

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2022 (40)** : 1–9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.51616

A Generalized Common Fixed Point Theorem in Complex Valued *b*-Metric Spaces

Brahim Marzouki, Noreddine Makran, Abdelhak El Haddouchi

ABSTRACT: In this work we are interested in the generalization of coincidence point and fixed point theorem for a 4-tuple of mappings satisfying a new type of implicit relation in complex valued b-metric spaces.

Key Words: Metric space, Complex valued b-metric, Fixed point, Implicit relation, $(P_{n,m})$.

Contents

1Introduction12Main Results33Consequences7

1. Introduction

The study of fixed point theory in metric spaces has done a great service in several areas of mathematics, namely, in solving differential and functional equations, in the field of approximation theory, in optimization etc. In 2011 Azam A. et al (see [3]) introduced and studied complex valued metric spaces wherein some fixed point theorems for mappings satisfying a rational inequality were established and obtained several results in fixed point theory. The concept of complex valued b-metric space as a generalization of complex valued metric space. Subsequently, many authors proved fixed and common fixed point results in complex valued b-metric spaces (for example [5], [17]).

In this work we are interested in the generalization of coincidence point and fixed point theorem for a 4-tuple of mappings satisfying a new type of implicit relation in complex valued b-metric spaces.

Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \preceq on \mathbb{C} as follows:

 $z_1 \preceq z_2$ if and only if $Re(z_1) \leq Re(z_2)$, $Im(z_1) \leq Im(z_2)$.

Consequently, one can infer that $z_1 \preceq z_2$ if one of the following conditions is satisfied:

(i)
$$Re(z_1) = Re(z_2), Im(z_1) < Im(z_2),$$

(*ii*) $Re(z_1) < Re(z_2), Im(z_1) = Im(z_2),$

- (*iii*) $Re(z_1) < Re(z_2), Im(z_1) < Im(z_2),$
- (iv) $Re(z_1) = Re(z_2), Im(z_1) = Im(z_2).$

In particular, we write $z_1 \neq z_2$ if $z_1 \neq z_2$ and one of (i), (ii), and (iii) is satisfied and we will write $z_1 \prec z_2$ if only (iii) is satisfied.

Definition 1.1 ([4]). Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d: X \times X \longrightarrow \mathbb{R}^+$ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all $x, y \in X$,

(iii) $d(x,y) \leq s[d(x,z) + d(z,y)]$ for all $x, y, z \in X$.

Definition 1.2. [17] Let X be a nonempty set and $s \ge 1$ a given real number. A function $d: X \times X \to \mathbb{C}$, satisfies the following conditions:

 $(d_1) \ 0 \preceq d(x,y), \text{ for all } x, y \in X \text{ and } d(x,y) = 0 \text{ if and only if } x = y,$ $(d_2) \ d(x,y) = d(y,x) \text{ for all } x, y \in X,$ $(d_3) \ d(x,y) \preceq s[d(x,z) + d(z,y)], \text{ for all } x, y, z \in X.$ Then (X,d) is called a complex valued b-metric space.

Then (A, a) is called a complex valued of metric space

²⁰¹⁰ Mathematics Subject Classification: 54H25, 47H10. Submitted December 24, 2019. Published April 22, 2020

Note that every complex valued metric space is a complex valued b-metric space with s = 1. But the converse need not be true.

Example 1.3. Let $X = \mathbb{C}$. Define $d : X \times X \to \mathbb{C}^+$ by $d(x, y) = ((Re(x - y))^2 + i \times (Im(x - y))^2$ for all $x, y \in X$. Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.4. [16] let $f : \mathbb{C} \to \mathbb{C}$ be a given mapping, we say that f is a non-decreasing mapping with respect \preceq if for every $x, y \in \mathbb{C}$, $x \preceq y$ implies $fx \preceq fy$.

Definition 1.5. Let (X, d) be a complex valued b-metric space and let

1) $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to \infty$.

2) $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n \to \infty$.

3) $A \subset X$ is said to be bounded is $\sup_{x,y \in A} |d(x,y)| < +\infty$.

Definition 1.6. Let $f, F : X \to X$

1) A point $x \in X$ is said to be a coincidence point of f and F if fx = Fx. We denote by $C_{f,F}$ the set of all coincidence points of f and F.

2) A point $x \in X$ is a fixed point of F if x = Fx.

If f = Id we have $C_{Id,F}$ the set of all fixed points of F.

Definition 1.7. [2] The pair $f, F : X \longrightarrow X$ is occasionally weakly compatible (owc) if fFx = Ffx for some $x \in C_{f,F}$.

Definition 1.8. [8] The pair $f: X \longrightarrow X$ and $F: X \longrightarrow B(X)$ satisfies $(P_{n,m})$ if $\exists x \in X$ such that $f^m x \in Fx$ and $f^n x \in (Ff^{n-m}x \cap Ff^m x)$, with $n, m \in \mathbb{N}$ and n > m. $(f^0 x = x)$. B(X) the set of all nonempty bounded subset of X.

Remark 1.9. [8] If f and F are owc, then (f, F) satisfies $(P_{2,1})$.

 $\begin{array}{l} \textbf{Example 1.11. Let } f:[0,1] \longrightarrow [0,1] \ and \ F:[0,1] \longrightarrow [0,1], \ such \ that \\ f(x) = \left\{ \begin{array}{l} \frac{1}{2} \ if \ x = 0 \\ 1 \ if \ x = \frac{1}{2} \ and \ Fx = \left\{ \begin{array}{l} 0 \ if \ x \in \{\frac{1}{2},1\} \\ \frac{1}{2} \ else \end{array} \right. \\ then \ f(0) = F0 \ and \ f^{3}(0) = Ff^{2}(0) = Ff(0), \ so \ (f,F) \ satisfies \ (P_{3,1}). \end{array} \right. \end{array} \right. \end{array}$

Definition 1.12. [7][Altering Distance Function] A function $\psi : [0,1) \longrightarrow [0,1)$ is called an altering distance function if the following properties are satisfied:

(i) is continuous and strictly increasing,

(ii) $\psi(t) = 0$ if and only if t = 0.

Notations(see [12])

 $\Psi = \{\psi : [0,1) \longrightarrow [0,1) | \psi \text{ is an altering distance function } \},\$

 $\Phi_1 = \left\{ \varphi : [0,\infty) \longrightarrow [0,\infty), \ \varphi \text{ is continuous, } \varphi(t) = 0 \Leftrightarrow t = 0, \ \text{and} \ \varphi(\liminf_{n \to \infty} a_n) \leq \liminf_{n \to \infty} \varphi(a_n) \right\}.$

$$\Phi_2 = \left\{ \begin{array}{l} \varphi : [0,\infty) \times [0,\infty) \longrightarrow [0,\infty), \varphi \text{ is continuous, } \varphi(x,y) = 0 \Leftrightarrow x = y = 0, \\ \text{and } \varphi(\liminf_{n \to \infty} a_n, \liminf_{n \to \infty} b_n) \le \liminf_{n \to \infty} \varphi(a_n, b_n) \end{array} \right\}$$

Theorem 1.13 (theorem 4[18]). Let (X, d) be a complete b-metric space with constant $s \ge 1$ and let $T: X \longrightarrow X$ be such that

$$d(T(x), T(y)) \le \alpha d(x, y) + \beta d(x, T(x)) + \gamma d(y, T(y))$$

for every $x, y \in X$, where $\alpha, \beta, \gamma \ge 0$ with $\alpha + \beta + \gamma < \frac{1}{s}$. Then T has a unique fixed point in X.

Theorem 1.14 (theorem 2.1 [15]). If S and T are self-mappings defined on a complete complex valued metric space (X, d) satisfying the condition

$$d(Sx,Ty) \precsim \lambda d(x,y) + \frac{\mu d(x,Sx)d(y,Ty) + \gamma d(y,Sx)d(x,Ty)}{1 + d(x,y)}$$

for all $x, y \in X$ where λ, μ, γ are nonnegative reals with $\lambda + \mu + \gamma < 1$, then S and T have a unique common fixed point.

Theorem 1.15 (theorem 3.1[5]). Let (X, d) be a complete complex valued b-metric space with the coefficient $s \ge 1$ and $x_0 \in X$. Let $0 \prec r \in \mathbb{C}$ and A, B, C, D and E are nonnegative reals such that A + B + C + 2sD + 2sE < 1. Let $S, T : X \longrightarrow X$ are mappings satisfying:

$$d(Sx,Ty) \precsim Ad(x,y) + B\frac{d(x,Sx)d(y,Ty)}{1+d(x,y)} + C\frac{d(y,Sx)d(x,Ty)}{1+d(x,y)} + D\frac{d(x,Sx)d(x,Ty)}{1+d(x,y)} + E\frac{d(y,Sx)d(y,Ty)}{1+d(x,y)} + E\frac{d(y,S$$

for all $x, y \in \overline{B(x_0, r)}$. If $|d(x_0, Sx_0)| \le (1 - \lambda)|r|$ where $\lambda = \max\{\frac{A+sD}{1-B-sD}, \frac{A+sE}{1-B-sE}\}$, then there exists a unique point $u \in \overline{B(x_0, r)}$ such that u = Su = Tu.

2. Main Results

Definition 2.1. Let $s \ge 1$ and \mathfrak{F}_s be the set of all functions $\phi(t_1, t_2, ..., t_6) : \mathbb{C}^6_+ \longrightarrow \mathbb{C}$ satisfying the following conditions:

- $(\phi_1) \phi$ continuous on \mathbb{C}^6_+ ,
- $(\phi_2) \exists \alpha, \beta \in \mathbb{R}_+ \text{ such that } \alpha + 2s\beta < 1, \forall u, v, w \in \mathbb{C}_+ :$

 $\phi(u, v, u, v, 0, w) \preceq 0 \text{ or } \phi(u, v, v, u, w, 0) \preceq 0 \Rightarrow |u| \le \alpha |v| + \beta |w|,$

 $(\phi_3) \exists \gamma, \mu \in \mathbb{R}_+ \text{ such that } s\gamma + s^2\mu < 1, \forall u, v, w \in \mathbb{C}_+ :$

$$\phi(u, 0, v, 0, 0, w) \preceq 0 \Rightarrow |u| \le \gamma |v| + \mu |w|,$$

 $(\phi_4) \phi(u, 0, u, 0, 0, u) \preceq 0 \text{ or } \phi(u, u, 0, 0, u, u) \preceq 0 \Rightarrow u = 0.$

Example 2.2. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = \eta t_1 - (\alpha t_2 + \beta t_3 + \gamma t_4).$ Where $\eta, \alpha, \beta, \gamma \in \mathbb{C}_+$, with $s(\alpha + \beta + \gamma) \prec \eta$.

Example 2.3. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = at_1 - rt_2.$ Where $r, a \in \mathbb{C}_+$, with $sr \prec a$.

Example 2.4.

$$\phi(t_1, t_2, t_3, t_4, t_5, t_6) = \eta t_1 - (\alpha t_2 + \beta t_3 + \gamma t_4 + \mu [t_5 + t_6]).$$

Where $\mu \in \mathbb{R}_+$, $\eta, \alpha, \beta, \gamma \in \mathbb{C}_+$, with $s(\alpha + \beta) + \gamma + (s^2 + s) \mu \preceq \eta$.

Example 2.5.

$$\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - r \max\left\{t_2, t_3, t_4, \frac{t_5 + t_6}{2s}\right\}.$$

Where $0 \leq r < 1$, with rs < 1.

- Example 2.6. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 r \max\{t_2, t_3, t_4\}.$ With $0 \le r < \frac{1}{s}$.
- Example 2.7. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 \mu[t_3 + t_4].$ With $\mu < \min\{\frac{1}{2}, \frac{1}{8}\},$

Example 2.8. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - (\lambda t_2 + \frac{\mu t_3 t_4 + \gamma t_5 t_6}{1 + t_2})$. Where λ, μ, γ are nonnegative reals with $\lambda + \mu + \gamma < 1$,

Example 2.9. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - (At_2 + B\frac{t_3t_4}{1+t_2} + C\frac{t_5t_6}{1+t_2} + D\frac{t_3t_5}{1+t_2} + E\frac{t_4t_6}{1+t_2})$. Where A, B, C, D, E are nonnegative reals with A + B + C + 2sD + 2sE < 1,

Example 2.10. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \frac{t_2}{s^3}$.

Example 2.11. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \left(\frac{t_5}{s+1} + \frac{t_6}{s^4(s+1)}\right)$.

Theorem 2.12. Let (X, d) be a complex valued b-metric space with constant s, f, g, F and $G : X \longrightarrow X$ satisfying $GX \subseteq fX$, $FX \subseteq gX$, and

$$\phi\left(d(Fx,Gy),d\left(fx,gy\right),d\left(fx,Fx\right),d\left(gy,Gy\right),d\left(fx,Gy\right),d\left(Fx,gy\right)\right) \precsim 0,\tag{2.1}$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_s$, if one of FX, GX, fX or gX is a complete subspace of X, then $C_{f,F} \neq \emptyset$, $C_{g,G} \neq \emptyset$ and $f(C_{f,F}) = F(C_{f,F}) = g(C_{g,G}) = G(C_{g,G}) = \{fx\} = \{gy\} = \{.\}$, for all $x \in C_{f,F}$, $y \in C_{g,G}$.

Proof.

Let x_0 be an arbitrary point in X. Since $FX \subseteq gX$, we find a point x_1 in X such that $Fx_0 = gx_1$. Also, since $GX \subseteq fX$, we choose a point x_2 with $Gx_1 = fx_2$. Thus in general for the point x_{2n-2} one find a point x_{2n-1} such that $Fx_{2n-2} = gx_{2n-1}$ and then a point x_{2n} with $Gx_{2n-1} = fx_{2n}$ for n = 1, 2, ...

Repeating such arguments one can construct sequences x_n and y_n in X such that,

$$y_{2n-1} = Fx_{2n-2} = gx_{2n-1}, y_{2n} = Gx_{2n-1} = fx_{2n}, n = 1, 2, \dots$$
(2.2)

For $x = x_{2n}$ and $y = x_{2n+1}$ By the inequality (2.1) we have :

$$\phi \left(\begin{array}{c} d\left(Fx_{2n}, Gx_{2n+1}\right), d\left(fx_{2n}, gx_{2n+1}\right), d\left(fx_{2n}, Fx_{2n}\right) \\ d\left(gx_{2n+1}, Gx_{2n+1}\right), d\left(fx_{2n}, Gx_{2n+1}\right), d\left(gx_{2n+1}, Fx_{2n}\right) \end{array}\right) \precsim 0.$$

Implies

$$\phi\left(d\left(y_{2n+1}, y_{2n+2}\right), d\left(y_{2n}, y_{2n+1}\right), d\left(y_{2n}, y_{2n+1}\right), d\left(y_{2n+1}, y_{2n+2}\right), d\left(y_{2n}, y_{2n+2}\right), 0\right) \preceq 0.$$

So, by (ϕ_2) we have

$$\begin{aligned} |d(y_{2n+1}, y_{2n+2})| &\leq \alpha |d(y_{2n}, y_{2n+1})| + \beta |d(y_{2n}, y_{2n+2})| \\ &\leq \alpha |d(y_{2n}, y_{2n+1})| + \beta s[|d(y_{2n}, y_{2n+1})| + |d(y_{2n+1}, y_{2n+2})|]. \end{aligned}$$

So

$$|d(y_{2n+1}, y_{2n+2})| \le h |d(y_{2n}, y_{2n+1})| \text{ with } h = \frac{\alpha + s\beta}{1 - s\beta} < 1.$$
(2.3)

For $x = x_{2n+2}$ and $y = x_{2n+1}$, by the inequality (2.1) we have :

$$\phi \left(\begin{array}{c} d\left(Fx_{2n+2}, Gx_{2n+1}\right), d\left(fx_{2n+2}, gx_{2n+1}\right), d\left(fx_{2n+2}, Fx_{2n+2}\right) \\ d\left(gx_{2n+1}, Gx_{2n+1}\right), d\left(fx_{2n+2}, Gx_{2n+1}\right), d\left(gx_{2n+1}, Fx_{2n+2}\right) \end{array}\right) \precsim 0$$

Implies

$$\phi\left(d\left(y_{2n+3}, y_{2n+2}\right), d\left(y_{2n+2}, y_{2n+1}\right), d\left(y_{2n+3}, y_{2n+2}\right), d\left(y_{2n+2}, y_{2n+1}\right), 0, d\left(y_{2n+1}, y_{2n+3}\right)\right) \precsim 0.$$

So, by (ϕ_2) we have

$$\begin{aligned} |d(y_{2n+3}, y_{2n+2})| &\leq \alpha |d(y_{2n+2}, y_{2n+1})| + \beta |d(y_{2n+3}, y_{2n+1})| \\ &\leq \alpha |d(y_{2n+2}, y_{2n+1})| + s\beta [|d(y_{2n+3}, y_{2n+2})| + |d(y_{2n+2}, y_{2n+1})|]. \end{aligned}$$

$$d(y_{2n+3}, y_{2n+2}) \leq h | d(y_{2n+2}, y_{2n+1}) |.$$
(2.4)

By (2.3) and (2.4) we have

$$|d(y_{n+1}, y_n)| \le h^{n-1} |d(y_1, y_2)|, n = 2, 3, \dots$$

Therefore, for any $n, m \in \mathbb{N}^*$ with $n \ge 2$, we have

$$\begin{aligned} |d(y_n, y_{n+m})| &\leq s |d(y_n, y_{n+1})| + s^2 |d(y_{n+1}, y_{n+2})| + s^3 |d(y_{n+2}, y_{n+3})| + \\ &\dots + s^{m-1} |d(y_{n+m-2}, y_{n+m-1})| + s^{m-1} |d(y_{n+m-1}, y_{n+m})|. \end{aligned}$$

On the other hand we have :

$$\begin{aligned} |d(y_n, y_{n+m})| &\leq (sh^{n-1}|d(y_1, y_2)| + \dots + s^{m-1}h^{n+m-3}|d(y_1, y_2)| + s^{m-1}h^{n+m-2}|d(y_1, y_2)|) \\ &\leq sh^{n-1} \left(1 + (sh) + (sh)^2 + \dots + (sh)^{m-2} + s^{m-2}h^{m-1} \right) |d(y_1, y_2)| \\ &= sh^{n-1} \left(\frac{1 - (sh)^{m-1}}{1 - sh} + s^{m-2}h^{m-1} \right) |d(y_1, y_2)| \\ &\leq h^{n-1} \left(\frac{s}{1 - sh} + (sh)^{m-1} \right) |d(y_1, y_2)|, \end{aligned}$$

from where $\lim_{n\to\infty} d(y_n, y_{n+m}) = 0$ for $m \in \mathbb{N}^*$. By definition 1.5 then (y_n) is a Cauchy sequence in (X, d).

If fX is a complete subspace of X, there exists $u \in fX$ such that $\lim_{n \to \infty} d(y_{2n}, u) = 0$. Then we can find $v \in X$ such that

$$fv = u \tag{2.5}$$

We claim that u = Fv.

$$|d(Fv, y_{2n})| \leq s|d(Fv, y_{2n+1})| + s|d(y_{2n+1}, y_{2n})| \\ \leq s^{2}[|d(Fv, u)| + |d(u, y_{2n+1})|] + s|d(y_{2n+1}, y_{2n})|$$

we deduce that the sequence $(d(Fv, y_{2n}))$ is bounded, similarly, we obtain $(d(Fv, y_{2n-1}))$ is bounded.

Then there exists a strictly increasing application $\theta : \mathbb{N} \longrightarrow \mathbb{N}$ such that $(d(Fv, y_{2\theta(n)-1}))$ and $(d(Fv, y_{2\theta(n)}))$ are convergent.

Using inequality (2.1) and (2.5), we have

$$\phi \left(\begin{array}{c} d\left(Fv, Gx_{2\theta(n)-1}\right), d\left(fv, gx_{2\theta(n)-1}\right), d\left(fv, Fv\right)\\ , d\left(gx_{2\theta(n)-1}, Gx_{2\theta(n)-1}\right), d\left(fv, Gx_{2\theta(n)-1}\right), d\left(Fv, gx_{2\theta(n)-1}\right) \end{array}\right) \precsim 0.$$

We have successively

$$\phi\left(d\left(Fv, y_{2\theta(n)}\right), d\left(u, y_{2\theta(n)-1}\right), d\left(u, Fv\right), d\left(y_{2\theta(n)-1}, y_{2\theta(n)}\right), d\left(u, y_{2\theta(n)}\right), d\left(Fv, y_{2\theta(n)-1}\right)\right) \precsim 0$$

letting $n \to \infty$ by (ϕ_1) we obtain

$$\phi\left(\lim_{n \to +\infty} d\left(Fv, y_{2\theta(n)}\right), 0, d\left(u, Fv\right), 0, 0, \lim_{n \to +\infty} d\left(Fv, y_{2\theta(n)-1}\right)\right) \precsim 0.$$

Then by (ϕ_3) , we have

$$\begin{aligned} |\lim_{n \to +\infty} d\left(Fv, y_{2\theta(n)}\right)| &\leq \gamma |d\left(u, Fv\right)| + \mu |\lim_{n \to +\infty} d\left(Fv, y_{2\theta(n)-1}\right)| \\ &\leq \gamma |d\left(u, Fv\right)| + s\mu |\lim_{n \to +\infty} [d\left(Fv, u\right) + d\left(u, y_{2\theta(n)-1}\right)]|, \end{aligned}$$

 \mathbf{SO}

$$\left|\lim_{n \to +\infty} d\left(Fv, y_{2\theta(n)}\right)\right| \le (\gamma + s\mu) |d\left(Fv, u\right)|.$$

$$(2.6)$$

On the other hand we have

$$|d(u, Fv)| \leq s[|d(u, y_{2\theta(n)})| + |d(y_{2\theta(n)}, Fv)|].$$

By (2.6) we have

$$\begin{aligned} |d(u, Fv)| &\leq \lim_{n \to +\infty} s[|d(u, y_{2\theta(n)})| + |d(y_{2\theta(n)}, Fv)|] \\ &= s\lim_{n \to +\infty} |d(y_{2\theta(n)}, Fv)| \\ &\leq (s\gamma + s^2\mu) |d(u, Fv)| \\ &< |d(u, Fv)|, \end{aligned}$$

so d(Fv, u) = 0, that is u = fv = Fv.

By $FX \subset gX$ we have $w \in X$ such that gw = u. Then we have also $w \in C_{g,G} \neq \emptyset$, and $f(C_{f,F}) \cap g(C_{g,G}) \neq \emptyset$.

For $x = v \in C_{f,F}$ and $y = w \in C_{g,G}$ by (2.1) we have successively

$$\phi(d(Fv,Gw), d(fv,gw), d(fv,Fv), d(gw,Gw), d(fv,Gw), d(Fv,gw)) \preceq 0$$

 \mathbf{SO}

$$\phi\left(d\left(fv,Gw\right),d\left(fv,Gw\right),0,0,d\left(fv,Gw\right),d\left(fv,Gw\right)\right)\precsim 0,$$

then by (ϕ_4) , we have d(fv, Gw) = 0, there is $g(C_{g,G}) = G(C_{g,G}) = gw = fv = Fv$. Similarly, we have $f(C_{f,F}) = F(C_{f,F}) = g(C_{g,G}) = G(C_{g,G}) = gw = fv$, for all $v \in C_{f,F}$, $w \in C_{g,G}$.

If GX is a complete subspace of X, there exists $u \in X$ such that $\lim_{n \to \infty} d(y_{2n}, u) = 0$. Then we can find $w \in X$ such that

$$Gw = u.$$

And like $GX \subset fX$, there exists $v \in X$ such that fv = u. In the same previous way we find u = Fv and there exists $w' \in X$ such that gw' = Gw' = u.

If FX or gX is complete, then by permuting the roles of f with g and F with G, we find the proof.

Corollary 2.13. Let (X, d) be a complex valued b-metric space with constant s, let $F, G : X \longrightarrow X$ satisfying

$$\phi(d(Fx,Gy), d(x,y), d(x,Fx), d(y,Gy), d(x,Gy), d(Fx,y)) \preceq 0,$$
(2.7)

for all $x, y \in X$, where $\phi \in \mathfrak{F}_s$, if one of FX, GX, or X is a complete subspace of X, then F and G have a unique common fixed point.

Proof. Suppose f = g = Id, so (2.7) \Rightarrow (2.1), by theorem 2.12 we have $C_{Id,F} = C_{Id,G} \neq \emptyset$ and $C_{Id,F} = F(C_{Id,F}) = C_{Id,G} = G(C_{Id,G}) = \{x\} = \{y\} = \{.\}$, for all $x \in C_{Id,F}, y \in C_{Id,G}$.

Theorem 2.14. Let (X, d) be a complex valued b-metric space with constant s, let $f, g, F, G : X \longrightarrow X$ satisfying $GX \subseteq f^{m_1}X$, $FX \subseteq g^{m_2}X$, $m_1, m_2 \in \mathbb{N}$ and

$$\phi\left(d\left(Fx,Gy\right),d\left(f^{m_{1}}x,g^{m_{2}}y\right),d\left(f^{m_{1}}x,Fx\right),d\left(g^{m_{2}}y,Gy\right),d\left(f^{m_{1}}x,Gy\right),d\left(Fx,g^{m_{2}}y\right)\right) \precsim 0,$$
(2.8)

for all $x, y \in X$, where $\phi \in \mathfrak{F}_s$, if one of FX, GX, $f^{m_1}X$ or $g^{m_2}X$ is a complete subspace of X. Then

(i) $C_{f^{m_1},F} \neq \emptyset$, $C_{g^{m_2},G} \neq \emptyset$ and $f^{m_1}(C_{f^{m_1},F}) = F(C_{f^{m_1},F}) = g^{m_2}(C_{g^{m_2},G}) = G(C_{g^{m_2},G}) = \{.\}$.

(ii) If the pair (F, f) satisfies (P_{n_1,m_1}) , and (G, g) satisfies (P_{n_2,m_2}) , then $F, G, f^{n_1-m_1}$ and $g^{n_2-m_2}$ have common fixed point $u \in X$.

Moreover, if $n_1 = 2m_1$ or $n_2 = 2m_2$, then u is unique.

Proof. (i) For $f = f^{m_1}$ and $g = g^{m_2}$ we have (2.8) \Rightarrow (2.1), so by theorem 2.12, $C_{f^{m_1},F} \neq \emptyset$, $C_{g^{m_2},G} \neq \emptyset$ and $f^{m_1}(C_{f^{m_1},F}) = F(C_{f^{m_1},F}) = g^{m_2}(C_{g^{m_2},G}) = G(C_{g^{m_2},G}) = \{.\}.$

(i) Now, we prove that $F, G, f^{n_1-m_1}$ and $g^{n_2-m_2}$, have a common fixed point. Since (F, f) satisfies (P_{n_1,m_1}) , and (G,g) satisfies (P_{n_2,m_2}) , there exist $v, w \in X$ such that $f^{m_1}v = Fv$, $f^{n_1}v = Ff^{m_1}v = Ff^{n_1-m_1}v$, $g^{m_2}w = Gw$ and $g^{n_2}w = Gg^{m_2}w = Gg^{n_2-m_2}w$, then $v \in C_{f^{m_1},F}$, $w \in C_{g^{m_2},G}$ and we have (i). So $u = f^{m_1}v = Fv = g^{m_2}w = Gw$.

For $x = f^{n_1 - m_1}v$, y = w, by (2.1) we have successively :

$$\phi \left(\begin{array}{c} d\left(Ff^{n_1-m_1}v, Gw\right), d\left(f^{n_1}v, g^{m_2}w\right), d\left(f^{n_1}v, Ff^{n_1-m_1}v\right) \\ d\left(g^{m_2}w, Gw\right), d\left(f^{n_1}v, Gw\right), d\left(Ff^{n_1-m_1}v, g^{m_2}w\right) \end{array} \right) \precsim 0,$$

$$\phi\left(d\left(Ff^{n_1-m_1}v, Gw\right), d\left(Ff^{n_1-m_1}v, Gw\right), 0, 0, d\left(Ff^{n_1-m_1}v, Gw\right), d\left(Ff^{n_1-m_1}v, Gw\right)\right) \precsim 0,$$

by (ϕ_3) , we have $d(Ff^{n_1-m_1}v, Gw) = 0$, this implies that $Ff^{n_1-m_1}v = Gw = u$. $f^{n_1-m_1}u = f^{n_1}v = Ff^{m_1}v = Ff^{m_1-m_1}v = Fu = u$. Similarly, we have $u = g^{n_2-m_2}u = Gu$.

Suppose that $n_1 = 2m_1$ and u' is an other common fixed point of $f^{n_1-m_1}, g^{n_2-m_2}, F$ and G.

Then $u' = f^{n_1 - m_1}u' = f^{m_1}u' = Fu'$, so $u' \in C_{f^{m_1},F}$ and we have $Fu = u = f^{n_1 - m_1}u = f^{m_1}u$ by theorem 2.12 we have $f^{m_1}(C_{f^{m_1},F}) = F(C_{f^{m_1},F}) = g^{m_2}(C_{g^{m_2},G}) = G(C_{g^{m_2},G}) = \{g^{m_2}u\} = \{f^{m_1}u'\},$ hence u = u'.

Note that if (F, f), (G, g) are owe, then (F, f), (G, g) satisfies $(P_{2,1})$, so by theorem 2.14 we obtain : Corollary 2.15. Let (X, d) be a complex valued b-metric space with constant s, let $f, g, F, G : X \longrightarrow X$

$$\phi\left(d\left(Fx,Gy\right),d\left(fx,gy\right),d\left(fx,Fx\right),d\left(gy,Gy\right),d\left(fx,Gy\right),d\left(Fx,gy\right)\right) \precsim 0,\tag{2.9}$$

for all $x, y \in X$, where $\phi \in \mathcal{F}_s$, if one of FX, GX, fX or gX is a complete subspace of X. Then (i) $C : \pi \neq \emptyset$ and $f(C : \pi) = F(C : \pi) = G(C : \pi) = G(C : \pi) = f$

(i) $C_{f,F} \neq \emptyset$, $C_{g,G} \neq \emptyset$ and $f(C_{f,F}) = F(C_{f,F}) = g(C_{g,G}) = G(C_{g,G}) = \{.\}$.

(ii) If the pair (F, f), (G, g) are occasionally weakly compatible (owc). Then F, G, f and g have a unique common fixed point.

Proof.

satisfying $GX \subseteq fX$, $FX \subseteq gX$ and

(F, f), (G, g) are owc, then (F, f), (G, g) are satisfies $(P_{2,1})$. So all conditions of theorem 2.14 are satisfied with $m_1 = m_2 = 1$ and $n_1 = n_2 = 2$, then $F, G, f = f^{2-1}$ and $g = g^{2-1}$ have a unique common fixed point.

3. Consequences

By corollary 2.13 and example 2.10 we obtain:

Theorem 3.1. Let (X,d) be a complex valued b-metric space with constant s, let $F, G : X \longrightarrow X$ satisfying

$$d(Fx, Gy) \precsim \frac{d(x, y)}{s^3} \tag{3.1}$$

for all $x, y \in X$, if one of FX, GX, or X is a complete subspace of X, then F and G have a unique common fixed point.

Corollary 3.2 (theorem 2.1[6]). Let (X, d) be a complet b-metric space with constant s, let $T : X \longrightarrow X$ be a self-mapping satisfying the (ψ, φ) -weakly contractive condition

$$\psi(sd(Tx,Ty)) \le \psi(\frac{d(x,y)}{s^2}) - \varphi(d(x,y)), \tag{3.2}$$

for all $x, y \in X$, where $\psi \in \Psi$, $\varphi \in \Phi_1$. Then T has a unique fixed point.

Proof. we have

$$\psi(sd(Tx,Ty)) \le \psi(\frac{d(x,y)}{s^2}) - \varphi(d(x,y)) \le \psi(\frac{d(x,y)}{s^2})$$

implies

$$sd(Tx,Ty) \le \frac{d(x,y)}{s^2}$$

then $(3.2) \Rightarrow (3.1)$.

By corollary 2.13 and example 2.11 we obtain:

Theorem 3.3. Let (X,d) be a complex valued b-metric space with constant s, let $F,G: X \longrightarrow X$ satisfying

$$d(Fx, Gy) \preceq \frac{s^3 d(x, Gy) + d(y, Fx)}{s^4(s+1)}$$
 (3.3)

for all $x, y \in X$, if one of FX, GX, or X is a complete subspace of X, then F and G have a unique common fixed point.

Corollary 3.4 (theorem 3.1[6]). Let (X, d) be a complet b-metric space with constant s, let $F, G : X \longrightarrow X$ be a self-mapping satisfying the (ψ, φ) -generalized Chatterajea-type contractive condition

$$\psi(sd(Fx,Gy)) \le \psi(\frac{s^3d(x,Gy) + d(y,Fx)}{s^3(s+1)}) - \varphi(d(x,Gy),d(y,Fx)),$$
(3.4)

for all $x, y \in X$, where $\psi \in \Psi$, $\varphi \in \Phi_2$. Then F and G have a unique common fixed point.

Proof. we have

$$\psi(sd\left(Fx,Gy\right)) \leq \psi(\frac{s^3d\left(x,Gy\right) + d\left(y,Fx\right)}{s^3(s+1)}) - \varphi(d\left(x,Gy\right),d\left(y,Fx\right)) \leq \psi(\frac{s^3d\left(x,Gy\right) + d\left(y,Fx\right)}{s^3(s+1)})$$

implies

$$d(Fx, Gy) \le \frac{s^3 d(x, Gy) + d(y, Fx)}{s^4(s+1)}$$

then $(3.4) \Rightarrow (3.3)$.

By corollary 2.13 and example 2.2 with F = G we obtain theorem 1.13 By corollary 2.13 and example 2.3 with F = G we obtain theorem 1 [13] By corollary 2.13 and example 2.4 with F = G we obtain theorem 3.1.2 [14] By corollary 2.13 and example 2.5 with F = G we obtain theorem 3.1.8 [14] By theorem 2.14 and example 2.5 with $r = \frac{1}{s+a}$ we obtain corollary 2.3 [19] By theorem 2.14 and example 2.5 with $r = \frac{1}{s^2}$ we obtain corollary 2.4 [19] By corollary 2.13 and example 2.8 we obtain theorem 1.14 By corollary 2.13 and example 2.9 we obtain theorem 1.15

References

- 1. Abbas M., Rhoades B.E., "Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings," Pan Amer. Math. J., 18(2003), 56-62.
- Al-Thagafi M.A., Shahzad N., Generalized I-nonexpansive maps and invariant approximations, Acta Math. Sinica, 24(5)(2008), 867-876.
- Azam A., Fisher B. and Khan M., "Common Fixed Point Theorems in Complex Valued Metric Spaces," Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
- 4. Czerwik S., "Contraction mappings in b-metric spaces," Acta Math. Inform. Univ. Ostrav, 1(1993), 5-11.
- 5. Dubey A. K., "Common Fixed Point Results For Contractive Mappings In Complex Valued b-Metric Spaces," Nonlinear Functional Analysis and Applications, vol. Vol. 20, No. 2 (2015), pp. 257-268. http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
- 6. Faraji H., Nourouzi K., "Fixed And Common Fixed Points For (ψ, φ)-Weakly Contractive Mappings In b-Metric Spaces," Sahand Communications in Mathematical Analysis (SCMA) Vol. 7 No. 1 (2017), 49-62. http://scma.maragheh.ac.ir
- Khan M.S., Swaleh M., and Sessa S., "Fixed point theorems by altering distances between the points," Bull. Austral. Math. Soc. 30(1) (1984), 1-9.
- Marzouki B., El Haddouchi A., Generalized Altering Distances And Fixed Point For Occasionally Hybrid Mappings, Fasc. Math., 56(2016), 111-120.
- Marzouki B., El Haddouchi A., Common Fixed Point of Multi-Valued Maps, Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 1,1-7.
- Marzouki B., El Haddouchi A., A Common Fixed Point Theorem in Modular Space, Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 5, 219 - 223.
- Marzouki B., El Haddouchi A., A generalized fixed point theorem in G-metric space, Journal of Analysis and Applications. Vol. 17 (2019), No.2, pp.89-105. ISSN: 0972-5954.
- Mustafa Z., Roshan J.R., Parvaneh V., and Kadelburg Z., "Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces," J. Inequal. Appl. 2014(46) (2014), 14 pp.
- Mehmet, Hükmi Kir., Kiziltunc., On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and Number Theory, 2013, Vol. 1, No. 1, 13-16, DOI:10.12691.
- 14. Nadeem Abbas, Fixed point theorems for some contractions in Rectangular *b*-metric space, A thesis submitted in partial fulfillment for the degree of Master of Philosophy, in the Faculty of Computing Department of Mathematics, March 2017.

 $http://www.cust.edu.pk/ms_thesis/UploadedFiles/Nadeem\%20Abbas\%20-MMT143006.pdf$

- Rouzkard F., Imdad M., "Some common fixed point theorems on complex valued metric spaces," Computers and Mathematics with Applications, vol 64, 1866-1874, 2012.
- Rouzkard F., "Some Results on Complex Valued Metric Spaces Employing contractive conditions with Complex Coefficients and its Applications," Bol. Soc. Paran. Mat., v. 36, 103-113, 2018.
- Rao K.P.R, Swamy P.R, Prasad J.R., "A common fixed point theorem in complex valued b-metric spaces," Bulletin of Mathematics and Statistics Research, Vol. 1, Issue 1(2013),1-8.
- Sushanta Kumar Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, vol 54, 2015, DOI:10.1515/fascmath-2015-0008.
- Wasfi Shatanawi, "Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces," Journal of Mathematical Analysis, ISSN: 2217-3412, URL: http://ilirias.com/jma, Volume 7 Issue 4(2016), Pages 1-12.

Brahim Marzouki, Noreddine Makran, Department of Mathematical Sciences, Mohammed Premier University, Oujda, Morocco. E-mail address: marzoukib@yahoo.fr, makranmakran83@gmail.com

and

Abdelhak El Haddouchi, Department of Mathematical Sciences, University Moulay Ismail, Faculty of Sciences and Technics, Errachidia, Morocco. E-mail address: abdelhak.elhaddouchi@gmail.com