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Constructing and Enumerating of Magic Squares

Mohammad Reza Oboudi

abstract: A magic square of order n, where n is a positive integer, is an n × n square table , say A, filled
with distinct positive numbers 1, 2, . . . , n2 such that all cells of A are distinct and the sum of the numbers in
each row, column and diagonal of A is equal. Let M(n, s) be the set of all n × n matrices with entries 0 or 1,
say T , such that the number of 1 in every row and every column of T is equal to s. In this paper we introduce
a new method for constructing magic squares of order 4k, where k is a positive integer. We show that the
number of magic squares of order 4k is at least |M(2k, k)|. In particular, we prove that the number of magic

squares of order 4k is at least 1

2

(

2k

k

)

2

.
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1. Introduction

Let n ≥ 1 be an integer. A magic square of order n is an n×n square table, say A, filled with distinct
positive numbers 1, 2, . . . , n2 such that all cells of A are distinct and the sum of the numbers in each row,
column and diagonal of A is equal. Note that if A is a magic square, then the sum of the numbers in
each row, column and diagonal of A is equal to

1 + 2 + · · · + n2

n
=

n(n2 + 1)

2
.

More precisely, let A = [ai,j ] be an n × n matrix such that for 1 ≤ i, j ≤ n, ai,j ∈ {1, 2, . . . , n2}. Then A

is a magic square of order n if and only if all ai,j are distinct and for every r, s ∈ {1, 2, . . . , n},

n
∑

j=1

ar,j =

n
∑

i=1

ai,s =

n
∑

i=1

ai,i =

n
∑

i=1

ai,n−i+1 =
n(n2 + 1)

2
.

It is well known that for every positive integer n 6= 2 there exists at least one magic square of order
n. The study of magic squares has a long history. Magic squares have been the subject of interest among
mathematicians for several centuries because of its magical properties. For more details on this topic and
its applications see [1], [3], [4] and the references therein. The tables A and B are two magic squares of
order 3 and 4, respectively.

A =

8 1 6
3 5 7
4 9 2

B =

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

A (0, 1)-matrix is a matrix whose entries are equal to 0 or 1. Let M(n, s) be the set of all n × n

(0, 1)-matrices, say T , such that the number of 1 in every row and column of T is equal to s. In this
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paper first we find a new method for constructing magic squares of order 4k where k is a positive integer.
Finally, we show that the number of magic squares of order 4k is at least |M(2k, k)| (where |A| is the
cardinality of the set A).

2. Constructing and enumerating magic squares

In this section for every positive integer k we construct |M(2k, k)| magic squares of order 4k.
For every positive integer n, let An = [ai,j ] be the n × n square table such that for 1 ≤ i, j ≤ n,
ai,j = (i − 1)n + j. For example A4 is the following:

A4 =

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

Now for every matrix of M(2k, k) we construct a magic square of order 4k using A4k as follows. Let
E = [ei,j ] ∈ M(2k, k) and n = 4k. Let Φ(E) be the n × n square table that is obtained form An by the
following two rules.

(i) If ei,j = 1, then substitute ai,j with an+1−i,j and substitute ai,n+1−j with an+1−i,n+1−j .

(ii) If ei,j = 0, then substitute ai,j with ai,n+1−j and substitute an+1−i,j with an+1−i,n+1−j .

For example let k = 1 ( so n = 4) and E =
1 0
0 1

. Since e1,1 = 1, so we replace a1,1 with a4,1 ( and

a4,1 with a1,1) and replace a1,4 with a4,4 ( and a4,4 with a1,4). In fact

A4 =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

=

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

and

Φ(E) =

a4,1 a1,3 a1,2 a4,4

a2,4 a3,2 a3,3 a2,1

a3,4 a2,2 a2,3 a3,1

a1,1 a4,3 a4,2 a1,4

=

13 3 2 16
8 10 11 5

12 6 7 9
1 15 14 4

Now we prove that Φ(E) is a magic square of order n. For 1 ≤ i, j ≤ n, let Ri and Cj be the
summation of all entries of ith row and jth column of An, respectively. In other words Ri =

∑n

k=1 ai,k

and Cj =
∑n

k=1 ak,j . Since for 1 ≤ i, j ≤ n, ai,j = (i − 1)n + j we obtain that

Ri = (i − 1)n2 +
n(n + 1)

2
and Cj = jn +

n2(n − 1)

2
.

Let R′
i and C′

j be the summation of all entries of the ith row and jth column of Φ(E), respectively. We

show for every 1 ≤ i ≤ n, R′
i = C′

i = n(n2+1)
2 . First we prove that for every i ∈ {1, . . . , n}, R′

i = n(n2+1)
2 .

We note that by applying the rule (ii) the summation of the entries of any row does not change. Thus
it remains to consider the effect of the first rule. Assume that ei,j1

= ei,j2
= · · · = ei,jk

= 1 where
j1 < j2 < · · · < jk. Hence the entries of the ith row of Φ(E) is

ai,1, . . . , ai,j1−1, an+1−i,j1
, ai,j1+1, . . . , ai,j2−1, an+i−1,j2

, ai,j2+1, . . . , ai,jk−1, an+1−i,jk
, ai,jk+1, . . . , ai,n.
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This shows that R′
i = Ri +

∑k

t=1(an+1−i,jt
− ai,jt

). Since for every 1 ≤ r, s ≤ n, ar,s = (r − 1)n + s we

obtain that R′
i = n(n2+1)

2 . Similarly one can see that for every i ∈ {1, . . . , n}, C′
i = n(n2+1)

2 .

Now we investigate the summation of entries of the diagonals ( main and secondary diagonals) of

Φ(E). First note that the summation of all entries of the diagonals of An is n(n2+1)
2 . In other words

a1,1 + a2,2 + · · · + an,n = a1,n + a2,n−1 + · · · + an,1 = n(n2+1)
2 . Assume that er1,r1

= · · · = erp,rp
= 0 and

es1,s1
= · · · = esq,sq

= 1. Hence the numbers of the main diagonal of Φ(E) are ar1,n+1−r1
, . . . , arp,n+1−rp

,
an+1−r1,r1

, . . . , an+1−rp,rp
, an+1−s1,s1

, . . . , an+1−sq,sq
and as1,n+1−s1

, . . . , asq,n+1−sq
. This shows that the

summation of all entries of the main diagonal of Φ(E) is n(n2+1)
2 ( note that p + q = n

2 = 2k). Similarly

one can see that the summation of all entries of the secondary diagonal of Φ(E) is also n(n2+1)
2 .

For example we construct a magic square of order 8. Let

L =

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

By applying L on A8 we obtain that

Φ(L) =

57 7 59 5 4 62 2 64
16 50 14 52 53 11 55 9
41 23 43 21 20 46 18 48
32 34 30 36 37 27 39 25
40 26 38 28 29 35 31 33
17 47 19 45 44 22 42 24
56 10 54 12 13 51 15 49
1 63 3 61 60 6 58 8

The summation of the numbers of every row, column and diagonal of Φ(L) is 8(64+1)
2 = 260.

Remark 2.1. As we explained above, by every matrix of M(2k, k) we can construct a magic square of

order 4k. This shows that the number of magic squares of order 4k is at least the cardinality of the set

M(2k, k).

Let G = (V, E) be a simple graph. For a vertex v of G, the degree of v is the number of edges incident
with v. A k–regular graph is a graph such that every vertex of that has degree k. For two disjoint graphs
G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and G2, denoted by G1 ∪ G2, is the graph
with vertex set V1 ∪ V2 and edge set E1 ∪ E2. An independent set S of G is a subset of vertices of G

such that there is no edge between every two vertices of S. A bipartite graph is a graph, say G, whose
vertices can be divided into two disjoint and independent sets, say X and Y , such that every edge of G

has an end point vertex in X and an end point vertex in Y . By Km,n we mean the complete bipartite
graph with part sizes m and n. To see the relevant definitions related to graph theory see [2]. In the
next result we find a lower bound for the number of magic squares of order 4k. Our method shows that

for every positive integer k there exist at least
(2k

k )
2

2 magic squares of order 4k.

Theorem 2.2. For every positive integer k, the number of magic squares of order 4k is at least
(2k

k )2

2 .

Proof. Since (as we mentioned before) by every matrix in M(2k, k) we can construct a magic square of

order 4k, to complete the proof it suffices to show that |M(2k, k)| ≥
(2k

k )
2

2 . Let X = {x1, . . . , x2k} and
Y = {y1, . . . , y2k}. Let H be the set of all k-regular bipartite graphs G with parts X and Y . In other
words, H is the set of all k-regular graphs G with vertex set X ∪ Y such that X and Y are independent

sets. We claim that the cardinality of H is at least
(2k

k )
2

2 .
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For instance Kk,k ∪ Kk,k ( the disjoint union of two complete bipartite graphs) is one the graphs
belonging to H. To prove the claim consider a subset A ⊆ X with |A| = k and a subset B ⊆ Y with
|B| = k. Then consider the disjoint union of two complete bipartite graphs; one of them construct with
parts A and B and the other construct with parts X \ A and Y \ B. By this method we can construct
(2k

k )2

2 graphs belonging to H (note that these graphs are isomorphic to Kk,k ∪ Kk,k). Therefore the claim
is proved.

Let G be a k-regular bipartite graph with parts X and Y , that is G ∈ H. Let C(G) = [ci,j ] be the
2k × 2k (0, 1)−matrix such that ci,j = 1 if and only if xi and yj are adjacent and ci,j = 0, otherwise.

Obviously C(G) ∈ M(2k, k). This shows that |M(2k, k)| ≥ |H|. On the other hand |H| ≥
(2k

k )
2

2 . Hence

|M(2k, k)| ≥
(2k

k )2

2 . �
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