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On Explicit Evaluation of Ratio’s of Theta Function Which is Analogous to Ramanujan’s

Function a,,

S. Vasanth Kumar

ABSTRACT: In this article, Ramanujan defined am,n [3], B. N. Dharmendra and S. Vasanth Kumar defined
Eyn [5] for any positive real numbers m and n involving Ramanujan’s product of theta-functions.
established new relation between am,» and Ep, n and explicit evaluations of Enp n.
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1. Introduction

The Ramanujan’s general theta function [11] is defined by
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Three special cases of f(a,b) are defined as follows:
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On page 338 in his first notebook [11], Ramanujan defines

ne—f("ll)w \/ng(efﬂ' mn)so?(_ef%r\/m)
Gy = — — , (1.5)
W VR (e TVE)

where m and n are positive real numbers.

In [3], on pages 337 - 338, Ramanujan has listed eighteen particular values. Berndt, Chan and
Zhang [4] have been established all these values. For some general theorems and explicit evaluation on
A, n one can refer [6,7,8,10].

Following the above definition [9], Mahadeva Naika et al. defined a new function by, , and in [5], B. N.
Dharmendra and S. Vasanth Kumar defined the Ramanujan theta function £, ,. They established new
properties of by, , and E,, , and find its explicit values.

In [9], defined the theta function

, B new@qbZ(_e—ﬂ- mn)SDQ(_e—Qﬂ'\/W) (1 6)
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In [5], B. N. Dharmendra and S. Vasanth Kumar defined the Ramanujan theta function

Fle™™m yp(—e=mvimm)

Emp = ———— .
IV E flemmymayp(—e V)

(1.7)

The main purpose of this paper to be establish new relation between a,,, and E,,, and explicit
evaluation of E,, .

2. Preliminary Results

In this section, we tend to collect many identities that square measure helpful in proving our main
results.

Lemma 2.1. [6] If m is any positive rational,

_ 3¢ 20 (—a")* ()

3 ¥ (-9)¢?(q) -
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then we have,
9 9(1 + P*) _ 91— QY Q*+9. (2.3)
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Lemma 2.2. [5] If n is any positive rational,
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then we have,
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Lemma 2.3. [6] If m is any positive rational,

Qm,5 =

5q*(—4°)¢*(q°)
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then we have, , ,
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Lemma 2.4. [5] If n is any positive rational,
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then we have,
P2
B, = 7—'_5
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Lemma 2.5. [5] We have,

Am,n = An,m

and
Em,n - En,m .

3. Modular relation between a,,, and E,, ,

Theorem 3.1. Ifz := E,, 3 and y := a3 then

1 1
x3——3 :3<y——).
x y
Proof. From Lemma (2.1), we obtain

. 9—9y+3y/9%2—14y+9

2y

where,
2

U, 3

Y=
Employing the above equation (3.2) in Lemma (2.2), we obtain

(2% (y2® — 3+ 3y*) —y)(a®(ya® +3 - 3y°) —y) =0

(2.10)

(2.11)

(2.12)

(3.1)

(3.3)

By examining the behavior of the above factors near ¢ = 0, we can find a neighborhood about the origin,
where the second factor is zero; whereas another factor is not zero in this neighborhood. By the Identity

Theorem second factor vanishes identically. This completes the proof.

a
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Theorem 3.2. Ifz := FE,, 5 and y := a5 then

1 1
<x3+—3)+8=5<y+—). (3.4)
€T Y
Proof. From Lemma (2.3), we obtain
5—5 V/25y% — 30y + 25
p? .= 22U VR Z Sy 2o (3.5)
2y
Employing the above equation (3.5) in Lemma (2.4), we get
35— 23y —8y+5y*) —y=0 (3.6)
By examining the behavior of the above term near ¢ = 0. This completes the proof. O

4. Explicit evaluation of F,, ,

Corollary 4.1. Ezxplicit values of Fs

Table 1: E3 ),
| Sr. No || as || Es.p, |
1 5.9 — \/ﬁ(l;/ﬁh/ﬁ) Fsg = ((‘4ﬁﬂ+12‘12?+16ﬁ>m)%
2 as;3 = % Es 3= (2 - \/3)%
3 ass = %5 B35 = M
4 asy; =2—/3 E3,7:@
g 439 = TR Esg=(1—(2)25 +25)3
6 a3.11 = 2\/— - \/H E3’11 = (10 — 3\/ﬁ)%
7 a5 = 2583 B35 = ((2— VB)(VI5 — 4))3
8 as,10 = 2v19 — 5v/3 E319=2—1/3
9 azs = V2 — 33 B33 = M
10 03,35 = 43T+ 10v3 — 8v/5 — 3v/35 || Bsas = ((4v/5 — 9)(v35 — 6)) ¥
11 ass5 = 3vI1 — 104v/3 — 7 By 55 = S/E-AT-VI)
12 ass0 = 102v/3 — 23/59 B350 = (530 — 69v/59)3

Proof. In Ramanujan notebook Part V [3] he recorded many values of as,,. In particularly, he recorded
forn =3,5,7,9,11,15,19,31, 59.
Then, M. S. Mahadeva Naika , B. N. Dharmendra and K. Shivashankar [7] also evaluated the values of
as.pn for n = 2,35, 55.
Noting all these values of n, we have established the values for Fs ,,
If
n=3
then, we find in [3], ag s = \/ig ,
substituting this value in (3.3) we obtain an equation
1 1
—22° + — — —=2af
V3 V3
and solving for x we get the desired result.
ie.,

B3 =(2—V3)5.

Similarly we can obtain for remaining values of n which is mentioned in the above tablel. O
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Corollary 4.2. Explicit evaluation of Es

Table 2: Es ,

wn
=
Z,
o
)
b
3

|| E5n

! a2 = (V2FT)(V5-2) Eyp = O/TO0ZTD)
o By = 55

3 a5,9=(2—\/§)2 E5g:(31—8\/ﬁ)%

+ |lasn= (M)g (105) (21735 55)

511 =

2
VG _ T \/@2) By iy = WE-0(VIED)

1
6 as21 = 32 + 31105 — 41/123 + 121/105 Es521 = ((v/35—6)(15v/3 — 26))°
2 4 4 4
7 5,20 = (\/49 4145 — /48 + 4\/145) By g9 = 1+Y/185+ (7= VID)V12+ V145
1
8 as,33 = 2—f2) (2v3 - \/_) Es,33 = ((9 — 4V/5)(89 — 12V/55))°
1
9 5,69 = (5 M Vi) E569 = ((1126 — 105/115)(26 — 15V/3)) *
Bs 77 = 88 + 3v55v7
10 as,77r = 11303 4 576v/385 — 1524v/55 — 4272V/7 ||+ (450 - 543 vB5v7) /9979450 + 5085990V55v/7

Proof. In [3] Ramanujan has recorded many values of a5 ,, for n =9,11,13, 29.
Then [7], M. S. Mahadeva Naika et al. also evaluated the values of as,, for n =2,5,9,33,69,77.
Noting all these values of n we have established the values for Es ,,

If
n==5
then, as 5 = + , [3] substituting this value in (3.6) we obtain an equation
18 1
00316 1 0
5 5 5
and solving for x we get the desired result.
ie.,
3-V5
E575 = 5 .

Similarly we can obtain for remaining values of n which is mentioned in the above table2.

Conclusion: Finally in this article we established new relation between a,,,, and E,, , and explicit
evaluations of 3, and Es, by setting particular values to n, similarly we can also obtain for other

values of m.
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