

(3s.) **v. 2022 (40)** : 1–10. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.43200

Theorems on Analogous of Ramanujan's Remarkable Product of Theta-Function and Their Explicit Evaluations

B. N. Dharmendra and S. Vasanth Kumar

ABSTRACT: In this article, we define $E_{m,n}$ for any positive real numbers m and n involving Ramanujan's product of theta-functions $\psi(-q)$ and f(q), which is analogous to Ramanujan's remarkable product of theta-functions and establish its several properties by Ramanujan. We establish general theorems for the explicit evaluations of $E_{m,n}$ and its explicit values.

Key Words: Class invariant, Modular equation, Theta-function, Cubic continued fraction.

Contents

1 Introduction

2

1 3

4

5

- Preliminary Results
- **3** Some Properties of $E_{m,n}$
- 4 Some General Theorems on $E_{m,n}$ and their explicit evaluations

1. Introduction

Ramanujan's general theta-function [15] f(a, b) is defined by

$$f(a,b): = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1,$$
(1.1)

$$= (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}.$$
(1.2)

Three special cases of f(a, b) are as follows:

$$\varphi(q) := f(q,q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q;-q)_{\infty}}{(q;-q)_{\infty}},$$
(1.3)

$$\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}},$$
(1.4)

$$f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} q^{n(3n-1)/2} = (q;q)_{\infty},$$
(1.5)

where

$$(a;q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n), \qquad |q| < 1.$$

On page 338 in his first notebook [4,15], Ramanujan defines

$$a_{m,n} = \frac{ne^{\frac{-(n-1)\pi}{4}}\sqrt{\frac{m}{n}}\psi^2(e^{-\pi\sqrt{mn}})\varphi^2(-e^{-2\pi\sqrt{mn}})}{\psi^2(e^{-\pi\sqrt{\frac{m}{n}}})\varphi^2(-e^{-2\pi\sqrt{\frac{m}{n}}})}.$$
(1.6)

²⁰¹⁰ Mathematics Subject Classification: 11B65, 11A55, 33D10, 11F20, 11F27 Secondary 11F27. Submitted June 08, 2018. Published September 02, 2018

He then, on pages 338 and 339, offers a list of eighteen particular values. All these eighteen values have been established by Berndt, Chan and Zhang [5]. M. S. Mahadeva Naika and B. N. Dharmendra [7], also established some general theorems for explicit evaluations of the product of $a_{m,n}$ and found some new explicit values from it. Further results on $a_{m,n}$ are found by Mahadeva Naika, Dharmendra and K. Shivashankara [9], and Mahadeva Naika and M. C. Mahesh Kumar [10]. Recently Nipen Saikia [13] established new properties of $a_{m,n}$.

In [12], Mahadeva Naika et al. defined the product

$$b_{m,n} = \frac{ne^{\frac{-(n-1)\pi}{4}}\sqrt{\frac{m}{n}}\psi^2(-e^{-\pi\sqrt{mn}})\varphi^2(-e^{-2\pi\sqrt{mn}})}{\psi^2(-e^{-\pi\sqrt{\frac{m}{n}}})\varphi^2(-e^{-2\pi\sqrt{\frac{m}{n}}})}.$$
(1.7)

They established general theorems for explicit evaluation of $b_{m,n}$ and obtained some particular values. Mahadeva Naika et al. [11] established general formulas for explicit values of Ramanujan's cubic continued fraction V(q) in terms of the products of $a_{m,n}$ and $b_{m,n}$ defined above, where

$$V(q) := \frac{q^{1/3}}{1} + \frac{q+q^2}{1} + \frac{q^2+q^4}{1} + \frac{q^3+q^6}{1} + \cdots, \quad |q| < 1,$$
(1.8)

and found some particular values of V(q)

In this paper, we define

$$E_{m,n} = \frac{f(e^{-\pi\sqrt{\frac{n}{m}}})\psi(-e^{-\pi\sqrt{mn}})}{e^{\frac{-\pi(1-m)}{12}}\sqrt{\frac{n}{m}}f(e^{-\pi\sqrt{mn}})\psi(-e^{-\pi\sqrt{\frac{n}{m}}})},$$
(1.9)

where m and n are positive real numbers.

Let K, K', L and L' denote the complete elliptic integrals of the first kind associated with the moduli $k, k' := \sqrt{1-k^2}$, l and $l' := \sqrt{1-l^2}$ respectively, where 0 < k, l < 1. For a fixed positive integer n, suppose that

$$n\frac{K'}{K} = \frac{L'}{L}.$$
(1.10)

Then a modular equation of degree n is a relation between k and l induced by (1.5). Following Ramanujan, set $\alpha = k^2$ and $\beta = l^2$. Then we say β is of degree n over α . Define

$$\chi(q) := (-q; q^2)_{\infty}$$

and

$$G_n := 2^{-\frac{1}{4}} q^{-\frac{1}{24}} \chi(q),$$

where

 $q = e^{-\pi\sqrt{r}}.$

Moreover, if $q = e^{-\pi \sqrt{\frac{m}{n}}}$ and β has degree n over α , then

$$G_{\frac{n}{m}} = (4\alpha(1-\alpha))^{\frac{-1}{24}}$$
(1.11)

and

$$G_{nm} = (4\beta(1-\beta))^{\frac{-1}{24}}.$$
(1.12)

The main purpose of this paper is to obtain several general theorems for the explicit evaluations of analogous of Ramanujan's product of theta-function $E_{m,n}$ and also some new explicit evaluations from it.

2. Preliminary Results

In this section, we collect several identities which are useful in proving our main results.

Lemma 2.1. [2, Ch. 17, Entry 11(ii) and Entry 12(i), pp. 123–124] We have,

$$2^{1/2} e^{-y/8} \psi(-e^{-y}) = \sqrt{z_1} \{\alpha(1-\alpha)\}^{1/8}, \qquad (2.1)$$

$$2^{1/2} e^{-my/8} \psi(-e^{-my}) = \sqrt{z_m} \{\beta(1-\beta)\}^{1/8}, \qquad (2.2)$$

$$2^{1/6} e^{-y/24} f(e^{-y}) = \sqrt{z_1} \{\alpha(1-\alpha)\}^{1/24}, \qquad (2.3)$$

$$2^{1/6} e^{-my/24} f(e^{-my}) = \sqrt{z_m} \{\beta(1-\beta)\}^{1/24}.$$
(2.4)

Lemma 2.2. [2, Ch. 16, Entry 27(iii) and (iv), pp. 43] We have,

$$e^{-\alpha/24} \sqrt[4]{\alpha} f(e^{-\alpha}) = e^{-\beta/24} \sqrt[4]{\beta} f(e^{-\beta}), \quad if \ \alpha\beta = \pi^2$$
(2.5)

$$e^{-\alpha/12} \sqrt[4]{\alpha} f(-e^{-2\alpha}) = e^{-\beta/12} \sqrt[4]{\beta} f(-e^{-2\beta}), \quad if \ \alpha\beta = \pi^2.$$
 (2.6)

Lemma 2.3. [6, Theorem 2.1] We have,

$$\frac{f^6(q)}{f^6(q^3)} = \frac{\psi^2(-q)}{\psi^2(-q^3)} \left\{ \frac{\psi^4(-q) + 9q\psi^4(-q^3)}{\psi^4(-q) + q\psi^4(-q^3)} \right\}.$$
(2.7)

Lemma 2.4. [16, p. 56] [14] We have,

$$\frac{f^3(q)}{f^3(q^5)} = \frac{\psi(-q)}{\psi(-q^5)} \left\{ \frac{\psi^2(-q) + 5q\psi^2(-q^5)}{\psi^2(-q) + \psi^2(-q^5)} \right\}.$$
(2.8)

Lemma 2.5. [6, Theorem 2.2] We have,

$$\frac{f^3(q)}{f^3(q^9)} = \frac{\psi(-q)}{\psi(-q^9)} \left\{ \frac{\psi(-q) + 3q\psi(-q^9)}{\psi(-q) + q\psi(-q^9)} \right\}^2.$$
(2.9)

Lemma 2.6. [2, Chapter 19, entry 5(xii), page 231] We have, If $P := \{16\alpha\beta(1-\alpha)(1-\beta)\}^{1/8}$ and $Q := \left\{\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right\}^{1/4}$, then $Q + \frac{1}{Q} = 2\sqrt{2}\left(\frac{1}{P} - P\right).$ (2.10)

Lemma 2.7. [2, Chapter 19, entry 13(xiv), page 282] We have, If $P := \{16\alpha\beta(1-\alpha)(1-\beta)\}^{1/12}$ and $Q := \left\{\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right\}^{1/8}$, then $Q + \frac{1}{2} = 2\left(\frac{1}{2} - P\right)$.

$$Q + \frac{1}{Q} = 2\left(\frac{1}{P} - P\right).$$

$$(2.11)$$

$$19(ix), page 315] We have,$$

Lemma 2.8. [2, Chapter 19, entry 19(ix), page 315] We have, If $P := \{16\alpha\beta(1-\alpha)(1-\beta)\}^{1/8}$ and $Q := \left\{\frac{\beta(1-\beta)}{\alpha(1-\alpha)}\right\}^{1/6}$, then $Q + \frac{1}{2} + 7 - 2\sqrt{2}\left(P + \frac{1}{2}\right)$

$$Q + \frac{1}{Q} + 7 = 2\sqrt{2}\left(P + \frac{1}{P}\right).$$
(2.12)

Lemma 2.9. [1, Theorem 5.1] We have, If $P = \frac{\psi(-q)}{q^{1/4}\psi(-q^3)}$ and $Q = \frac{\varphi(q)}{\varphi(q^3)}$, then $Q^4 + P^4Q^4 = 9 + P^4.$ (2.13)

Lemma 2.10. [1, Theorem 5.1] We have,
If
$$P = \frac{\psi(-q)}{q^{1/2}\psi(-q^5)}$$
 and $Q = \frac{\varphi(q)}{\varphi(q^5)}$, then
 $Q^2 + P^2Q^2 = 5 + P^2.$ (2.14)

Lemma 2.11. [8, Theorem 3.2] We have,
If
$$P = \frac{\psi(-q)}{q\psi(-q^9)}$$
 and $Q = \frac{\varphi(q)}{\varphi(q^9)}$, then
 $Q + PQ = 3 + P.$ (2.15)

3. Some Properties of $E_{m,n}$

In this section, we have establish some properties of $E_{m,n}$,

Theorem 3.1.

$$E_{m,n} = E_{n,m}.\tag{3.1}$$

Proof. Employing the equation (2.5) and (2.6), we deduce that

$$e^{-\alpha/8} \sqrt[4]{\alpha} \psi(-e^{-\alpha}) = e^{-\beta/8} \sqrt[4]{\beta} \psi(-e^{-\beta}), \quad if \ \alpha\beta = \pi^2.$$

$$(3.2)$$

Using the equations (2.5) and (3.2) in (1.9), we obtain (3.1).

Theorem 3.2.

$$E_{m,n}E_{m,1/n} = 1. (3.3)$$

Proof. Using the equations (2.5) and (3.2) in (1.9), we obtain (3.3).

Corollary 3.3.

$$E_{m,1} = 1.$$
 (3.4)

Proof. Putting n = 1 in the equation (3.3), we get (3.4)

Remark 3.4. By using the definition of $\psi(q)$, f(q) and $E_{m,n}$, it can be seen that $E_{m,n}$ has positive real value and that the values of $E_{m,n}$ increases as n increase when m > 1. Thus by the above corollary, $E_{m,n} > 1$ for all n > 1 if m > 1.

Theorem 3.5.

$$\frac{E_{km,n}}{E_{nm,k}} = E_{m,\frac{n}{k}}.$$
(3.5)

Proof. Employing the definition of $E_{m,n}$, we obtain

$$\frac{E_{km,n}}{E_{nm,k}} = e^{\frac{\pi \left(\sqrt{\frac{k}{mn}} - \sqrt{\frac{n}{mk}}\right)}{12}} \frac{f\left(e^{-\pi \sqrt{\frac{n}{mk}}}\right)\psi\left(-e^{\pi \sqrt{\frac{k}{mn}}}\right)}{f\left(e^{-\pi \sqrt{\frac{k}{mn}}}\right)\psi\left(-e^{-\pi \sqrt{\frac{n}{mk}}}\right)}.$$
(3.6)

Using the Lemma 2.2 in the above equation (3.6) and simplifying using the Theorems 3.1 and 3.2 , we obtain (3.5). $\hfill \Box$

Corollary 3.6.

$$E_{m^2,n} = E_{nm,n} E_{m,\frac{n}{m}}.$$
(3.7)

Proof. Putting m = n in the above Theorem **3.5** and simplifying using the equation (3.3), we get

$$E_{m^2,k} = E_{mk,n} E_{m,\frac{k}{m}}.$$
 (3.8)

Replace k by n, we obtain (3.7).

Theorem 3.7. If mn = rs

$$\frac{E_{m,n}}{E_{kr,ks}} = \frac{E_{r,s}}{E_{km,kn}}.$$
(3.9)

Proof. Using the definition of $E_{m,n}$ and letting mn = rs for positive real numbers m, n, r, s and k, we find that

$$\frac{E_{km,kn}}{E_{m,n}} = \frac{E_{kr,ks}}{E_{r,s}}.$$
(3.10)

On rearranging the above equation (3.10) we obtain the required result.

Corollary 3.8. If mn = rs

$$E_{np,np} = E_{np^2,n} E_{p,p}.$$
 (3.11)

Proof. Letting $m = p^2$, n = 1, r = s = p and k = n in above Theorem 3.7, we deduced the equation (3.11).

Theorem 3.9. For all positive real numbers m, n, r and s, then

$$E_{m/n,r/s} = \frac{E_{ms,nr}}{E_{mr,ns}}.$$
(3.12)

Proof. Employing the equation (3.3) in equation (3.5), we find that, for all positive real numbers m, n and k

$$E_{m/n,k} = E_{m,nk} E_{n,mk}^{-1}.$$
(3.13)

Letting k = r/s and again using the equation (3.5) and (3.1) in (3.13), we get (3.12).

Theorem 3.10.

$$E_{m/n,m/n} = E_{n,n} E_{m,m/n^2}.$$
(3.14)

Proof. Using the Theorems 3.2 and 3.9, we get (3.14).

Theorem 3.11.

$$E_{m,m}E_{m,n^2/m} = E_{n,n}E_{n,m^2/n}.$$
(3.15)

Proof. Putting k = m/n in the equation (3.13) and Employing Theorems 3.2 and 3.10, we obtain (3.15).

Theorem 3.12.

$$E_{m,m}E_{n,m^2n} = E_{n,n}E_{m,mn^2}. (3.16)$$

Proof. Employing the Theorems 3.1, 3.2, 3.10 and 3.11, we obtain (3.16).

4. Some General Theorems on $E_{m,n}$ and their explicit evaluations

In this section we establish some general theorems and their explicit evaluations of Ramanujan's remarkable product of theta functions involving $E_{m,n}$.

Theorem 4.1. If n is any positive real $P := \{G_{n/3}G_{3n}\}^3$ and $Q := E_{3,n}^3$, then

$$Q + \frac{1}{Q} = 2\sqrt{2} \left\{ P - \frac{1}{P} \right\}.$$
(4.1)

Proof. Using the Lemma 2.1 with the definition of $E_{m,n}$, we obtain

$$E_{m,n} = \left\{ \frac{\beta(1-\beta)}{\alpha(1-\alpha)} \right\}^{1/12}.$$
(4.2)

Employing the above equation (4.2) and definition of class invariant (1.11), (1.12) in the Lemma 2.6 with m = 3, we obtain (4.1)

Corollary 4.2.

$$E_{3,9} = \left\{ 1 + 2^{2/3} - 2^{4/3} \right\}^{1/3}.$$
(4.3)

Proof. Putting n = 9 in the above Theorem 4.1, we obtain

$$E_{3,9}^3 + E_{3,9}^{-3} = 2\sqrt{2} \left\{ G_3^3 G_{27}^3 - G_3^{-3} G_{27}^{-3} \right\}.$$
(4.4)

Solving the above equation (4.4) with from the table of Chapter 34 of Ramanujan's notebooks [4, p.189,190] $G_3 = 2^{1/12}$ and $G_{27} = 2^{1/12} \left(\sqrt[3]{2} - 1\right)^{-1/3}$, we obtain (4.3).

Theorem 4.3. If *n* is any positive real $P := \{G_{n/5}G_{5n}\}^2$ and $Q := E_{5,n}^{3/2}$, then

$$Q + \frac{1}{Q} = 2\left\{P - \frac{1}{P}\right\}.$$
(4.5)

Proof. Using the equation (4.2) and definition of class invariant (1.11), (1.12) in the Lemma 2.7 with m = 5, we obtain (4.5).

Theorem 4.4. If n is any positive real $P := \{G_{n/7}G_{7n}\}^3$ and $Q := E_{7,n}^2$, then

$$Q + \frac{1}{Q} + 7 = 2\sqrt{2} \left\{ P + \frac{1}{P} \right\}.$$
(4.6)

Proof. Using the equation (4.2) and definition of class invariant (1.11), (1.12) in the Lemma 2.8 with m = 7, we obtain (4.6).

Theorem 4.5.

$$E_{3,n} = \frac{f(q)\psi(-q^3)}{q^{-1/6}f(q^3)\psi(-q)}; \quad q := e^{-\pi\sqrt{\frac{n}{3}}}$$
(4.7)

If

$$P := \frac{\psi(-q)}{q^{1/4}\psi(-q^3)} \quad and \quad Q := \frac{f(q)}{q^{1/12}f(q^3)}, \quad then$$
(4.8)

$$E_{3,n}^6 = \frac{P^4 + 9}{P^4(1+P^4)}, \quad if \quad P^4 \neq -1.$$
(4.9)

Proof. Employing the definition of $E_{m,n}$ with m = 3, we get

$$E_{3,n} = \frac{f(q)\psi(-q^3)}{q^{-1/6}f(q^3)\psi(-q)}.$$
(4.10)

Raising the power by 6 in the above equation (4.10) with the Lemma 2.3, we deduce that

$$E_{3,n}^6 = \frac{f^6(q)\psi^6(-q^3)}{q^{-1}f^6(q^3)\psi^6(-q)},$$
(4.11)

$$E_{3,n}^{6} = \frac{P^{2}\left\{\frac{P^{4}+9}{1+P^{4}}\right\}}{P^{6}}.$$
(4.12)

On simplifying the above equation (4.12), we obtain (4.9).

Corollary 4.6.

$$E_{3,3} = \left\{2 - \sqrt{3}\right\}^{1/3}.$$
(4.13)

Proof. Putting n = 3 in the equation (4.8) and from Ramanujan's Notebooks [4, p. 327], we have

$$\frac{\varphi(e^{-\pi})}{\varphi(e^{-3\pi})} = \sqrt[4]{6\sqrt{3} - 9}.$$
(4.14)

Employing the equation (2.13) and (4.14), we obtain

$$P := \frac{\psi(-e^{-\pi})}{\psi(-e^{-3\pi})} = \sqrt[4]{9 + 6\sqrt{3}}.$$
(4.15)

Substituting (4.15) in (4.9), we obtain the required result.

Theorem 4.7.

$$E_{5,n} = \frac{f(q)\psi(-q^5)}{q^{-1/3}f(q^5)\psi(-q)}; \quad q := e^{-\pi\sqrt{\frac{n}{5}}}.$$
(4.16)

If

$$P := \frac{\psi(-q)}{q^{1/2}\psi(-q^5)} \quad and \quad Q := \frac{f(q)}{q^{1/6}f(q^5)}, \quad then$$
(4.17)

$$E_{5,n}^3 = \frac{P^2 + 5}{P^2(P^2 + 1)}, \quad if \quad P^2 \neq -1.$$
(4.18)

Proof. Employing the definition of $E_{m,n}$ with m = 5, we get

$$E_{5,n} = \frac{f(q)\psi(-q^5)}{q^{-1/3}f(q^5)\psi(-q)}.$$
(4.19)

Raising the power by 3 in the above equation (4.19) with the Lemma 2.4, we deduce that

$$E_{5,n}^{3} = \frac{f^{3}(q)\psi^{3}(-q^{5})}{q^{-1}f^{3}(q^{5})\psi^{3}(-q)},$$
(4.20)

$$E_{5,n}^3 = \frac{P\left\{\frac{3+1}{P^2+1}\right\}}{P^3}.$$
(4.21)

On simplifying the above equation (4.21), we obtain (4.18).

Corollary 4.8.

$$E_{5,5} = \left\{9 - 4\sqrt{5}\right\}^{2/3}.$$
(4.22)

Proof. Putting n = 5 in the equation (4.17) and from Ramanujan's Notebooks [4, p. 327], we have

$$\frac{\varphi(e^{-\pi})}{\varphi(e^{-5\pi})} = \sqrt{5\sqrt{5} - 10}.$$
(4.23)

Employing the equation (2.14) and (4.23), we obtain

$$P := \frac{\psi(-e^{-\pi})}{\psi(-e^{-5\pi})} = \sqrt{5\sqrt{5} + 10}.$$
(4.24)

Substituting (4.24) in (4.18), we obtain the required result.

Theorem 4.9.

$$E_{9,n} = \frac{f(q)\psi(-q^9)}{q^{-2/3}f(q^9)\psi(-q)}; \quad q := e^{-\pi\sqrt{\frac{n}{9}}}.$$
(4.25)

If

$$P := \frac{\psi(-q)}{q\psi(-q^9)} \quad and \quad Q := \frac{f(q)}{q^{1/3}f(q^9)}, \quad then$$
(4.26)

$$E_{9,n}^3 = \left\{\frac{P+3}{P(P+1)}\right\}^2, \quad if \quad P \neq -1.$$
(4.27)

Proof. Employing the definition of $E_{m,n}$ with m = 9, we get

$$E_{9,n} = \frac{f(q)\psi(-q^9)}{q^{-2/3}f(q^9)\psi(-q)}.$$
(4.28)

Raising the power by 3 in the above equation (4.28) with the Lemma 2.5, we deduce that

$$E_{9,n}^{3} = \frac{f^{3}(q)\psi^{3}(-q^{9})}{q^{-2}f^{3}(q^{9})\psi^{3}(-q)},$$
(4.29)

$$E_{9,n}^{3} = \frac{P\left\{\frac{P+3}{P+1}\right\}}{P^{3}}.$$
(4.30)

On simplifying the above equation (4.30), we obtain (4.27).

Corollary 4.10.

$$E_{9,9} = \left\{ \frac{\left[33s^2 - (39 + \sqrt{3})s - 21\sqrt{3} + 6 \right] \left[54 - 31\sqrt{3} \right]}{33} \right\}^{1/3}.$$
 (4.31)

where $s = (2\sqrt{3} + 2)^{1/3}$

Proof. Putting n = 9 in the equation (4.26) and from Ramanujan's Notebooks [4, p. 327] we have,

$$P := \frac{\varphi(e^{-\pi})}{\varphi(e^{-9\pi})} = \frac{3}{1 + \sqrt[3]{2(\sqrt{3}+1)}}.$$
(4.32)

Employing the equation (2.15) and (4.32), we obtain

$$P := \frac{\psi(-e^{-\pi})}{\psi(-e^{-9\pi})} = \frac{(s^2 + 2s + \sqrt{3} + 1)(3 + \sqrt{3})}{2}.$$
(4.33)

Substituting (4.33) in (4.27), we obtain the required result.

Theorem 4.11.

$$E_{m,n} = \left\{ \frac{G_{n/m}}{G_{mn}} \right\}^2. \tag{4.34}$$

Proof. Employing the Lemma 2.1 in the definition of $E_{m,n}$, we obtain

$$E_{m,n} = \left\{ \frac{\beta(1-\beta)}{\alpha(1-\alpha)} \right\}^{1/12}.$$
(4.35)

Using the equation (1.11) and (1.12), we get

$$\frac{G_{nm}}{G_{n/m}} = \left\{ \frac{\alpha(1-\alpha)}{\beta(1-\beta)} \right\}^{1/24}.$$
(4.36)

By observing the equations (4.35) and (4.36), we obtain (4.34).

Corollary 4.12.

$$E_{n,n} = G_{n^2}^{-2}. (4.37)$$

Proof. Setting m = n in the above Theorem 4.7 with the value $G_1 = 1$, we obtain required result. \Box

Corollary 4.13.

(i)
$$E_{2,2} = 2^{3/8} (1 + \sqrt{2})^{-1/2}$$
, (4.38)

(*ii*)
$$E_{3,3} = \left\{2 - \sqrt{3}\right\}^{1/3}$$
, (4.39)

(*iii*)
$$E_{5,5} = \frac{3-\sqrt{5}}{2},$$
 (4.40)

$$(iv) E_{9,9} = \left\{ \frac{\left[2(\sqrt{3}+1)\right]^{1/3}+1}{\left[2(\sqrt{3}-1)\right]^{1/3}-1} \right\}^{-2/3}.$$
(4.41)

Proof. For (i), we use the values of G_4 from [3, p.114, Theorem 6.2.2(ii)]. For (ii) – (iv), we use corresponding values of G_n from [2, p.189-193].

Acknowledgments

The authors are grateful to the referee for his useful comments which considerably improves the quality of the paper.

References

- C. Adiga, Taekyun Kim, M. S. Mahadeva Naika and H. S. Madhusudhan, On Ramnujan's cubic continued fraction and explicit evaluations of theta-functions, Indian J. pure appl. math., 35(9) (2004), 1047–1062.
- 2. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
- 3. B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994.
- 4. B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1997.
- 5. B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan's remarkable product of the theta-function, Proc. Edinburgh Math. Soc., 40 (1997), 583–612 .
- M. S. Mahadeva Naika, Some theorems on Ramanujan's cubic continued fraction and related identities. Tamsui Oxf. J. Math. Sci. 24(3) (2008), 243–256.
- 7. M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan's remarkable product of theta-function Ramanujan J. 15(3) (2008), 349–366 .
- 8. M. S. Mahadeva Naika, K. Sushan Bairy and S. Chandankumar, On Some Explicit evaluation of the ratios of Ramanujan's theta-function (Communicated).
- M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankara, On some new explicit evaluations of Ramanujan's remarkable product of theta-function, South East Asian J. Math. Math. Sci. 5(1) (2006), 107–119.
- M. S. Mahadeva Naika and M. C. Maheshkumar, Explicit evaluations of Ramanujan's remarkable product of thetafunction, Adv. Stud. Contemp. Math., 13(2) (2006), 235–254.
- M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, General formulas for explicit evaluations of Ramanujan's cubic continued fraction, Kyungpook Math. J., 49(3) (2009), 435–450.
- M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, On some remarkable product of theta-function, Aust. J. Math. Anal. Appl., 5(1) (2008), 1–15.
- Nipen Saikia, Some Properites, Explicit Evaluation, and Applications of Ramanujan's Remarkable Product of Theta-Functions, Acta Math Vietnam, Journal of Mathematics, DOI 10.1007/s40306-014-0106-8, (2015).
- 14. S. -Y. Kang, Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's lost notebook. Ramanujan J., 3 (1) (1999), 91–11.
- 15. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
- 16. S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.

B. N. DHARMENDRA AND S. VASANTH KUMAR

B. N. Dharmendra, Postgraduate Department of Mathematics, Maharani's Science College for Women, Mysuru - 570 005, INDIA. E-mail address: bndharma@gmail.com

and

S. Vasanth Kumar, Research Scholar, Department of Mathematics, Bharathiar University, Coimbatore-641046, INDIA. E-mail address: svkmaths.1740gmail.com

10