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Iterated Function System in ∅− Metric Spaces

Shaimaa S. Al-Bundi

abstract: Fractals have gained great attention from researchers due to their wide applications in engineering
and applied sciences. Especially, in several topics of applied sciences, the iterated function systems theory has
important roles. As is well known, examples of fractals are derived from the fixed point theory for suitable
operators in spaces with complete or compact structures. In this article, a new generalization of Hausdorff
distance h∅ on H(Ω), H(Ω) is a class of all nonempty compact subsets of the generalized b−metric space (Ω,
d∅). Completeness and compactness of (H (Ω) , h∅) are analogously obtained from its counterparts of (Ω,
d∅). Furthermore, a fractal is presented under a finite set of generalized µ-contraction mappings. Also, other
special cases are presented.
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1. Introduction and Preliminaries

The important objects in the fractals field are the theory of the Iterated function system (IFS) and
supplied powerful tools for the search of fractals. They are applied for both generating and modeling of
very irregular forms. As it’s known, a fractal is the attractor of the IFS. Interesting results in this field are
found, for example, in [1,2,3,4,5]. (IFS) is developed by Hutchison (1981) [6], and Barnsley and others
(1985, 1986, 1988) [2,7,8]. Many papers worked on the fixed point theory in different types of general
metric spaces such as, [9,10,11,12,13,14,15,16,17,18,19,20]. Here, we construct a fractal set of (IFS), in a
generalized b−metric space as the invariant set of a Hutchinson operator. This operator induced by the
generalized µF−contraction mappings. The obtained fractal is the successive iterations of a generalized
µF−Hutchinson operator. Now, let Ω be a nonempty set and ∅ : Ω × Ω → [1, ∞) be a function, we
recall the following:

Definition 1.1. [18] ”If a function d∅ : Ω× Ω −→ [0, ∞) satisfies the following:
for all p, q, r ∈ Ω

1. d∅ (p, q) = 0 ⇐⇒p = q

2. d∅ (p, q) = d∅ (q, p)

3. d∅ (p, q) ≤ ∅ (p, q) [d∅ (p, r) + d∅ (r, q)]

Then, the pair (Ω, d∅) is called an extended b-metric (shortly, ∅- metric space). The following diagram
is true, let b ≥ 1”

∅- metric spaces
∅(p, q)=b
=⇒ b-metric spaces

b=1
=⇒ metric spaces.

Example 1.2: [12] ”Let Ω = C([a, b] , R) be the space of all continuous real-valued functions defined
on [a, b].

Note that Ω is complete extended b-metric space by d∅ (a, b) = supt∈[a,b]|p (t)− q(t)|2,
with ∅ (p, q) = |p (t)|+ |q (t)|+ 2 where ∅: Ω× Ω× −→ [1,∞).”
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Remark 1.2. [16]
(i) The d∅ -metric function may be discontinuous.
(i) A convergent sequence has a unique limit,
(iii) Each convergent sequence is Cauchy”

Definition 1.3. [16] A sequence {pn} ⊂ Ω is said to be:

1. Converge to a point p ∈ Ω if ∀ε > 0, ∃ k ∈ N ∋ d∅ (pn, p) < ε ∀ n > k.

2. Cauchy sequence if ∀ε > 0, ∃N = N(ε)∋ d∅ (pm, pn) < ε, ∀m, ∀ n > N .

3. If any Cauchy sequence < pn > ⊂ Ω converge to p ∈ Ω then Ω is called complete ∅-metric space.”

We reform the Hausdorff distance [2] in the case of ∅- metric spaces.

Definition 1.4. [16] Let H(Ω) be the class of all compact subsets of Ω. The extended Hausdorff distance
h∅ between A and B in H(Ω) is,

h∅ (A, B) = max{ d∅ (A, B) , d∅ (B, A)},

where d∅ (A, B) = supp∈Ad∅ (p, B) = supp∈Ainfq∈Bd∅ (p, q).

Example1.6: Consider Ω = R with d∅ (p, q) = (p− q)
2
, p, q ∈ Ω, then Ω is ∅− metric space with

∅ (p, q) = 2, let A = [0, 20] , B = [32, 50] .
We find that supq∈B d∅ (p, B) = supq∈Bd∅ (20, B) = d∅ (20, 50) = 302 = 900.

Similarly, supp∈A d∅ (q, A) = supp∈Ad∅ (32, A) = d∅ (32, 0) = 322 =1024.So, h∅ (A, B) = 1024.
Throughout this article ∅ is symmetric, bounded above,

∅ (p,B) = infq∈B∅(p, q)

and

∅ (A,B) = supp∈A∅(p,A).

From Definitions 1.1 and 1.4, directly getting the following:

Lemma 1.5. For all A, B, C, D ∈ H (Ω), the following hold:

1. d∅ (p, B) = 0 iff p ∈ B.

2. d∅ (A, B) = 0 iffA ⊆ B.

3. ∃a ∈ A ∋ d (p,A) = d(p, a)

4. If B ⊆ C, then supa∈A d∅ (a, C) ≤ supa∈A d∅ (a, B)

5. supp∈A
⋃

B d∅ (p, C) = max{supa∈A d∅ (a, C) , supb∈B d∅ (b, C)

6. h∅ (A ∪ B,C ∪ D) ≤ max {h∅ (A,C) , h∅ (B,D)}.

7. d∅(p,B) ≤ h∅(A,B), for all p ∈ A.

8. d∅ (p,A) ≤ ∅(p,A) (d∅ (p, q) + d∅ (q, A)), where q ∈ Ω.

9. For r > 1 and a ∈ A, ∃ b ∈ B ∋ d∅ (a, b) ≤ r implies that h∅(A. B) ≤ r .

10. For r > 1 and a ∈ A, ∃b ∈ B ∋ d∅(a, b) ≤ r implies that h∅(A.B) ≤ r.

11. d∅(p,A) = 0 if and only if p ∈ A, where A is the closure of A.
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2. The Fractals space (H (Ω) ,h∅)

We will benefit from the work that appeared in [15] and [16] in the following:

Proposition 2.1. h∅ is ∅- metric on H(Ω).

Proof. We prove the conditions (i-iii) in Definition 1.1 are satisfied. Since supa∈A d∅ (a, B) ≥ 0,
supb∈B d∅ (b, A) ≥ 0, then h∅ (A, B) = max{supa∈A d∅ (a, B) , supb∈B d∅ (b, A)} ≥ 0 ∀ A, B ∈ H(Ω).
For (i), suppose h∅ (A, B) = 0 this means
supa∈A d∅ (a, B) = supb∈B d∅ (b, A) = 0 by Lemma 1.5, we see A ⊆ B, B ⊆ A, so A = B.
Now, suppose A = B =⇒ A ⊆ B, B ⊆ A by Lemma 1.5 we find supa∈A d∅ (a, B) = 0 and
supb∈B d∅ (b, A) = 0 =⇒ h∅ (A, B) = 0.
The (ii) is proved from the symmetry of Definition 1.1

h∅ (A, B) = max{supa∈A d∅ (a, B) , supb∈B d∅ (b, A)}

= max {supb∈B d∅ (b, A) , supa∈A d∅ (a, B)}

= h∅ (A, B) .

The final property (iii) is proved from Definition 1.4 and Lemma 1.5. Let a′ ∈ A, c′ ∈ C ∋ d∅ (a
′, c′) =

d⋄ (a
′, C)

Now, d∅ (a
′, B) = infb∈Bd∅ (a

′, b′)

≤ infb∈B[∅ (a
′, b′) [d∅ (a

′, c′) + d∅ (c
′, b′)]]

= infb∈B∅ (a
′, b′) d∅ (a

′, c′) + infb∈B∅(a
′, b′)d∅ (c

′, b′)

= [∅ (a′, B) [d∅ (a
′, c′) + d∅ (c

′, B)]

≤ ∅ (a′, B) [d∅ (a
′, C) + d∅ (c

′, B)]

Take a sup over a′, we get
d∅ (A,B) ≤ ∅ (A,B) [d∅ (A,C) + d∅ (C,B)]

≤ ∅ (A,B) [max(d∅ (A,C) , d∅ (C,A)) + max(d∅ (C,B) , d∅ (B,C))]

= ∅ (A,B) [h∅ (A,C) + h∅ (C,B)]

Similarly, d∅ (B,A) = ∅ (B,A) [h∅ (C,B) + h∅ (A,C)]
Therefore, h∅ (A,B)≤ h∅ (A,C) + h∅ (C,B).
Now, let A ∈ H(Ω) and ǫ > 0 define the set A+ ǫ = {p ∈ Ω, d∅ (p, A) < ǫ} ✷

Proposition 2.2. Let Ω be a ∅- metric with continuous metric d∅ then:

1. A+ ǫ closed set if A ∈ H(Ω),

2. h∅ (A, B) ≤ ǫ ⇐⇒ A ⊂ B + ǫ and B ⊂ A+ ǫ, for any A, B in H(Ω).

Proof. For (i), let p ∈ A+ ǫ (closure of A+ ǫ). Then, ∃ {pn} ⊂ (A+ ǫ)� {p} , pn −→ p.
So d∅ (pn, A) ≤ ǫ, ∀n
By Lemma (1.5-iii), ∀n, ∃an ∈ A ∋ d∅ (an, A) = d∅ (pn, an). Thus, d∅ (pn, an) ≤ ǫ, ∀n. By compactness
of A, there is a subsequence {ank

} converges to a ∈ A. Since pn −→ p then the subsequence {pnk
}

converge to p.
by continuity of d∅, we get d∅ (pnk

, ank
) −→ d∅ (p, a) and d∅ (pnk

, ank
) ≤ ǫ, ∀k.

This implies that d∅ (p, a) ≤ ǫ. Then d∅ (p,A) ≤ ǫ. So, p ∈ A+ ǫ which means that A+ ǫ is closed set.
For (ii), it is sufficient to prove that d∅ (B, A) < ǫ ⇔ B ⊆ A + ǫ and by symmetry d∅ (A, B) ≤
ǫ ⇔ A ⊆ B + ǫ hold. Suppose B ⊆ A + ǫ ⇔ ∀q ∈ B, d∅ (q, A) ≤ ǫ (by definition of +ǫ ), so,
supd∅(p,B) <∈⇔ d∅(A,B) < ∈.

✷
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Proposition 2.3. Let Ω be a ∅ - metric w.r.t. continuity of d∅, {Ank
} be a subsequence of a Cauchy

sequence {An} ⊂ H(Ω) and
{

p′nk

}

be a sequence in Ω ∋ p′nk
∈ Ank

, ∀k. Then, there is a Cauchy sequence
{q′n} ⊂ Ω ∋∈ An∀n and q′nk

= p′nk
, ∀k.

Proof. Fix n0, q
′

n = 0, ∀n, nk−1 < n < nk , we use Lemma (1.5-iii) to have q
′

n ∈ An ∋ d∅

(

p
′

nk
, An

)

=

d∅

(

p
′

nk
, q

′

n

)

.

Then, by definition of ∅-Hausdorff distance, we find d∅

(

p
′

nk
, q

′

n

)

≤ h∅ (Ank
, An). Since p

′

nk
∈ Ank

then d∅

(

p
′

nk
, q

′

nk

)

= d∅

(

p
′

nk
, Ank

)

= 0. It follows that q
′

nk
= p

′

nk
, ∀k. Let ǫ1 > 0, since {p

′

nk
} is

a Cauchy sequence =⇒ ∃J ∈ N ∋ d
(

p
′

nk
, p

′

nj

)

< ǫ1 , ∀k, j > J . Since {An} is a Cauchy sequence

=⇒ ∃L > nk ∋ h∅ ( An, Am) ≤ ǫ1 , ∀n,m > L.
Suppose that n,m > L =⇒ ∃k, j > J ∋ nk−1 < n < nk and nj−1 < m ≤ nj , so, by Definition 1.1,
definition of h∅ and boundness of ∅ getting that

d∅

(

q
′

n, q
′

m

)

≤ ∅
(

q
′

n, q
′

m

)

[d∅

(

q
′

n, p
′

nk

)

+ d∅

(

p
′

nk
, q

′

m

)

]

≤ ∅
(

q
′

n, q
′

m

)

[d∅

(

q
′

n, p
′

nk

)

+ ∅
(

p
′

nk
, q

′

m

) [

d∅

(

p
′

nk
, p

′

nj

)

+ d∅

(

p
′

nj
, q

′

m

)]

]

= ∅
(

q
′

n, q
′

m

)

d∅

(

p
′

nk
, An

)

+ ∅
(

q
′

n, q
′

m

)

∅
(

p
′

nk
, q

′

m

)

[d∅

(

p
′

nk
, p

′

nj

)

+ d∅

(

p
′

nj
, Am

)

]

≤ ∅
(

q
′

n, q
′

m

)

h∅ (Ank
, An) + ∅

(

q
′

n, q
′

m

)

∅
(

p
′

nk
, q

′

m

)

[d∅

(

p
′

nk
, p

′

nj

)

+ h∅

(

Anj , Am

)

]

≤ Mǫ1 +M2[ǫ1 + ǫ1], as n,m, k −→ ∞, and M is positive bound of ∅

(2M2 +M)ǫ1 = ǫ

This completes the proof. ✷

Proposition 2.4. Let Ω, ∅ and d∅ in Proposition 2.3 and {An} be a sequence in H (Ω) and A = {p ∈
Ω : ∃{pn} converges to p and pn ∈ An, ∀n}. If {An}is Cauchy sequence, then ∅ 6= A closed.

Proof. to prove A 6= ∅. Since {An} is a Cauchy sequence, ∃nk ∀n ∈ N ∋ ha (Am, An) <
1
2 ∀m,n. Let

pn1
∈ An1

.
since ha is ∅- metric then, we can choose pn2

∈ An2
∋ d∅ (pn1

, pn2
) = d∅ (pn1

, An2
) then d∅ (pn1

, pn2
) ≤

d∅ (An1
, An2

) ≤ h∅ (An1
, An2

) < 1
2 . Continuing in this way, we get {pnk

} ∋ pnk
∈ Ank

∀k and
d∅

(

pnk
, pnk+1

)

≤ h∅

(

Ank
, Ank+1

)

< 1
2k . This implies that {pnk

} is Cauchy sequence and pnk
∈ Ank

, ∀k by
Proposition 2.3 ∃{qn} ∈ Ω, {qn} Cauchy sequence ∋ qn ∈ An and qnk

= pnk
, ∀k. By completeness of

Ω, qn −→ q −→ Ω.Since qn ∈ An, ∀n, then by definition of A, q ∈ A, i.e. A 6= ∅. To prove A is closed,
we can follow the first part of the Proposition 2.2 and then using Proposition 2.3. ✷

Now, to prove that A ∈ H (Ω), it only remains to prove that A is totally bounded. To get those results,
the following proposition is required .

Proposition 2.5. Let Ω, ∅ and d∅ in Proposition 2.3 and {Cn} be a sequence of totally bounded sets in
Ω and C ⊆ Ω. If ∀ǫ > 0, ∃k ∈ N ∋ C ⊆ Ck + ǫ. Then C is totally bounded.

Proof. Let ǫ > 0. Choose ∈ N ∋ C ⊆ Ck + ǫ
4 . Since Ck is totally bounded =⇒ there is a finite set

{pi : 1 ≤ i ≤ L} ∋ pi ∈ Ck and Ck ⊆
⋃L

i=1 B(pi,
ǫ
4 ). By rearrangement of pi

,s such that B(pi,
ǫ
2 )∩C 6= ∅

for 1 ≤ i ≤ L and B
(

pi,
ǫ
2

)

∩ C = ∅ for L < i. Then ∀i, 1 ≤ i ≤ L, let qi ∈ B(pi,
ǫ
2 ) ∩ C. We

claim that C ⊆
⋃L

i=1 B (qi, ǫ) ∋Let a ∈ C, then a ∈ Ck + ǫ
4 =⇒ d∅(a, Ck) ≤ ǫ

4 By Lemma (1.5-
iii) ∃p ∈ Ck ∋ d∅ (a, p) = d∅ (a, Ck). Then finding that d∅ (a, pi) ≤ ∅ (a, pi) [d∅ (a, p) + d∅ (p, pi)]
< M [ ǫ4 + ǫ

2 < ǫ =⇒ a ∈ B (pi, ǫ), for some 1 ≤ i ≤ L. Since qi ∈ B(pi,
ǫ
2 ) ∩ C we have d∅ (a, qi) ≤
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∅ (a, qi) [d∅ (a, pi) + d∅ (pi, qi)] ≤ M
[

ǫ+ ǫ
2

]

< ǫ ⇒ a ∈ B (qi, ǫ) then it follows that C ⊆
⋃L

i=1 B (qi, ǫ), so,
C is totally bounded.

✷

Now, we can give the main results:

Theorem 2.6. Let Ω, ∅ and d∅ as in Proposition 2.3. If (Ω, d∅) complete then (H (Ω) , h∅) is complete.

Proof. Let {An} be a Cauchy sequence in H (Ω) and A = {p ∈ Ω : ∃{pn} converges to p and pn ∈
An, ∀n}. We want to prove A ∈ H (Ω) and {An} converges to A. By proposition 2.4, A 6= ∅ and
nonempty. Let ǫ > 0, since {An} is Cauchy sequence then ∃r > 0 ∋ d∅ (An, Am) < ǫ ∀ n,m ≥ r. By
Proposition 2.2, we get Am ⊆ An + ǫ, ∀ m > n ≥ r. Let a ∈ A, we want to prove a ∈ An + ǫ, fix n ≥ r,
since A is the set of all points p ∈ Ω and {pn} −→ p, pn ∈ An then ∃{pi} s.t. pi ∈ Ai ∀i =⇒ {pi} −→ a.
By Proposition2.4, An + ǫ is closed, since pi∈ An + ǫ ∀i =⇒ a ∈ An + ǫ this mean A ⊆ An + ǫ.
By Proposition 2.5, A is totally bounded, A is complete since it is closed subset of a complete space,
A 6= ∅ =⇒ A is compact and A ∈ H (Ω). Let ǫ > 0, to show that {An} converges to A ∈ H (Ω), we must
prove ∃r > 0 ∋ d∅ (An, A) < ǫ, ∀ n ≥ r, A ⊆ An + ǫ and An ⊆ A+ ǫ by Proposition 2.2. From the first
part of our proof, ∃r s.t. A ⊆ An + ǫ, ∀ n ≥ r

To prove An ⊆ A + ǫ, let ǫ > 0. Since {An} Cauchy sequence, we can choose r > 0 ∋ d∅ (Am, An) <
ǫ

2M ∀m,n ≥ r and ∃ {ni} be a strictly increasing sequence of positive integers s.t. n1 > r, d∅ (Am, An) <

ǫ2−i−1 ∀m,n > ni. Now, we can use Lemma (1.5-iii) to get the following:
Since An ⊆ An1

+ ǫ
2M , ∃pn1

∈ An1
∋ d∅ (q, pn1

) ≤ ǫ
2M .

Since An1
⊆ An2

+ ǫ
4M2 , ∃pn2

∈ An2
∋ d∅ (pn1

, pn2
) ≤ ǫ

4M2 .

Since An2
⊆ An3

+ ǫ
8M3 , ∃pn3

∈ An3
∋ d∅ (pn2

, pn3
) ≤ ǫ

8M3 .
By continuing this way, we have a sequence {pni

}, ∀i > 0 then pni ∈ Ani and d∅
(

pni , pni+1

)

≤ ǫ
2i+1Mi+1 .

Then {pni
} is a Cauchy sequence, so by Proposition 2.3 the limit of the sequence a is in A. Also,

d∅
(

q, pni

)

≤ ∅
(

q, pni

)

[d∅
(

q, pn1

)

+ d∅
(

pn1
, pni

)

]

≤ M [
ǫ

2M
+ d∅

(

pn1
, pni

)

]

≤
ǫ

2
+M∅

(

q, pni

) [

d∅ (pn1
, pn2

) + d∅
(

pn2
, pni

)]

≤
ǫ

2
+M2

[ ǫ

4M2
+ d∅

(

pn2
, pni

)

]

.

.

≤
ǫ

2
+

ǫ

4
+ · · ·+

ǫ

2i
= ǫ

Since, d∅
(

q, pni

)

≤ ǫ ∀i , it follows that d∅ (q, a) ≤ ǫ and therefore q ∈ A+ ǫ. Thus we know that there
exists r ∋ An ⊆ A+ ǫ, so it follows that d∅ (An, A) < ǫ ∀n ≥ r and thus {An} −→ A ∈ H (Ω). Therefore,
(Ω, d∅) is complete, then (H (Ω) , h∅) is complete. ✷

3. IFS for F-contraction mappings

Recall the following collection F, ̥ : [0,∞) −→ (∞,−∞) , ̥ ∈ F if
∀ γ, δ ∈ [0,∞) ∋ γ < δ =⇒ ̥(γ) < ̥(δ). ...(1a)
∀ {γn} ⊂ (0,∞), limn→∞ ̥(γn) = 0 ⇐⇒ −∞. ...(1b)
∃r ∈ (0, 1) ∋ limγ→0+ ̥(γ) = 0 . ...(1c)
Let µ={µ : R+ −→ R+; liminft→0 µ (t) > 0 ∀ t ≥ 0}. Now we defined generalized ̥-contractive (or
µ-contractive):
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Definition 3.1. A self-mapping f on Ω is called µ-contractive, ∀ p, q ∈ Ω, ∃̥ ∈ F, ∃µ ∈ µ ∋
µ(d∅ (p, q)) +̥ (d∅ (fp, fq)) ≤ ̥ (d∅ (p, q)) . . . 2
where d∅ (fp, fq) > 0.
Especially, if µ is a single constant element µ then (1.1) will be
µ+̥ (d∅ (fp, fq)) ≤ ̥ (d∅ (p, q)) . . . 3
and called µ-contractive.

Note: From (1a) and Definition (3.1), every µ-contractive is contractive and hence is continuous.

Theorem 3.2. Let f : Ω −→ Ω be µ -contractive. Then f : H (Ω) −→ H (Ω) is µ –contractive when
f (C′) = {f (p) : p ∈ C′} for any C′ ∈ H (Ω).

Proof. : Firstly, by the continuity of f and compactness of C, we get f (C) ∈ H (Ω).
Now, C′, D ∈ H (Ω) and h∅(f (C′) , f (D)) 6= 0. Then we have

d∅ (fp, f (D)) = infq∈D d∅ (fp, fq) < infq∈D d∅ (p, q) = d∅(p,D)

In addition,
d∅ (fp, f (C′)) = infp∈C d∅ (fp, fq) < infp∈C d∅ (q, p) = d∅(q, C

′)

Now,
h∅ (f (C′) , f (D)) = max{supp∈C d∅ (fp, f (D)) , supq∈D d∅ (fp, f (C′))}

<
{

supp∈C d∅ (p,D) , supq∈B d∅ (q, f (C′))
}

= h∅ (C
′, D)

By (1a), we get
̥ (h∅ (f (C′) , f (D))) < ̥ (h∅ (C

′, D))

So, ∃ µ : R+ −→ R+ , liminft→0 µ (t) > 0 ∀ t ≥ 0 ∋ µ (h∅ (C
′, D)) + ̥(h∅ (f (C′) , f (D))) ≤

̥ (h∅ (C
′, D))

Therefore, f : H (Ω) −→ H (Ω) is µ -contractive.
✷

Definition 3.3. Let {fn : n = 1, 2, . . . , k} , k ∈ N is M̥ -contractive Ω and T : H (Ω) −→ H (Ω) by

T (E) =
⋃k

n=1 fn( E), ∀ E ∈ H (Ω) then T is called h∅- Hutchison- Barnsley operator on H (Ω).

Theorem 3.4. The h∅ −HBoperator (shortly, h∅ −HB) is µ –contractive.

Proof. We claim that k = 2. Let f1, f2 be two ̥- contraction defined as f1, f2 : Ω −→ Ω, let C′, D ∈
H (Ω) with h∅(T (C′) ,T (D)) 6= 0.From Lemma (1.5-vi), we get the following

µ (h∅ (C
′, D)) +̥ (h∅ (T (C′) ,T (D))) = µ (h∅ (C

′, D)) + ̥ (h∅(f1 (C
′) ∪ f1 (C

′) , (f2(C
′) ∪ f2 (C

′))) ≤

µ (h∅ (C
′, D)) + ̥(max{h∅(f1 (C

′) , f1 (D)), h∅(f2 (C
′) , f2 (D))}) ≤ ̥ (h∅ (C

′, D)) .

As a consequence, T is h∅ −HBoperator. ✷

In the following, the generalization of condition (2) is presented.

Definition 3.5. Let T : H (Ω) −→ H (Ω) is µ -contractive if ̥ ∈ F, µ ∈ µ, C′, D ∈ H (Ω),
h∅ (T (C′) ,T (D)) 6= 0,
µ (MT (C′, D)) + ̥ (h∅ (T (C′) ,T (D))) ≤ ̥ (MT (C′, D)) . . . (4)
where

MT (C′, D) = max{h∅ (C
′, D) , h∅ (C

′,T (C′)) , h∅ (D,T (D)) ,
h∅ ((C

′, T(D) + h∅ (D, T(C′))

2∅ (C′, D)
,

h∅

(

T
2 (C′) ,T (C′)

)

, h∅

(

T
2 (C′) , D

)

, h∅(T
2
(C′) ,T (D))}.

Then T is called Ciric type µ -contractive
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Theorem 3.6. Let {fn : n = 1, 2, . . . , k} is Ciric type µ −contractive Ω and T : H (Ω) −→ H (Ω) by

T (A) =

k
⋃

n=1

fn( A), ∀ A ∈ H (Ω) .

Then T is a Ciric type µ -contractive on H (Ω).

Proof. Using Definition (3.5) and (1a), we get T is a Ciric type µ –contractive. ✷

An important result is the following:

Theorem 3.7. Let T is h∅- H −B operator on H (Ω) w.r.t. family {fi}
n
i=1 then

1. T : H (Ω) −→ H (Ω) is be T (A) =
⋃k

n=1 fn(A), ∀ A ∈ H (Ω) is Ciric µ-contractive.

2. T has a unique fixed point V ∈ H (Ω) ∋ V = T (V) =
⋃k

n=1 fn( V)

3. A0 is initial set, the sequence A0 ∈ H (Ω), {A0,T (A0) ,T
2 (A0) , . . . } of compact sets converges to

a fixed point of T.

Proof. Part (i) follows from Theorem (3.6). For parts (ii) and (iii), let A0 ∈ H (Ω) , if A0 = T (A0) the
proof is complete. Now, suppose that A0 6= T (A0), let A1 = T (A0) ,A2 = T (A1) , . . . Am+1 = T (Am) for
m ∈ N and A0 6= T (A0). Let A1 = T (A0) , A2 = T (A1) , . . . , Am+1 = T (Am) for m ∈ N. If
Ak = T (Ak+1) for some k. So, the proof is also complete. Now, we take Am 6= T (Am+1) , ∀ m ∈ N.
Form (2), we get

µ (Mµ (Am, Am+1)) + ̥ (h∅ (Am+1,Am+2)) = µ (Mµ (Am, Am+1)) + ̥ (h∅ (Am,Am+1))

≤ ̥ (Mµ (Am, Am+1))

where
Mµ (Am, Am+1) = max{h∅ (Am, Am+1) , h∅ (Am, T (Am) , h∅ (Am+1, T(Am+1)) ,

h∅ ((Am, T(Am+1) + h∅ (Am+1, T(Am))

2∅ (Am, Am+1)
,

h∅

(

T
2 (Am) ,T (Am)

)

, h∅

(

T
2 (Am) ,Am+1

)

, h∅(T
2
(Am) ,T (Am+1))}

= max{h∅ (Am, Am+1) , h∅(Am, Am+1), h∅(Am+1, Am+2)},
h∅ (Am+1, Am+2) + h∅ (Am+1, Am+1)

2∅ (Am, Am+1)
,

h∅(Am+2, Am+1), h∅(Am+2, Am+1), h∅(Am+2, Am+2)

= max{h∅ (Am, Am+1) , h∅ (Am+1, Am+2)}

In case,
Mµ (Am, Am+1) = h∅ (Am+1, Am+2), we get

̥ (h∅ (Am+1,Am+2)) ≤ ̥ (h∅ (Am+1,Am+2))− µh∅ (Am+1,Am+2)

a contradiction as µh∅ (Am+1,Am+2) > 0
Therefore, Mµ (Am, Am+1) = h∅ (Am,Am+1) , hence

̥ (h∅ (Am+1,Am+2)) ≤ ̥ (h∅ (Am,Am+1))− µh∅ (Am,Am+1) < ̥ (h∅ (Am,Am+1))

So, {h∅ (Am+1,Am+2)} is decreasing and therefore convergent
Now, we show limm→∞ h∅ (Am+1,Am+2) = 0 . By the property of µ, ∃ c > 0 with n0 ∈ N

∋ h∅ (Am, Am+1) > c for m ≥ n0. So,

̥ (h∅ (Am+1,Am+2)) ≤ ̥ (h∅ (Am,Am+1))− µh∅ (Am,Am+1)
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≤ ̥ (h∅ (Am−1,Am))− µ(h∅ (Am−1,Am))− µh∅ (Am,Am+1)

≤ . . .

≤ h∅ (A0,A1)− [µ(h∅ (A0,A1) + µ(h∅ (A1,A2)) + · · ·+ µh∅ (Am,Am+1)]

≤ ̥ (h∅ (A0,A1))− n0

Let limm→∞ ̥ (h∅ (Am+1,Am+2)) = −∞ which both with (1b) that means limm→∞ h∅ (Am+1,Am+2) = 0
now, by (1c), ∃ r ∈ (0, 1) such that

lim
n→∞

[h∅ (Am+1,Am+2)]
r
̥ (h∅ (Am+1,Am+2)) = 0

Therefore,

[h∅ (Am,Am+1)]
r
̥ (h∅ (Am,Am+1))− [h∅ (Am,Am+1)]

r
̥ (h∅ (A0,A1))

≤ [h∅ (Am,Am+1)]
r
̥ (h∅ (A0,A1))− n0 − [h∅ (Am,Am+1)]

r
̥ (h∅ (A0,A1))

≤ −n0 [h∅ (Am,Am+1)]
r

≤ 0

Since, limm→∞ m[h∅ (Am+1,Am+2)]
r
= 0 . So, limm→∞ m1/rh∅ (Am+1,Am+2) = 0 . Means that ∃n1 ∈

N such that m1/rh∅ (Am+1,Am+2) ≤ 1 ∀ m ≥ n1, hence, h∅ (Am+1,Am+2) ≤
1

m1/r ∀ m ≥ n1.
For m, n ∈ N with m > n ≥ n1, we have
h∅ (An,Am) ≤ h∅ (An,An+1) + h∅ (An+1,An+2) + · · · + h∅ (Am,Am+1) ≤

∑∞
i=n

1
i1/r

, by the series
∑∞

i=n
1

i1/r
, getting h∅ (An,Am) → 0 as n,m → ∞. Thus {An} is Cauchy in Ω. By completeness of

(h∅ (Ω) , d∅), An → V as n → ∞ for some V ∈ h∅ (Ω). Now, to show V is a fixed under T, suppose that
h∅(V,T (V)) 6= 0

µ (MT (An,V)) + ̥ (h∅ (An+1,T(V))) = µ+̥(h∅ (T (An) ,T (V))) ≤ ̥ (MT (An,V)) .. (3.1)

where,

MT (An,V) = max {h∅ (An,V) , h∅ (An,T (An)) , h∅ (V,T(V)) ,
h∅ ((An, T(V)) + h∅ (V, T(An))

2∅ (An, An+1)
,

h∅

(

T
2 (An) ,T (An)

)

, h∅

(

T
2 (An) ,V

)

, h∅(T
2
(An) ,T (V))}

= max{h∅ (An, V) , h∅(An, An+1), h∅ (V,T(V))
h∅ (An, V) + h∅ (V, An+1)

2∅ (An, An+1)
,

h∅(An+2, An+1), h∅(An+2, V), h∅(An+2, T(V))}

Now we show the following cases:

1. If MT (An,V) = h∅ (An,V), then n −→ ∞ in (3.1), we obtain

limn→∞ infµ(h∅ (An,V)) +̥(h∅ (V,T(V)) ≤ ̥(h∅ (V,V)) . This is a contradiction as liminf t→0 µ(t) >
0, ∀t ≥ 0.

1. In case MT (An,V) = h∅ (An,An+1), then n −→ ∞, we have

limn→∞ infµ(h∅ (An,An+1)) +̥(h∅ (T(V),V)) ≤ ̥(h∅ (V,V)) . This is a contradiction.

1. When MT (An,V) = h∅ (V,T(V)), then we obtain

µ(h∅ (T(V),V))) +̥(h∅ (T(V),V)) ≤ ̥(h∅ (V,T(V))). Which is not true as the µ(h∅ (V,T(V))) > 0
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1. If MT (An,V) =
h∅((An, T(V))+h∅(V, T(An+1))

2∅(An, An+1)
, then n −→ ∞, we get

lim
n→∞

infµ(
h∅ ((An, T(V)) + h∅ (V, T(An+1))

2∅ (An, An+1)
) +̥(h∅ (V,T(V)))

≤ ̥(
h∅ ((V, T(V)) +H∅ (V, V))

2∅ (An, An+1)
) = ̥(

h∅ ((V, T(V))

2∅ (An, An+1)
)

This is a contradiction (1a)

1. In case MT (An,V) = h∅ (An+2,An+1), we have

limn→∞ infµ(h∅ (An+2,An+1)) +̥(h∅ (T(V),V)) ≤ ̥(h∅ (V,V)) .Obtains a contradiction.

1. If MT (An,V) = h∅ (An+2,V), then n −→ ∞, we obtain

limn→∞ infµ(h∅ (An+2,V)) +̥(h∅ (T(V),V)) ≤ ̥(h∅ (V,V)) . This implies a contradiction.

1. If MT (An,V) = h∅ (An+2,T(V)), then n −→ ∞, then

limn→∞ infµ(h∅ (An+2,V)) +̥(h∅ (T(V),V)) ≤ ̥(h∅ (V,T(V))) , also a contradiction.
Consequently, V is invariant by T. For uniqueness, fix T (V) = V, T (W) = W where h∅ (V, W) 6= 0. Since
T is a ̥-contraction, then

µ (MT (V,W)) +̥ (H∅ (V, W)) = µ (MT (V,W)) +̥ (H∅(T (V), T(W)))

≤ ̥ (MT (V,W))

where

MT (V,W) = max{h∅ (V, W) , h∅ (V, T(V)) , h∅ (W, T(W)) ,
h∅ ((V, T(W)) + h∅ (W, T(V))

2∅ (An, An+1)

h∅

(

T
2 (V) ,T (W)

)

, h∅

(

T
2 (V) ,W

)

, h∅(T
2
(V) ,T (W))}

= max{h∅ (V,W ) , h∅ (V, V) , h∅ (W,W)
h∅ (V, W) + h∅ (W, V)

2∅ (An, An+1)
,

h∅ (V, V) , h∅ (V, W) , h∅ (V,W)} = h∅ (V,W)

that is
µ (MT (V,W)) +̥ (h∅ (V, W)) ≤ ̥ (h∅ (V, W))

as µh∅ (V, W) > 0, it is a contradiction. So T has a unique fixed point V ∈ h∅(Ω).
✷

Remark 3.8. In theorem 2.6, if h∅ (Ω) = the collection of all singleton subsets of Ω and fn = f for each
n, where µ = fi for any i ∈ {1, 2, 3, . . . k}, then the mapping T becomes T (p) = f(p).

The following is another fixed point result

Corollary 3.9. Let {Ω : fn, n = 1, 2, 3, . . . , k} a generalized iterated function system and f : Ω −→ Ω
as in Remark (3.8). If there exist some ̥ ∈F and µ ∈ µ ∋for any p, q ∈ H (Ω) with d∅(f (p) , f (q)) 6= 0
the following holds:

µ ((p, q)) +̥ (d∅ (fp, fq)) ≤ ̥ (Mf (p, q)) ,

where

MT (p, q) = max{d∅ (p, q) , d∅ (fp, fq) , d∅ (qMf , fp) ,
d∅ (p, fp) + d∅ (q, fp)

2∅
,

d∅
(

f2p, q
)

, d∅
(

f2p, fp,
)

, d∅
(

f2p, fq
)

)}

Then fhas a unique fixed point in Ω. Further for initial p0 ∈ Ω, the sequence
{

p0, fp0, f2p0, . . .
}

approaching to a fixed point of f .
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