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A New Method for the Sum-Edge Characteristic Polynomials of Graphs

Mert Sinan Oz and Ismail Naci Cangul

abstract: In this paper, the determinant of the sum-edge adjacency matrix of any given graph without loops
is calculated by means of an algebraic method using spanning elementary subgraphs and also the coefficients of
the corresponding sum-edge characteristic polynomial are determined by means of the elementary subgraphs.
Also, we provide a formula for calculating the number of smallest odd-sized cycles in a given regular graph.
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1. Significance of the work

In the last seven decades, graphs have been implemented increasingly to model real life situations to
obtain numerical data by mathematical ways which can be commented to obtain physical or chemical
information normally obtained as a result of time and money consuming laboratory experiments. There
are three main ways of transforming such a case to mathematical language: by means of vertex degrees,
matrices or distances. In this work, we give an algebraic method for one of the matrices called the
sum-edge characteristic polynomials corresponding to graphs.

2. Introduction

Let G be an arbitrary graph with no loops. A lot of algebraic, physical and chemical properties
of a given graph G can be determined by means of matrices corresponding to G. The most famous such
matrices are the adjacency, incidency and Laplacian matrices. For example, the intermolecular energy
of a chemical compound can be found only by mathematical calculations on the graph modelling the
chemical compound as the sum of the absolute values of the eigenvalues of the adjacency matrix, see
[4], [5], [7] and [12]. There are some other graph matrices with several uses, see e.g. [2] and [11].
Accordingly, several types of characteristic polynomials and energy are defined by means of these matrix
types, [16] and [17]. One of the most popular of them is the Laplacian energy, see e.g. [8]. In [9], some
degree based energies have been studied. Das studied maximum energy of bipartite graphs in [10]. In
[13], energy of regular graphs is considered. Naturally, being a linear algebraic concept, graph energy is
related to many other notions related to graphs. For example the relation between energy and matching
number have been considered in [1] and [15]. In this paper, we study the sum-edge adjacency matrix
and we determine the sum-edge characteristic polynomial.

3. Sum-edge adjaceny matrices, determinants and characteristic polynomials

Firstly, we recall the definition of sum-edge adjacency matrix of G, see e.g. [11].
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Let the vertex set of G be V (G) = {v1, · · · , vn} and edge set E(G). We shall denote the sum-edge
adjacency matrix of G by S(G). S(G) = [sij ]n×n is determined by the adjacency of vertices as follows:

sij =

{

d(vi) + d(vj), if the vertices vi and vj are adjacent
0, otherwise.

S(G) is a symmetric n × n matrix.

We will call the characteristic polynomial of S(G) as the sum-edge characteristic polynomial of G and
denote it by P se

G (x). These polynomials for several graphs were studied in [14].

Secondly, let us take a graph G. A subgraph G′
t of G is called an elementary subgraph if every

component of G′
t is either an edge or a cycle, see e.g. [2]. Also, if the number of vertices of an elementary

subgraph is equal to the number of vertices of G, then the elementary subgraph is called a spanning
elementary subgraph. c−(G′

t) and c◦(G′
t) are defined as the number of components in a subgraph G′

t

which are edges and cycles, respectively.

Definition 3.1. [6] Let M = [mij ]n×n be a matrix. The determinant function of M which will be denoted
by |M |, is defined by

|M | =
∑

(+
−)m1i1

m2i2
· · · mnin

where the summation is over all permutations i1i2 · · · in of the set S = {1, 2, · · · , n}. Since for a set with
n elements, the number of permutations is given by n!, we sum all n! terms. In other words, we can
express the formula as follows:

Let S(G) = [sij ]n×n be the sum-edge adjacency matrix of G. Then

|S(G)| =
∑

sgn(σ)s1σ(1)s2σ(2) · · · snσ(n)

where the summation is over all permutations of {1, · · · , n}. The sign is taken as + or − with respect to
whether the permutation is even or odd.

Let us define new notions in preparation to the forthcoming theorems. Let ui and uj be two adjacent
vertices in an edge component of corresponding elementary (spanning elementary) subgraph G′

t of G.
Similarly, let vi and vj be two adjacent vertices in a cycle component of corresponding elementary
(spanning elementary) subgraph G′

t of G. In the next theorem, we provide a formula for calculating the
determinant of S(G) whose proof is completed by using a method given in [3].

Theorem 3.2. Let G be any graph with vertex set V (G) = {v1, · · · , vn} and edge set E(G). Let S(G)
be the sum-edge adjacency matrix of G. Then

|S(G)| =
∑

(−1)n−c−(G′

t)−c◦(G′

t)2c◦(G′

t)
n

∏

i,j=1

j>i

[d(ui) + d(uj)]2
n

∏

i,j=1

j>i

[d(vi) + d(vj)]

where the summation is over all spanning elementary subgraphs G′
t.

Note that in a cycle component of the spanning elementary subgraph G′
t of G, if vi and vj are two

adjacent vertices in this cycle component, then when calculating the latter product in Theorem 3.2 cor-
responding to cycle component, we consider only one of the edges vivj and vjvi due to the permutation
structure. Let now ui and uj be two adjacent vertices in an edge component of the spanning elementary
subgraph G′

t of G. We consider both of the edges uiuj and ujui due to the transposition structure and
therefore the square appears in the first product corresponding to edge components.

If either one of the cycle components or edge components does not exist in the spanning elementary
subgraph, we exclude the corresponding product in the statement of Theorem 3.2.
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Proof. By the Definition 3.1,

|S(G)| =
∑

sgn(σ)s1σ(1)s2σ(2) · · · snσ(n).

If some siσ(i) = 0 for i = 1, · · · , n, then this means that vi and vσ(i) are not adjacent vertices. Hence,
if the term corresponding to a permutation σ is non-zero, then we know that any permutation can be
expressed uniquely as the product of disjoint cycles whose length at least two. Every cycle (ij) of length
two corresponds to the factors sijsji and represents a single edge (vivj) in G. Hence, sijsji means that
[d(ui) + d(uj)][d(uj) + d(ui)] is calculated, and is therefore equal to [d(ui) + d(uj)]2. If any spanning
elementary subgraph has at least two edge components, then each edge component contributes to the
product by sijsji. Moreover, every cycle (123 · · · n) of length greater than or equal to three is in the
form (v1v2 · · · vn) and corresponds to the product by s12s23 · · · sn1. This means that the contribution of
the cycle components to the determinant will be [d(v1) + d(v2)][d(v2) + d(v3)] · · · [d(vn) + d(v1)]. If any
spanning elementary subgraph has at least two cycle components, then each such cycle component con-
tributes to the corresponding product by s12s23 · · · sn1. Also, any spanning elementary subgraph consists
of both cycle and edge components. Then both of these component types contribute factors as we have
mentioned above. Thus, as a result, every non-zero term in the determinant expansion is an element of
an elementary subgraph G′

t of G.

As we have already noted before, any permutation σ can be expressed in a unique way as the product
of some disjoint cycles and in such a representation, the sign of σ will be

(−1)n−the number of cycles in the cycle decomposition of σ

which is equal to (−1)n−c−(G′

t)−c◦(G′

t).

Now, we consider cycle components in G′
t. For each of these, we have two choices, so such permutations

corresponding to cycle components contribute 2c◦(G′

t). Thus, we finish the proof. �

Example 3.3. Let us find the determinant of the sum-edge adjacency matrix S(G) of the given tadpole
graph T6,2 in Fig. 1 by using Theorem 3.2.

Figure 1: Graph T6,2

First, we find all spanning elementary subgraphs of T6,2. We have three possibilities:

E(G′
1) = {12, 34, 56, 78}, E(G′

2) = {12, 45, 67, 38} and E(G′
3) = {345678, 12}.

Now E(G′
1) = {12, 34, 56, 78} contributes (−1)8−4−020 · 32 · 52 · 42 · 42 = 57600 to the determinant,

similarly E(G′
2) = {12, 45, 67, 38} contributes (−1)8−4−020 ·32 ·42 ·42 ·52 = 57600 to the determinant, and

finally E(G′
3) = {345678, 12} = {34, 45, 56, 67, 78, 83, 12} contributes to the determinant by (−1)8−1−1215·

4 · 4 · 4 · 4 · 5 · 32 = 115200 and as a result, by Theorem 3.2, we found

|S(G)| = 2(57600) + (115200) = 230400.
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We can now give the formula for the factors of the sum-edge characteristic polynomial of any graph
G by means of [2]:

Theorem 3.4. Let G be any graph of order n. Then

P se
G (x) = |xI − S(G)| = xn + k1xn−1 + k2xn−2 + · · · + kn,

where

kl =
∑

(−1)c−(G′

t)+c◦(G′

t)2c◦(G′

t)
n

∏

i,j=1

j>i

[d(ui) + d(uj)]2
n

∏

i,j=1

j>i

[d(vi) + d(vj)].

Here the summation is over all elementary subgraphs G′
t with l vertices.

Proof. Every kl is calculated by means of the corresponding elementary subgraphs of G with l vertices.
As a method for calculating value of kl, we have to calculate all principal minors of S(G) with l vertices.
After that, we sum all of these and lastly multiply with (−1)l, for l = 1, · · · , n. By Theorem 3.2, we can
write determinant formula instead of principal minors and hence, we achive the formula

kl = (−1)l
∑

(−1)l−c−(G′

t)−c◦(G′

t)2c◦(G′

t)
n

∏

i,j=1

j>i

[d(ui) + d(uj)]2
n

∏

i,j=1

j>i

[d(vi) + d(vj)]

which is equal to the formula

kl =
∑

(−1)c−(G′

t)+c◦(G′

t)2c◦(G′

t)
n

∏

i,j=1

j>i

[d(ui) + d(uj)]2
n

∏

i,j=1

j>i

[d(vi) + d(vj)]

where the summation is over all elementary subgraphs G′
t having l vertices. �

Example 3.5. Let us find the sum-edge characteristic polynomial of the given graph G by the help of
Theorem 3.4.

Figure 2: Graph G

Let the sum-edge characteristic polynomial P se
G (x) of G be P se

G (x) = x5 +k1x4 +k2x3 +k3x2 +k4x+k5.

It is clear that k1 = 0.

For k2, all elementary subgraphs of G with two vertices are

E(G′
1) = {12}, E(G′

2) = {13}, E(G′
3) = {23}, E(G′

4) = {45}.
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Now E(G′
1) = {12} contributes (−1)1 ·20·42 = −16 to k2, E(G′

2) = {13} contributes (−1)1 ·20·42 = −16 to
k2, E(G′

3) = {23} contributes (−1)1 ·20 ·42 = −16 to k2 and E(G′
4) = {45} contributes (−1)1 ·20 ·22 = −4

to k2. Then adding all these up, we get k2 = −52.

For k3, the unique elementary subgraph of G with three vertices is

E(G′
5) = {123} = {12, 23, 31}.

E(G′
5) contributes (−1)1214.4.4 = −128 to k3. Then k3 = −128.

For k4, all possible elementary subgraphs of G with four vertices are

E(G′
6) = {12, 45}, E(G′

7) = {13, 45} and E(G′
8) = {23, 45}.

Here we find that E(G′
6) = {12, 45} contributes (−1)2204222 = 64, E(G′

7) = {13, 45} contributes
(−1)2204222 = 64 and E(G′

8) = {23, 45} contributes (−1)2204222 = 64 to k4. Then their sum is equal to
k4 = 192.

For k5, the unique elementary subgraph of G with five vertices is

E(G′
9) = {123, 45} = {12, 23, 31, 45}.

E(G′
9) contibutes (−1)2214.4.4.22 = 512 to k5. That is, k5 = 512.

Consequently, by Theorem 3.4,

P se
G (x) = x5 − 52x3 − 128x2 + 192x + 512.

We can now prove the following result by means of [3]:

Theorem 3.6. Let G be a graph of order n. Let

P se
G (x) = |xI − S(G)| = xn + k1xn−1 + k2xn−2 + · · · + kn.

If k1, k3, · · · , k2m+1 = 0, then G has no odd cycle of length 2i + 1 where i = 0, 1, · · · , m. Moreover, if G

is a regular graph, then the number of (2m + 3)−cycles in G is

−k2m+3

2
∏n

i,j=1

j>i

[d(vi) + d(vj)]
.

Note that vi and vj are adjacent vertices in one of the elementary subgraphs with 2m + 3 vertices.

Proof. For any graph G, the first coefficient of the characteristic polynomial of G is k1 = 0. Since we
assume that k3 = 0, there are no 3-cycles in G. Hence, we next look for 5-cycles. If G has at least one
5-cycle, we have the result. If k5 = 0, then there are no 5-cycles in G. We continue the process until we
find all k1, k3, · · · , k2m+1 = 0. Finally we have to obtain an elementary graph having at least one k2m+3-
cycle. The elementary subgraph will have 2m + 3-cycles. Let one of these cycles be (1 2 · · · (2m + 3)).
Then we have the edge decomposition v12v23 · · · v(2m+3)1. By Theorem 3.4, we have

k2m+3 =
∑

(−1)c−(G′

t)+c◦(G′

t)2c◦(G′

t)
n

∏

i,j=1

j>i

[d(vi) + d(vj)]

where the summation is over all elementary subgraphs G′
t each of which is a (2m + 3)-cycle in G. If the

graph is regular, each non-zero [d(vi)+d(vj)] has the same value and so each (2m+3)-cycle component in
G′

t contributes the same amount to the k2m+3. Furthermore, each component of the elementary subgraph
G′

t is a (2m + 3)-cycle, we have c−(G′
t) = 0 and c◦(G′

t) = 1 for each such component. For this reason,
the contribution of each component to k2m+3 is equal to −2 times the product of the degree sums.
Consequently, taking the sum over all components, we have the proof. �
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Example 3.7. Let us apply Theorem 3.6 to the graph G given in Fig. 3.

Figure 3: Graph G

The sum-edge characteristic polynomial of the graph G is

x9 − 318x7 − 688x6 + 25576x5 + 119216x4 − 460192x3 − 4204928x2 − 9467392x − 6502400.

If we equalize this equation to the

x9 + k1x8 + k2x7 + k3x6 + k4x5 + k5x4 + k6x3 + k7x2 + k8x + k9,

then by Theorem 3.6, we see that k1 = 0, and we will look for k3.

For k3, all elementary subgraphs of G with three vertices are E(G′
1) = {123} = {12, 23, 31}, E(G′

2) =
{456} = {45, 56, 64} and E(G′

3) = {789} = {78, 89, 97}. Hence, E(G′
1) = {123} = {12, 23, 31} contributes

to k3 by (−1)1214.6.6 = −288, E(G′
2) = {456} = {45, 56, 64} contributes to k3 by (−1)1215.4.5 = −200,

and E(G′
3) = {789} = {78, 89, 97} contributes to k3 (−1)1215.4.5 = −200. Thus, the sum of the three,

namely k3 is equal to −688 and

−k3

2
∏9

i,j=1

j>i

[d(vi) + d(vj)]
6= 3

where vi and vj are vertices which are adjacent to each other in the component of one of the elementary
subgraphs with 3 vertices. Moreover, you can observe that the value of the subgraphs G′

1, G′
2 and G′

3 are
not the same.

The previous theorem is not verified because the graph G is not regular.

Example 3.8. Let us apply the Theorem 3.6 to the complete graph K4 given in Fig. 4:
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Figure 4: Complete Graph K4

The sum-edge characteristic polynomial of the graph K4 is

x4 − 216x2 − 1728x − 3888.

If we equalize this equation to the

x4 + k1x3 + k2x2 + k3x + k4,

then by Theorem 3.6, we see that k1 = 0 and now we can look for k3.

For k3, all elementary subgraphs of G with three vertices are E(G′
1) = {123} = {12, 23, 31}, E(G′

2) =
{124} = {12, 24, 41}, E(G′

3) = {234} = {23, 34, 42} and E(G′
4) = {134} = {13, 34, 41}. Hence each

of E(G′
1) = {123} = {12, 23, 31}, E(G′

2) = {124} = {12, 24, 41}, E(G′
3) = {234} = {23, 34, 42} and

E(G′
4) = {134} = {13, 34, 41} contributes to k3 by (−1)1216.6.6 = −432.

As a result, k3 = −1728 and

−k3

2
∏4

i,j=1

j>i

[d(vi) + d(vj)]
=

−(−1728)

2.6.6.6
= 4

which is the number of 3−cycles where vi and vj are vertices which are adjacent to each other in the
component of one of the elementary subgraphs with 3 vertices. Consequently, Theorem 3.6 is verified
because K4 is regular.
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