems in Complex Valued Metric Spaces," Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
4. Czerwik S., "Contraction mappings in b-metric spaces," Acta Math. Inform. Univ. Ostrav, 1(1993), 5-11.
5. Dubey A. K., "Common Fixed Point Results For Contractive Mappings In Complex Valued b-Metric Spaces," Nonlinear Functional Analysis and Applications, vol. Vol. 20, No. 2 (2015), pp. 257-268. http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
6. Faraji H., Nourouzi K., "Fixed And Common Fixed Points For (ψ, φ)-Weakly Contractive Mappings In bMetric Spaces," Sahand Communications in Mathematical Analysis (SCMA) Vol. 7 No. 1 (2017), 49-62. http://scma.maragheh.ac.ir
7. Khan M.S., Swaleh M., and Sessa S., "Fixed point theorems by altering distances between the points," Bull. Austral. Math. Soc. 30(1) (1984), 1-9.
8. Marzouki B., El Haddouchi A., Generalized Altering Distances And Fixed Point For Occasionally Hybrid Mappings, Fasc. Math., 56(2016), 111-120.
9. Marzouki B., El Haddouchi A., Common Fixed Point of Multi-Valued Maps, Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 1,1-7.
10. Marzouki B., El Haddouchi A., A Common Fixed Point Theorem in Modular Space, Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 5, 219 - 223.
11. Marzouki B., El Haddouchi A., A generalized fixed point theorem in G-metric space, Journal of Analysis and Applications. Vol. 17 (2019), No.2, pp.89-105. ISSN: 0972-5954.
12. Mustafa Z., Roshan J.R., Parvaneh V., and Kadelburg Z., "Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces," J. Inequal. Appl. 2014(46) (2014), 14 pp.
13. Mehmet, Hükmi Kir., Kiziltunc., On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and Number Theory, 2013, Vol. 1, No. 1, 13-16, DOI:10.12691.
14. Nadeem Abbas, Fixed point theorems for some contractions in Rectangular b-metric space, A thesis submitted in partial fulfillment for the degree of Master of Philosophy, in the Faculty of Computing Department of Mathematics, March 2017. http://www.cust.edu.pk/ms_ thesis/UploadedFiles/Nadeem\%20Abbas\%20-MMT143006.pdf
15. Rouzkard F., Imdad M., "Some common fixed point theorems on complex valued metric spaces," Computers and Mathematics with Applications, vol 64, 1866-1874, 2012.
16. Rouzkard F., "Some Results on Complex Valued Metric Spaces Employing contractive conditions with Complex Coefficients and its Applications," Bol. Soc. Paran. Mat., v. 36, 103-113, 2018.
17. Rao K.P.R, Swamy P.R, Prasad J.R., "A common fixed point theorem in complex valued b-metric spaces," Bulletin of Mathematics and Statistics Research, Vol. 1, Issue 1(2013),1-8.
18. Sushanta Kumar Mohanta, Some fixed point theorems using $w t$-distance in b-metric spaces, vol 54, 2015, DOI:10.1515/fascmath-2015-0008.
19. Wasfi Shatanawi, "Fixed and common fixed point for mappings satisfying some nonlinear contractions in $b-$ metric spaces," Journal of Mathematical Analysis, ISSN: 2217-3412, URL: http://ilirias.com/jma, Volume 7 Issue 4(2016), Pages 1-12.
[^1]
[^0]: 2010 Mathematics Subject Classification: 54H25, 47H10.
 Submitted December 24, 2019. Published April 22, 2020

[^1]: Brahim Marzouki, Noreddine Makran,
 Department of Mathematical Sciences, Mohammed Premier University, Oujda,
 Morocco.
 E-mail address: marzoukib@yahoo.fr, makranmakran83@gmail.com
 and
 Abdelhak El Haddouchi,
 Department of Mathematical Sciences, University Moulay Ismail,
 Faculty of Sciences and Technics,
 Errachidia, Morocco.
 E-mail address: abdelhak.elhaddouchi@gmail.com

