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1. Introduction

The Bernoulli polynomials Bn(x) are defined by the following generating function

(

t

et − 1

)

ext =

∞
∑

n=0

Bn(x)
tn

n!
, (1.1)

and Bn = Bn(0) are named Bernoulli numbers. These numbers and polynomials have a long history,
which arise from Bernoulli’s calculations of power sums in 1713, that is,

m
∑

j=1

jn =
Bn+1(m+ 1)−Bn+1

n+ 1
,

(see [ [19], p.5, (2.2)]). They have many applications in modern number theory, such as modular forms
[11] and Iwasawa theory [9]. A recent book by Arakawa, Ibukiyama and Kaneko [1] give a nice intro-
duction of Bernoulli numbers and polynomials including their connections with zeta functions.

In 1924, Nörlund [14] introduced and studied the generalized higher order Bernoulli polynomials
defined by means of the following generating function

(

t

et − 1

)α

ext =
ext

(

et−1
t

)α =
∞
∑

n=0

B(α)
n (x)

tn

n!
. (1.2)

We also have a similar expression of multiple power sums

m−1
∑

l1···ln=0

(t+ l1 + · · ·+ ln)
k,

in terms of higher order Bernoulli polynomials, (see ( [12], Lemma 2.1)).
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Howard ([5], [6]) gave a generalization of Bernoulli polynomials by considering the following generating
function

t2ext/2

et − 1− t
=

∞
∑

n=0

A(α)
n (x)

tn

n!
, (1.3)

and more generally, for all positive integer N

tN

N !

et − TN−1(t)
ext =

∞
∑

n=0

BN,n(x)
tn

n!
, (1.4)

where TN−1(t) is the Taylor polynomial of order N − 1 for the exponential function. For the case N = 1
and N = 2, (1.4) reduces to (1.1) and (1.3), respectively. We see that the polynomials BN,n(x) have
rational coefficients.

The polynomialsBN,n(x) are named hypergeometric Bernoulli polynomials, while the numbersBN,n =

BN,n(0) are named hypergeometric Bernoulli numbers since the generating function f(t) = et−TN−1(t)
tN

N !

can be expressed as 1F1(1;N + 1; t), where the confluent hypergeometric function 1F1(a; b; t) is defined
by

1F1(a; b; t) =

∞
∑

n=0

(a)n
(b)n

tn

n!
, (1.5)

and (a)n is the Pochhammer symbol, (see [20])

(a)0 := 1, (a)n = a(a+ 1) · · · (a+ n− 1), (n ∈ N := {1, 2, 3, · · · }).

For N, r ∈ N, the higher-order hypergeometric Bernoulli polynomials B
(r)
N,n(x) are defined by means

of the generating function, (see [2], [7], [10])

(

tN

N !

et − TN−1(t)

)r

ext =
1

1F1(1;N + 1; t)r
ext =

∞
∑

n=0

B
(r)
N,n(x)

tn

n!
. (1.6)

For x = 0 in (1.6), B
(r)
N,n = B

(r)
N,n(0) are called the higher order hypergeometric Bernoulli numbers,

(see [10], [13]). Again, on taking r = 1 in (1.6), B
(1)
N,n(x) = BN,n(x) are called the the hypergeomet-

ric Bernoulli polynomials and if we put x = 0 in (1.6), B
(1)
N,n(0) = BN,n are called the hypergeometric

Bernoulli numbers.

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) ( [3], [4]]) are defined as

Hn(x, y) = n!

[n
2
]

∑

r=0

yrxn−2r

r!(n − 2r)!
. (1.7)

It is easily seen that

Hn(2x,−1) = Hn(x), Hn(x,−
1

2
) = Hen(x),

where Hn(x) and Hen(x) are called the ordinary Hermite polynomials. Also

Hn(x, 0) = xn.

The generating function for Hermite polynomial Hn(x,y) ( [16]- [18]) are given by

ext+yt2 =

∞
∑

n=0

Hn(x, y)
tn

n!
. (1.8)
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The object of this paper is to present a systematic account of these families in a unified and gen-
eralized form. We develop some elementary properties and derive the implicit summation formulae for
the higher-order hypergeometric Hermite-Bernoulli polynomials by using different analytical means on
their respective generating functions. The approach given in recent papers of Pathan and Khan ( [16]-
[18]) has indeed allowed the derivation of implicit summation formulae in the two-variable higher-order
hypergeometric Hermite-Bernoulli polynomials. In addition to this, some relevant connections between
Hermite and higher-order hypergeometric Bernoulli polynomials and recurrence relations are given.

2. Multiple hypergeometric Hermite-Bernoulli numbers and polynomials

For every positive integer N and r, the higher-order hypergeometric Hermite-Bernoulli numbers and

polynomials HB
(r)
N,n(x, y) are defined by means of the following generating function defined in a suitable

neighborhood of t = 0:

Fr,N (x, y, t) =
1

1F1(1;N + 1; t)r
ext+yt2 =









tN

N !

et −
N−1
∑

n=0

tn

n!!









r

ext+yt2

=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
. (2.1)

For x = y = 0, B
(r)
N,n = HB

(r)
N,n(0, 0) are called the higher-order hypergeometric Bernoulli numbers, (see

[10, 13]). When r = 1, we obtain the hypergeometric Hermite-Bernoulli polynomials HBN,n(x, y) =

HB
(1)
N,n(x, y) and BN,n = HB

(1)
N,n(0, 0) is the hypergeometric Bernoulli numbers, (see [8, 15]). If we put

N = 1, the result reduces to the known result of Pathan and Khan, (see [16]).

Remark 2.1. On setting y = 0, (2.1) reduces to the known result of Aoki et al. [2] as follows:

Fr,N (x, t) =
1

1F1(1;N + 1; t)r
ext =









tN

N !

et −
N−1
∑

n=0

tn

n!!









r

ext

=
∞
∑

n=0

B
(r)
N,n(x)

tn

n!
. (2.2)

In particular in terms of higher-order hypergeometric Bernoulli numbers B
(r)
N,n and Hermite polyno-

mials Hs(x, y), the higher order Hermite-Bernoulli polynomials HB
(r)
N,n(x, y) are defined as

HB
(r)
N,n(x, y) =

n
∑

s=0

(

n
s

)

B
(r)
N,n−sHs(x, y). (2.3)

Taking r = N = 1 and x = 0 in (2.1) gives the result

[n
2
]

∑

m=0

(

n
2m

)

Bn−2mym = HB
(1)
1,n(0, y). (2.4)

Using eit = cost+ i sin t and N = 1, the result reduces to

∞
∑

n=0

f(n) =

∞
∑

n=0

f(2n) +

∞
∑

n=0

f(2n+ 1), (2.5)
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and
(

it

eit − 1

)r

=

(

it(cos t− 1− i sin t)

(cos t− 1 + i sin t)(cos t− 1− i sin t)

)r

=

(

it(cos t− 1− i sin t)

(cos t− 1)2 + (sin t)2

)r

=

(

(t sin t) + it(cos t− 1)

Ω

)r

,

where Ω = (cos t−1)2+(sin t)2, together with the definition (2.1) and the result (2.5), we get (see Pathan
and Khan [16]):

eixt−yt2
(

(t sin t) + it(cos t− 1)

Ω

)r

=

∞
∑

n=0

HB
(r)
2n (x, y)

(−1)nt2n

(2n)!
+

∞
∑

n=0

HB
(r)
2n+1(x, y)

(−1)nt2n+1

(2n+ 1)!
, (2.6)

where r ≥ 1, Ω = (cos t− 1)2 + (sin t)2.

On setting r = 1, x = y = 0 in the above results , we get the following well known classical results
involving Bernoulli numbers, (see [16]):

t

2
cot

(

t

2

)

=

∞
∑

n=0

B2n
(−1)nt2n

(2n)!
,
t

2
coth

(

t

2

)

=

∞
∑

n=0

B2n
t2n

(2n)!
.

Theorem 2.2. For n ≥ 1, we have

Hn(x, y) = n!(N !)r
n
∑

m=0

∑

i1+···+ir=n−m

HB
(r)
N,m(x, y)

m!(N + i1)! · · · (N + ir)!
. (2.7)

Proof. From definition (2.1), we have

(

tN

N !

)r

ext+yt2 =

(

ti+N

(i +N)!

)r
(

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

)

= trN

(

∞
∑

l=0

∑

i1+···+ir=1

l!

(N + i1)! · · · (N + ir)!

tl

l!

)(

∞
∑

m=0

HB
(r)
N,m(x, y)

tm

m!

)

trN

(N !)r

∞
∑

n=0

Hn(x, y)
tn

n!

= trN
∞
∑

n=0

n
∑

m=0

∑

i1+···+ir=n−m

HB
(r)
N,m(x, y)

(N + i1)! · · · (N + ir)!

tn

m!
.

Comparing the coefficients of tn on both sides, we get (2.7). ✷

Corollary 2.3. For r = 1 in (2.7), we get

Hn(x, y) = n!N !

n
∑

m=0

(

n+N
m

)

HBN,m(x, y). (2.8)

Corollary 2.4. For x = y = 0 in (2.7), the result reduces to the known result of Aoki et al. [2] as follows

n
∑

m=0

∑

i1+···+ir=n−m

B
(r)
N,m

m!(N + i1)! · · · (N + ir)!
= 0. (2.9)

and r = 1 in (2.8), the result reduces to (see [7]):

n
∑

m=0

(

n+N
m

)

BN,m(x, y) = 0. (2.10)
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Theorem 2.5. The following relationship holds true:

Hn(x, y) =

n
∑

m=0

(

n
m

)

m!Γ(N + 1)

Γ(N + 1 +m)
HBN,n−m(x, y). (2.11)

Proof. Using equations (2.1), (1.5) and (1.8), we have

1

1F1(1;N + 1; t)
ext+yt2 =

∞
∑

n=0

HBN,n(x, y)
tn

n!

ext+yt2 = 1F1(1;N + 1; t)

∞
∑

n=0

HBN,n(x, y)
tn

n!

∞
∑

n=0

Hn(x, y)
tn

n!
=

∞
∑

m=0

(1)m
(N + 1)m

tm

m!

∞
∑

n=0

HBN,n(x, y)
tn

n!

=
∞
∑

n=0

n
∑

m=0

(

n
m

)

m!Γ(N + 1)

Γ(N + 1 +m)
HBN,n−m(x, y)

tn

n!
.

Comparing the coefficients of tn

n! on both sides, we arrive at the obtained result (2.11). ✷

Theorem 2.6. The following relationship holds true:

∫ 1

0

(1 − x)N−1
HB

(r)
N,n(x, y)dx = (N − 1)!

n
∑

k=0

(

n
k

)

(n− k)!

(N + n− k)!
HB

(r)
N,k(0, y). (2.12)

Proof. From (2.1), we have

1

1F1(1;N + 1; t)r
ext+yt2 =

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

ext
∞
∑

n=0

HB
(r)
N,n(0, y)

tn

n!
=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

n=0

n
∑

k=0

(

n
k

)

HB
(r)
N,k(0, y)x

n−k t
n

n!
=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
.

Thus, we have

HB
(r)
N,n(x, y) =

n
∑

k=0

(

n
k

)

HB
(r)
N,k(0, y)x

n−k. (2.13)

Therefore, by integrating (2.13) with weight (1 − x)N−1 and using the result ( [20], p.26(48)), we obtain

∫ 1

0

(1− x)N−1
HB

(r)
N,n(x, y)dx =

n
∑

k=0

(

n
k

)

HB
(r)
N,k(0, y)

∫ 1

0

(1− x)N−1xn−kdx

= (N − 1)!

n
∑

k=0

(

n
k

)

(n− k)!

(N + n− k)!
HB

(r)
N,k(0, y),

which follows from (2.12). This completes the proof. ✷
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Theorem 2.7. The following representation for higher-order hypergeometric Hermite-Bernoulli polyno-

mials HB
(r)
N,n(x, y) involving Hermite-Euler polynomials HEn(x, y) holds true:

HB
(r)
N,n(x, y) =

1

2

[

n
∑

m=0

m
∑

k=0

(

n
m

)(

m
k

)

HEn−m(x, y)B
(r)
N,m−k

+

n
∑

m=0

(

n
m

)

HEn−m(x, y)B
(r)
N,m

]

. (2.14)

Proof. Using generating function for Hermite-Euler polynomials as follows

ext+yt2 =
et + 1

2

∞
∑

n=0

HEn(x, y)
tn

n!
, (see [18]).

Substituting this value of ext+yt2 in (2.1) gives

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
=

1

1F1(1;N + 1; t)r
et + 1

2

∞
∑

n=0

HEn(x, y)
tn

n!

=
1

2

[

∞
∑

n=0

HEn(x, y)
tn

n!

∞
∑

m=0

m
∑

k=0

B
(r)
N,m−k

tm

(m− k)!k!

+

∞
∑

n=0

n
∑

m=0

HEn−m(x, y)B
(r)
N,m

tn

(n−m)!m!

]

=
1

2

∞
∑

n=0

[

n
∑

m=0

m
∑

k=0

(

n
m

)(

m
k

)

HEn−m(x, y)B
(r)
N,m−k

+

n
∑

m=0

(

n
m

)

HEn−m(x, y)B
(r)
N,m

tn

(n−m)!m!

]

tn

n!
.

Comparing the coefficients of tn

n! on both sides, we required at the result (2.14). ✷

Theorem 2.8. For n ≥ 0, p, q ∈ R, the following formula for higher-order hypergeometric Hermite-

Bernoulli polynomials HB
(r)
N,n(px, qy) holds true:

HB
(r)
N,n(px, qy)

= n!

n
∑

k=0

[ k
2
]

∑

j=0

HB
(r)
N,n−k(x, y)((p− 1)x)k−2j((q − 1)y)j

tn

(n− k − 2j)!j!k!
. (2.15)

Proof. Rewrite the generating function (2.1), we have

∞
∑

n=0

HB
(r)
N,n(px, qy)

tn

n!

=
1

1F1(1;N + 1; t)r
ext+yt2e(p−1)xte(q−1)yt2 (2.16)

.

=

(

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

)(

∞
∑

k=0

((p− 1)x)k
tk

k!

)





∞
∑

j=0

((q − 1)y)j
t2j

j!







A New Class of Higher-order Hypergeometric Bernoulli... 7

=

(

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

)





∞
∑

k=0

∞
∑

j=0

((p− 1)x)k((q − 1)y)j
tk+2j

n!k!j!



 .

Replacing k by k − 2j in above equation, we have

L.H.S. =

(

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

)





∞
∑

k=2j

((p− 1)x)k−2j((q − 1)y)j
tk

(k − 2j)!j!





=

∞
∑

n=0

∞
∑

k=2j

(

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

)

((p− 1)x)k−2j((q − 1)y)j
tn+k

(k − 2j)!j!n!
.

Again replacing n by n− k in the above equation, we have

L.H.S. =

∞
∑

n=0

n
∑

k=0

[k
2
]

∑

j=0

(

∞
∑

n=0

HB
(r)
N,n−k(x, y)

tn

n!

)

((p− 1)x)k−2j((q − 1)y)j
tn

(n− k − 2j)!j!k!
.

Finally, equating the coefficients of tn on both sides, we acquire the result (2.15). ✷

Theorem 2.9. For n ≥ 0, p, q ∈ R and x, y ∈ C, we have

HB
(r)
N,n(px, qy)

=
n
∑

k=0

(

n
k

)

HB
(r)
N,n−k(x, y)Hk((p− 1)x, (q − 1)y). (2.17)

Proof. By using (2.16) and (1.8), we can easily derive (2.17). We omit the proof. ✷

3. Summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials

In this section, we derive the summation formula, the sum of the product of identity and recurrence
relations. First, we prove the following results involving higher-order hypergeometric Hermite-Bernoulli

polynomials HB
(r)
N,n(x, y).

Theorem 3.1. The following implicit summation formulae for higher-order hypergeometric Hermite-

Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,k+l(z, y) =

k,l
∑

n,p=0

k!l!(z − x)n+p
HB

(r)
N,k+l−p−n(x, y)

(k − n)!(l − p)!n!p!
. (3.1)

Proof. We replace t by t + u and rewrite the generating function (2.1) as

1

1F1(1;N + 1; (t+ u))r
ey(t+u)2 = e−x(t+u)

∞
∑

k,l=0

HB
(r)
N,k+l(x, y)

tk

k!

ul

l!
. (3.2)

Replacing x by z in the above equation and equating the resulting equation to the above equation,
we get

e(z−x)(t+u)
∞
∑

k,l=0

HB
(r)
N,k+l(x, y)

tk

k!

ul

l!
=

∞
∑

k,l=0

HB
(r)
N,k+l(z, y)

tk

k!

ul

l!
. (3.3)
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On expanding exponential function (3.3) gives

∞
∑

M=0

[(z − x)(t + u)]M

M !

∞
∑

k,l=0

HB
(r)
N,k+l(x, y)

tk

k!

ul

l!
=

∞
∑

k,l=0

HB
(r)
N,k+l(z, y)

tk

k!

ul

l!
, (3.4)

which on using formula ( [20], p.52(2))

∞
∑

M=0

f(M)
(x+ y)M

M !
=

∞
∑

n,m=0

f(n+m)
xn

n!

ym

m!
, (3.5)

in the left hand side becomes

∞
∑

n,p=0

(z − x)n+p

n!p!

∞
∑

k,l=0

HB
(r)
N,k+l(x, y)

tk

k!

ul

l!
=

∞
∑

k,l=0

HB
(r)
N,k+l(z, y)

tk

k!

ul

l!
. (3.6)

Now replacing k by k − n, l by l − p and using the lemma ( [20], p.100(1)) in the left hand side of (3.6),
we get

∞
∑

n,p=0

∞
∑

k,l=0

(z − x)n+p

n!p!
HB

(r)
N,k+l−n−p(x, y)

tk

(k − n)!

ul

(l − p)!
=

∞
∑

k,l=0

HB
(r)
N,k+l(z, y)

tk

k!

ul

l!
. (3.7)

Finally on equating the coefficients of the like powers of t and u in the above equation, we get the required
result. ✷

Corollary 3.2. On taking l = 0 in Theorem 3.1, the result reduces to

HB
(r)
N,k(z, y) =

k
∑

n=0

(

k
n

)

(z − x)nHB
(r)
N,k−n(x, y). (3.8)

Corollary 3.3. On replacing z by z+x and setting y = 0 in Theorem (3.1), we get the following result
involving higher-order hypergeometric Hermite-Bernoulli polynomials of one variable:

HB
(r)
N,k+l(z + x) =

k,l
∑

n,m=0

k!l!zn+m
HB

(r)
N,k+l−m−n(x)

(k − n)!(l −m)!n!m!
, (3.9)

whereas by setting z = 0 in Theorem 3.1, we get another result involving hypergeometric Hermite-Bernoulli
polynomials of one and two variables:

HB
(r)
N,k+l(y) =

k,l
∑

n,m=0

k!l!(−x)n+m
HB

(r)
N,k+l−m−n(x, y)

(k − n)!(l −m)!n!m!
. (3.10)

Theorem 3.4. The following implicit summation formulae for higher-order hypergeometric Hermite-

Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(x, y) =

n
∑

m=0

(

n
m

)

B
(r)
N,n−m(x− z)Hm(z, y). (3.11)

Proof. By exploiting the generating function (2.1) and using (1.8), we can write equation (2.1) as

1

1F1(1;N + 1; t)r
e(x−z)tezt+yt2 =

∞
∑

n=0

B
(r)
N,n(x− z)

tn

n!

∞
∑

m=0

Hm(z, y)
tm

m!
.
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Replacing n by n−m in above equation and using lemma ( [20], p.101(1)), we get

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
=

∞
∑

n=0

n
∑

m=0

B
(r)
N,n−m(x− z)Hm(z, y)

tn

(n−m)!m!
.

On equating the coefficients of the like powers of t, we get (3.11). ✷

Corollary 3.5. Letting z = x in Theorem 3.2 gives

HB
(r)
N,n(x, y) =

n
∑

m=0

(

n
m

)

B
(r)
N,n−mHm(x, y). (3.12)

Theorem 3.6. The following implicit summation formulae for higher-order hypergeometric Hermite-

Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(x+ 1, y) =

n
∑

m=0

(

n
m

)

HB
(r)
N,n−m(x, y). (3.13)

Proof. Using the generating function (2.1), we have

∞
∑

n=0

HB
(r)
N,n(x+ 1, y)

tn

n!
−

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
=

1

1F1(1;N + 1; t)r
(et − 1)ezt+yt2

=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

(

∞
∑

m=0

tm

m!
− 1

)

=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

m=0

tm

m!
−

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

=

∞
∑

n=0

n
∑

m=0

(

n
m

)

HB
(r)
N,n−m(x, y)

tn

n!
−

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
.

Finally equating the coefficients of the like powers of t, we get (3.13). ✷

Theorem 3.7. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(z + x, u+ y) =

n
∑

m=0

(

n
m

)

HB
(r)
N,n−m(x, y)Hm(z, u). (3.14)

Proof. We replace x by x+ z and y by y + u in (2.1), use (1.2) and rewrite the generating function as

1

1F1(1;N + 1; t)r
e(xt+yt2ezt+ut2 =

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

m=0

Hm(x, y)
tm

m!

=

∞
∑

n=0

∞
∑

m=0

HB
(r)
N,n(x, y)Hm(x, y)

tn+m

n!m!
.

Replacing n by n−m in above equation, we have

=
∞
∑

n=0

n
∑

m=0

HB
(r)
N,n−m(x, y)Hm(x, y)

tn

(n−m)!m!
.

Comparing the coefficients of t on both sides, we get the result (3.14). ✷
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Theorem 3.8. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(y, x) =

[n
2
]

∑

k=0

B
(r)
N,n−2k(y)

xk

(n− 2k)!k!
. (3.15)

Proof. We replace x by y and y by x in equation (2.1) to get

∞
∑

n=0

HB
(r)
N,n(y, x)

tn

n!
=

∞
∑

n=0

B
(r)
N,n−2k(y)

tn

n!

∞
∑

k=0

xkt2k

k!
.

Now replacing n by n− 2k and comparing the coefficients of t, we get the result (3.15). ✷

Theorem 3.9. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(z, u) =

n
∑

m=0

(

n
m

)

Hm(α− x+ z, β − y + u)HB
(r)
N,n−m(x− α, y − β), (3.16)

and

HB
(r)
N,n(z − α− x, u − β + y) =

n
∑

m=0

(

n
m

)

Hm(z, u)HB
(r)
N,n−m(x− α, y − β). (3.17)

Proof. By exploiting the generating function (2.1), we can write

∞
∑

n=0

HB
(r)
N,n(z, u)

tn

n!
=

1

1F1(1;N + 1; t)r
ezt+ut2

= e−(x−z−α)t−(y−u−β)t2e(x−α)t+(y−β)t2 1

1F1(1;N + 1; t)r

= e−(x−z−α)t−(y−u−β)t2
∞
∑

n=0

HB
(r)
N,n(x− α, y − β)

tn

n!
,

which yields

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!
=

∞
∑

m=0

Hm(α − x+ z, β − y + u)
tm

m!

∞
∑

n=0

HB
(r)
N,n(x− α, y − β)

tn

n!
.

Replacing n by n − m in above equation and comparing the coefficients of t, we obtain (3.16). On
replacing z by z − α− x and u by u− β + y in (3.16), we get (3.17). ✷

Corollary 3.10. On setting z = u = 0 in (3.16), we have the following result for higher-order hypergeo-

metric Hermite-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

B
(r)
N,n =

n
∑

m=0

(

n
m

)

Hm(α − x, β − y)HB
(r)
N,n−m(x− α, y − β).
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Theorem 3.11. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m(y)

(n− 2m)!m!
=

[n
2
]

∑

m=0

HB
(r)
N,n−2m(x, y)B

(r)
N,m

(n− 2m)!m!
, (3.18)

and
[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m(y)

(n− 2m)!m!
=

n
∑

k=0

[n−k
2

]
∑

m=0

B
(r)
N,n−k−2mB

(r)
N,mHk(x, y)

(n− k − 2m)!m!k!
. (3.19)

Proof. Consider the definition of (2.1), we have

∞
∑

n=0

B
(r)
N,n(y)

t2n

n!
=

1

1F1(1;N + 1; t2)r
eyt

2

, (3.20)

where x is replaced by y and t is replaced by t2 in (2.1). On multiplying (2.1) and (3.20), we have

∞
∑

n=0

B
(r)
N,n(x)

tn

n!

∞
∑

m=0

B
(r)
N,m(y)

t2m

m!
=

1

1F1(1;N + 1; t)r
1

1F1(1;N + 1; t2)r
ext+yt2, (3.21)

∞
∑

n=0

[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m(y)

tn

(n− 2m)!m!
=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

m=0

B
(r)
N,m

t2m

m!
.

Using the Cauchy product and comparing the coefficients of t, we obtain (3.18). Another way of defining

the right hand side of equation (3.21) is suggested by replacing ext+yt2 by its series representation

∞
∑

n=0

B
(r)
N,n(x)

tn

n!

∞
∑

m=0

B
(r)
N,m(y)

t2m

m!
=

1

1F1(1;N + 1; t)r
1

1F1(1;N + 1; t2)r
ext+yt2

∞
∑

n=0

[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m(y)

tn

(n− 2m)!m!
=

∞
∑

k=0

Hk(x, y)
tk

k!

∞
∑

n=0

B
(r)
N,n

tn

n!

∞
∑

m=0

B
(r)
N,m

t2m

m!
.

Using the Cauchy product and comparing the coefficients of t, we get (3.19).
✷

Corollary 3.12. For y = 0 in Theorem 3.7, we have the following result for higher-order hypergeometric

Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m

(n− 2m)!m!
=

[n
2
]

∑

m=0

HB
(r)
N,n−2m(x, 0)B

(r)
N,m

(n− 2m)!m!
,

and
[n
2
]

∑

m=0

B
(r)
N,n−2m(x)B

(r)
N,m

(n− 2m)!m!
=

n
∑

k=0

[n−k
2

]
∑

m=0

B
(r)
N,n−k−2mB

(r)
N,mxk

(n− k − 2m)!m!k!
.

Theorem 3.13. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

n
∑

m=0

[n−m
2

]
∑

r=0

(

x
y2 − y

x2

)r

B
(k)
N,mHB

(k)
N,n(x, y)

ymm!r!(n −m− 2r)!xn−m−2r
=

n
∑

m=0

B
(k)
N,mHB

(k)
N,n−m(x, y)

xmm!yn−k!(n− k)!
. (3.22)



12 W. A. Khan

Proof. On replacing t by t
x
and r by k, we can write equation (2.1) as

∞
∑

n=0

HB
(k)
N,n(x, y)

tn

xnn!
=

1

1F1(1;N + 1; t
x
)k
et+y t2

x2 . (3.23)

Now interchanging x and y, we have

∞
∑

n=0

HB
(k)
N,n(y, x)

tn

ynn!
=

1

1F1(1;N + 1; t
y
)k
e
t+x t2

y2 . (3.24)

Comparison of (3.23) and (3.24) yields

e
x t2

y2
−y t2

x2
1

1F1(1;N + 1; t
y
)k

∞
∑

n=0

HB
(k)
N,n(x, y)

tn

xnn!

=
1

1F1(1;N + 1; t
x
)k

∞
∑

n=0

HB
(k)
N,n(y, x)

tn

ynn!

∞
∑

r=0

(

x
y2 − y

x2

)r

t2r

r!

∞
∑

m=0

B
(k)
N,m

tm

ymm!

∞
∑

n=0

HB
(k)
N,n(x, y)

tn

xnn!

=

∞
∑

m=0

B
(k)
N,m

tm

xmm!

∞
∑

n=0

HB
(k)
N,n(x, y)

tn

ynn!
.

Using the Cauchy product and comparing the coefficients of t, we get (3.22). ✷

Theorem 3.14. The following implicit summation formula involving higher-order hypergeometric Hermi-

te-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(w, u)HB

(r)
N,m(W,U) =

m,n
∑

s,k=0

(

n
s

)(

m
k

)

Hs(w − x, u − y)HB
(r)
N,n−s(x, y)

×Hk(W −X,U − Y )HB
(r)
N,m−k(X,Y ). (3.25)

Proof. Consider the product of higher-order hypergeometric Hermite-Bernoulli polynomials, equation
(2.1) in the following form

1

1F1(1;N + 1; t)r
ext+yt2 1

1F1(1;N + 1;T )r
eXT+Y T 2

=

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

m=0

HB
(r)
N,m(X,Y )

Tm

m!
. (3.26)

Replacing x by w, y by u, X by W and Y by U in (3.26) and equating the resultant equation to itself,
we find

∞
∑

n=0

∞
∑

m=0

HB
(r)
N,n(w, u)HB

(r)
N,m(W,U)

tn

n!

Tm

m!

= exp
(

(w − x)t+ (u− y)t2
)

exp
(

(W −X)T + (U − Y )T 2
)

×

∞
∑

n=0

HB
(r)
N,n(x, y)

tn

n!

∞
∑

m=0

HB
(r)
N,m(X,Y )

Tm

m!
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=

∞
∑

n=0

∞
∑

s=0

∞
∑

k=0

∞
∑

m=0

Hs(w − x, u− y)HB
(r)
N,n(x, y)

tn+s

n!s!
.

×Hk(W −X,U − Y )HB
(r)
N,m(X,Y )

Tm+k

m!k!
.

Finally, replacing n by n − s and m by m − k in the r.h.s. of the above equation and then equating
the coefficients of like powers of t and T , we get assertion (3.25) of Theorem (3.8). ✷

Remark 3.15. Replacing u by y and U by Y in assertion (3.25) of Theorem (3.9), we deduce the the
following consequence of Theorem (3.9).

Corollary 3.16. The following implicit summation formula involving higher-order hypergeometric

Hermite-Bernoulli polynomials HB
(r)
N,n(x, y) holds true:

HB
(r)
N,n(w, y)HB

(r)
N,m(W,Y ) =

m,n
∑

s,k=0

(

n
s

)(

m
k

)

(w − x)sHB
(r)
N,n−s(x, y)

×(W −X)kHB
(r)
N,m−k(X,Y ).
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