
Bol. Soc. Paran. Mat. (3s.) v. 2022 (40) : 1–6.
c©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.51589

t-Extending Krasner Hypermodules

Burcu Nişancı Türkmen

abstract: Let M be a hypermodule over a hyperring R such that the intersection of any two subhyper-
modules of M is a subhypermodule of M . We introduce the concept of a t-essential subhypermodule in M

relative to an arbitrary subhypermodule T of M , which is called T -t-essential subhypermodule of M . Our aim
in this work is to investigate properties of t-essential subhypermodules. We apply this concept to introduce
t-extending hypermodules. Examples are provided to illustrate different concepts.
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1. Introduction

The categories of hypergroups, hypermodules and hyperrings have many important roles in hyper-
structures. Some authors got many exiting results about these theories. Reader can see references [1],
[6], [7], [8] and [10] to get some basic information about the categories of hypergroups, hyperrings and
hypermodules. Also reference [13] can be suitable to get some information about theory of rings and
modules.

We recall some definitions and theorems from above references which we need to develop our paper.
In this paper, we use ◦ : H ×H −→ P ∗(H) instead of . : H ×H −→ H , where H is a non-empty set

and P ∗(H) the set of all non-empty subsets of H . The map ◦ is called a hyperoperation on H . Therefore,
we define A ◦B =

⋃
a∈A, b∈B a ◦ b, x ◦A = {x} ◦A and A ◦x = A ◦ {x}, for x ∈ H and A,B ∈ P ∗(H). We

say (H, ◦) is a semihypergroup if for all x, y, z of H , we have (x ◦ y) ◦ z = x ◦ (y ◦ z). A semihypergroup
(H, ◦) is called a hypergroup if for all x ∈ H , x ◦ H = H ◦ x = H [5]. A non-empty subset K of a
hypergroup (H, ◦) is called subhypergroup, if for all k ∈ K, we have k ◦K = K ◦ k = K. A hypergroup
(H, ◦) is called commutative if for all x, y ∈ H , then x ◦ y = y ◦ x. A commutative hypergroup (H, ◦) is
said to be canonical, if there exists a unique 0 ∈ H , such that for all x ∈ H , x ◦ 0 = {x}; for all x ∈ H ,
there exists a unique x−1 ∈ H , such that 0 ∈ x ◦ x−1; if x ∈ y ◦ z, then y ∈ x ◦ z−1 and z ∈ y−1 ◦ x, for
all x, y, z ∈ H [5].

The triple (R,⊎, ◦) is called a hyperring, if (R,⊎) is a hypergroup, (R, ◦) is a semihypergroup and ◦
is a distributive over ⊎ [7]. A non-empty subset I of a hyperring R is called a hyperideal if (I,⊎) is a
subhypergroup of (R,⊎) and r ◦ x ∪ x ◦ r ⊆ I for all x ∈ I and r ∈ R. A hyperring (R,⊎, ◦) is called
Krasner, if (R,⊎) is a canonical hypergroup and (R, ◦) is a semigroup such that 0 is zero element, i.e. for
all x ∈ R, we have x ◦ 0 = 0 = 0 ◦ x [7]. A non-empty subset I of a krasner hyperring (R,⊎, ◦) is called
a a right hyperideal of R if (I,⊎) is a canonical subhypergroup of (R,⊎) and for every a ∈ I and r ∈ R,
a ◦ r ∈ I [11].

Let (R,⊎, ◦) be a hyperring and (M,+) be a hypergroup. If there exists an external hyperoperation
. : M × R −→ P ∗(M) such that for all a, b ∈ M and r, s ∈ R we have (a + b).r = (a.r) + (b.r),
a.(r ⊎ s) = (a.r) + (a.s) and a.(r ◦ s) = (a.r).s then (M,+, .) is called a right hypermodule over R [3].
Similarly, a left hypermodule overR can be defined. M is called a hypermodule over R, if it is a right and a
left hypermodule over R. If (M,+) is a canonical hypergroup and (R,⊎, ◦) is a Krasner hyperring, thenM
is said to be a canonical R-hypermodule. Moreover,M is called Krasner R-hypermodule, if it is a canonical
R-hypermodule, where . is an external operation, that is . : M × R −→ M by (m, r) 7→ m.r ∈ M , and
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0.r = 0. A non-empty subset N of an R-hypermoduleM is called a subhypermodule, if N is a hypermodule
over R. In this work, all R-hypermodules are right Krasner R-hypermodules unless otherwise stated.

Throughout this work, we admit that every hypermodule M is a Krasner R-hypermodule thereby
{0} is a subhypermodule of M . We denote a subhypermodule N of M by N ≤ M . A subhypermodule
N of M is called an essential subhypermodule of M if for every non-zero subhypermodule K of M , we
have N ∩ K 6= {0}, denoted by N ☎ M . Let M be an R-hypermodule and T a submodule of M . A
subhypermodule N is called T -t-essential in M (denoted by N☎T

t M) if N * T , N∩L ⊆ T implies L ⊆ T
and L ⊆ Z2(M) for every subhypermodule L of M , where Z2(M) is the second singular subhypermodule
of M . Whenever T = ∩K≤MK and N ☎T

t M , then we call N a t-essential subhypermodule of M and
N ☎t M shows that N is a t-essential subhypermodule of M . In the light of last remarks and comments,
in what follows we start to study on t-essentially in R-hypermodules. It can be seen that for a Krasner
R-hypermodule M and K ≤ M , we can construct the quotient Krasner R-hypermodule M/K, endowed
with (x+K)⊕ (y +K) = { t+K | t ∈ x + y } and (x+K)⊙ r = x.r +K, for all x+K, y +K ∈ M/K
and r ∈ R.

Let T be a subhypermodule of an R-hypermodule M . In [9], a subhypermodule N of M is called a T -
direct summand provided there exists a subhypermoduleK ofM such thatM = N+K andN∩K ⊆ T . If
T = {0}, then N is a direct summand of M ; this situation is denoted by M = N⊕K. A subhypermodule
N of M is called closed if, N is a closed subhypergroup (M,+) ,that is, x ∈ m + y (x ∈ y +m) for all
x, y ∈ N and m ∈ M , implies that m ∈ N . If N is a closed subhypermodule of M , we denote it by
N ≤c M . It can be seen that a subhypergroup N of (M,+) is closed if and only if N +(M \N) = M \N
[5].

2. t-Closed Subhypermodules and t-Extending Krasner Hypermodules

In this section, we define notions of t-closed subhypermodules and t-extending Krasner hypermodules,
and we obtain some basic properties of t-extending Krasner hypermodules.

The singular subhypermodule Z(M) of an R-hypermodule M is a set of m ∈ M with m.I = {0} for
some essential right hyperideal of hyperring R. The second singular (Goldie torsion) subhypermodule
Z2(M) is the subhypermodule of hypermodule M which is defined by Z(M/Z(M)) = Z2(M)/Z(M).

Definition 2.1. Let M be an R-hypermodule and T a submodule of M . A subhypermodule N is called
T -t-essential in M (denoted by N ☎T

t M) if N * T , N ∩ L ⊆ T implies L ⊆ T and L ⊆ Z2(M) for
every subhypermodule L of M , where Z2(M) is the second singular subhypermodule of M . Whenever
T = ∩K≤MK and N ☎T

t M , then we call N a t-essential subhypermodule of M and will be denoted by
N ☎t M . Note that for Krasner R-hypermodule M , we have ∩K≤MK = {0}.

Let M and N be two R-hypermodules. Recall from [9] that the function f : M −→ N is called a
homomorphism if f(x+ y) ⊆ f(x) + f(y) and f(x.r) = f(x).r for all x, y ∈ M and r ∈ R. Also, f is said
to be a strong homomorphism if f(x+ y) = f(x) + f(y) and f(x.r) = f(x).r for all x, y ∈ M and r ∈ R.
Note that in this case, f(0M ) = 0N . If a strong homomorphism f is one-to-one and surjective function,
it is called a strong isomorphism.

We call singular subhypermodule Z(M) of a hypermoduleM is the set ofm ∈ M with ann(m)☎RR, or
equivalently, m◦I = 0 for some essential right hyperideal I of R. The second singular (or Goldie torsion)
subhypermodule Z2(M) is the subhypermodule of M which is defined by Z(M/Z(M)) = Z2(M)/Z(M).
We call a hypermodule M Z2−torsion if Z2(M) = M . Clearly, every singular hypermodule is Z2-torsion.

Proposition 2.2. The following statements are equivalent for a subhypermodule N of an R-hypermodule
M :

(1) N is t-essential subhypermodule of M ;

(2) (N + Z2(M))/Z2(M) is an essential subhypermodule of M/Z2(M);

(3) N + Z2(M) is an essential subhypermodule of M ;

(4) M/N is Z2-torsion.
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Proof. (1) ⇒ (2) There exists a subhypermodule K of M such that N⊕K is an essential subhypermodule
of M . By hypothesis, K ≤ Z2(M) therefore; N + Z2(M) is an essential subhypermodule of M , and
since Z2(M) is a closed subhypermodule of M , we conclude that (N + Z2(M))/Z2(M) is an essential
subhypermodule of M/Z2(M).

(2) ⇒ (3) This is obvious.
(3) ⇒ (4) By hypothesis M/(N +Z2(M)) is singular, and hence Z2-torsion. On the other hand, there

exists a strong isomorphism (N + Z2(M))/N to a factor of Z2(M), thus it is Z2-torsion.Therefore, from
the strong isomorphism (M/N)/[(N+Z2(M))/N ] ∼= M/(N+Z2(M)), we obtain that M/N is Z2-torsion.

(4) ⇒ (1) Since M/N is Z2-torsion, (M/N)/(Z(M/N)) is singular. Additionally there exists a strong
isomorphism from (M/N)/(Z(M/N)) to M/N∗, where N∗/N = Z(M/N). Thus M/N∗ is singular. Let
N ∩K ≤ Z2(M) for some subhypermodule K of M , and k ∈ K. As M/N∗ is singular, there exists an
essential right hyperideal I of R such that k.I ≤ N∗. Then for every x ∈ I, there exists an essential right
hyperideal J of R such that (k.x).J ≤ N . Hence (k.x).J ≤ N ∩ K ≤ Z2(M), and so k.x + Z2(M) ∈
Z(M/Z2(M)) = {0}. Thus k.I ≤ Z2(M), and this implies that k + Z2(M) ∈ Z(M/Z2(M)) = {0}. It
means that k ∈ Z2(M). Consequently, K ≤ Z2(M). ✷

By Proposition 2.2, we obtain that every essential subhypermodule of an R-hypermodule M is t-
essential.

Definition 2.3. Let M be an R-hypermodule. The subhypermodule L of a hypermodule M is called
t-closed and write L ≤tc M if L☎t L

′

≤ M implies that L
′

= L.

It is clear that every t-closed subhypermodule is a closed subhypermodule and if L is a subhypermodule
of a nonsingular R-hypermodule M , then L is t-closed in M if and only if L is closed in M .

Lemma 2.4. Let M be an R-hypermodule.

(1) If L ≤tc M , then Z2(M) ≤ L.

(2) {0} ≤tc M if and only if M is nonsingular.

(3) If N ≤ L, then L ≤tc M if and only if L/N ≤tc M/N .

Proof. (1) Since there exists a strong isomorphism from (L + Z2(M))/L to Z2(M)/(L ∩ Z2(M)) such
that (L + Z2(M))/L is Z2-torsion by Proposition 2.2, L ☎t L + Z2(M). Thus L = L + Z2(M), and so
Z2(M) ≤ L.

(2) (⇒) Follows from part (1).
(⇐) It is clear.
(3) This follows from Proposition 2.2 (4). ✷

Recall from [9, Definition 2.16 (1)] that for subhypermodules T , K, N of an R-hypermodule M ; N is
called a T -complement of K in M , when N is maximal with respect to K ∩N ⊆ T (note that by Zorn’s
lemma such a subhypermodule does exist). For the case T = {0}, it has been prefered to say that N is
a complement of K.

Proposition 2.5. Let N be a subhypermodule of a hypermodule M . The following statements are equiv-
alent:

(1) There exists a subhypermodule K such that N is maximal with respect to the property that N ∩K
is Z2-torsion;

(2) N is t-closed in M ;

(3) N contains Z2(M) and N/Z2(M) is a closed subhypermodule of M/Z2(M);

(4) N contains Z2(M) and N is a closed subhypermodule of M ;

(5) N is a complement to a nonsingular subhypermodule of M ;
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(6) M/N is nonsingular.

Proof. (1) =⇒ (2) Assume that the first condition is provided and N ☎t N
′

≤ M for some N
′

. Then
N ∩ (N

′

∩K) ≤ Z2(M) implies that N
′

∩K ≤ Z2(M). Hence N = N
′

.
(2) =⇒ (3) By Lemma 2.4, N contains Z2(M). Let N/Z2(M)☎N

′

/Z2(M). By Proposition 2.2 (2),
we obtain that N ☎t N

′

. Hence N = N
′

.
(3) =⇒ (4) Let N ☎N

′

≤ M . Since every essential subhypermodule is t-essential, by Proposition 2.2
N/Z2(M)☎N

′

/Z2(M). Hence N = N
′

.
(4) =⇒ (5) Since N is closed, it has been easily available that N = L ∩M for some direct summand

L of the injective hull E(M), say E(M) = L ⊕ Y , and let K = M ∩ Y by [12, Proposition 6.32]. Then
we have N ∩K = {0}. Thus Z2(K) = Z2(M) ∩K ≤ N ∩K = {0}, and hence K is nonsingular. It is
easily shown that N is a complement to K by means of [12, Proposition 6.32 ((3) =⇒ (1))]. The proof
is completed.

(5) =⇒ (1) It is clear.
(2) ⇐⇒ (6) By Lemma 2.4, a subhypermodule N of M is t-closed if and only if the zero subhyper-

module {0} = N/N of M/N is t-closed if and only if M/N is nonsingular. ✷

Corollary 2.6. Let M be an R-hypermodule. Then

(1) Z2(M) is t-closed in M .

(2) If f is a strong endomorphism of M and N is a t-closed subhypermodule of M , then f−1(N) is
t-closed in M .

Proof. (1) Since M/Z2(M) is nonsingular, Z2(M) is t-closed in M by Proposition 2.5.
(2) There exists a natural embedding of M/f−1(N) into the nonsingular hypermodule M/N . Hence

M/f−1(N) is nonsingular, and thus by Proposition 2.5, f−1(N) is t-closed in M . ✷

Corollary 2.7. Let N be a subhypermodule of an R-hypermodule M .

(1) If N ≤tc M , then N = Z2(M) if and only if N is Z2-torsion if and only if there exists a t-essential
subhypermodule K of M for which N ∩K ≤ Z2(M).

(2) Let N ≤ T ≤ M . If N ≤tc M , then N ≤tc T .

(3) If N ≤tc T and T ≤tc M , then N ≤tc M .

Proof. (1) By Lemma 2.4 (1) it suffices to show that if N = Z2(M), then there is a t-essential subhyper-
module K of M for which N ∩K ≤ Z2(M). Then there exists a subhypermodule K of M such that N is
maximal with respect to the property that N ∩K is Z2-torsion by Proposition 2.5. Let K ∩ T ≤ Z2(M).
By Zorn’s Lemma, T can be enlarged into a t-closed subhypermodule N

′

such that K ∩N
′

≤ Z2(M). In
addition, by Lemma 2.4 (1), N = Z2(M) ≤ N

′

. Hence N
′

= N = Z2(M). Then T ≤ Z2(M) and so K
is t-essential.

(2) and (3) follow from Proposition 2.5 ((2) ⇐⇒ (6)). ✷

We have in general

N ≤ M , N
′

≤c M ; N ∩N
′

≤c N ,

N ≤c M , N
′

≤c M ; N ∩N
′

≤c M ;

for an R-hypermodule M . But above conditions are always true if we replace ≤c by ≤tc.

Proposition 2.8. Let M be a Krasner R-hypermodule. Then:

(1) If N ≤ M , then N
′

≤tc M , then N ∩N
′

≤tc N ;

(2) If N ≤tc M and N
′

≤tc M , then N ∩N
′

≤tc M .
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Moreover, an arbitrary intersection of t-closed subhypermodules is t-closed.

Proof. (1) Let N ∩ N
′

☎t K ≤ N . Then K/(N ∩ N
′

) is Z2(M)-torsion by Proposition 2.2. Thus,
K/(K ∩N

′

) is Z2-torsion, and so (K +N
′

)/N
′

is Z2-torsion. Hence N
′

☎t K +N
′

and, as N
′

is t-closed
in M , we conclude that N

′

= K +N
′

. Then we have K ≤ N
′

. Finally K ≤ N ∩N
′

and so K = N ∩N
′

.
(2) Let Ni be a t-closed subhypermodule of M for any i in an index set I. It is clear that there is a

strong monomorphism from M/ ∩i Ni to
∏

iM/Ni. Then M/Ni is nonsingular by Proposition 2.5 (6).
Thus

∏
i M/Ni is nonsingular; hence, M/ ∩i Ni is nonsingular, and so ∩iNi is t-closed in M . ✷

Motivated by the definition of an extending hypermodule, we define the following notion.

Definition 2.9. An R-hypermodule M is called t-extending if every t-closed subhypermodule of M is a
direct summand of M .

It is clear that every Z2-torsion hypermodule is t-extending by Lemma 2.4. Moreover, every extend-
ing hypermodule is t-extending since every t-closed subhypermodule is closed by Proposition 2.5. The
following Theorem gives several equivalent conditions for an hypermodule to be t-extending.

Theorem 2.10. The following statements are equivalent for an R-hypermodule:

(1) M is t-extending;

(2) For every subhypermodule N of M , K is a direct summand of M where K/N = Z2(M/N);

(3) M = Z2(M)⊕M
′

where M
′

is a (nonsingular) extending hypermodule;

(4) Every subhypermodule of M which contains Z2(M) is essential in a direct summand of M ;

(5) Every subhypermodule of M is t-essential in a direct summand of M ;

(6) For every subhypermodule K of M , there exists a decomposition M/K = N/K ⊕ N
′

/K such that
N is a direct summand of M and N

′

☎t M .

Proof. (1) =⇒ (2) Since there exists a strong isomorphism from M/K to (M/N)/(Z2(M/N)), the factor
hypermodule M/K is nonsingular. Then K is a t-closed subhypermodule of M by Proposition 2.5. Thus
K is a direct summand of M .

(2) =⇒ (3) Since M/Z2(M) is nonsingular, (2) implies that Z2(M) is a direct summand of M , say
M = Z2(M) ⊕ M

′

. Let N be a closed subhypermodule of M
′

. Since M
′

is nonsingular, M
′

/N is
nonsingular by Proposition 2.5. Then M/(Z2(M) ⊕ N) is nonsingular, and so Z2(M) ⊕ N is a direct
summand of M by (2). This implies that N is a direct summand of M

′

, and hence M
′

is extending.
(3) =⇒ (4) Let K be a subhypermodule of M which contains Z2(M). It is clear that K = Z2(M) ⊕

(K∩M
′

). There exists a direct summand L of M
′

such that K∩M
′

is essential in L. Thus K is essential
in Z2(M)⊕ L which is a direct summand of M .

(4) =⇒ (5) Suppose that K is a subhypermodule of M . There exists a direct summand N of M such
that K + Z2(M) is essential in N . By Proposition 2.2, K ☎t N .

(5) =⇒ (6) Let K be a subhypermodule of M . There exist a decomposition M = N ⊕ L such that
K ☎t N . Then M/K = N/K ⊕ (L + K)/K. It is clear that there exist strong isomorphisms from
M/(L+K) to (M/K)/[(L+K)/K] and N/K. Therefore N/K is Z2-torsion. So L+K ☎t M .

(6) =⇒ (1) Let L be a t-closed subhypermodule of M . There exists a decomposition M/L = N/L⊕
N

′

/L, where N is a direct summand of M and N
′

☎t M . Then we have L☎t N by Proposition 2.2 (4).
Since L is t-closed, we conclude that L = N is a direct summand of M . ✷

Example 2.11. (1) Since every torsion-free finitely generated Z-hypermodule is extending, every finitely
generated Z-hypermodule is t-extending by Theorem 2.10.

(2) For an arbitrary R-hypermodule M , the R-hypermodule M/Z2(M) is nonsingular, and so
E(M/Z2(M)) is nonsingular extending. Thus E(M/Z2(M))⊕ Z2(M) is t-extending.
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We call a subhypermodule N of a hypermodule M fully invariant if f(N) ≤ N for every strong
endomorphism f of M .

Proposition 2.12. Let M be a t-extending hypermodule.

(1) Every strong homomorphic image of M is t-extending. In particular, every direct summand of M
is t-extending.

(2) Every fully invariant subhypermodule of M is t-extending.

Proof. (1) Let K be a subhypermodule of M and L/K ≤ M/K. Since M is t-extending, there exists
a direct summand N of M such that L ☎t N . Therefore, N/K is a direct summand of M/K such that
L/K ☎t N/K by Proposition 2.2 (4). Thus M/K is t-extending by Theorem 2.10 (5).

(2) Let L be a fully invariant subhypermodule of M and K be a subhypermodule of L. There exists
a decomposition M = N ⊕ N

′

such that K ☎t N . Since L is fully invariant, L = (N ∩ L) ⊕ (N
′

∩ L).
However, K ☎t N ∩ L since (N ∩ L)/K ≤ N/K is Z2-torsion. Thus L is t-extending. ✷

The following example shows that the notions of extending and t-extending are not the same. More-
over, this example shows that a t-extending hypermodule not be Z2-torsion.

Example 2.13. For an arbitrary Z-hypermodule M , since Z2 ⊕ Z8 is not extending, the Z-hypermodule
E(M)⊕ Z2 ⊕ Z8 is t-extending but not extending.
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