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A Modified Fixed Point Method for Biochemical Transport

M. R. Amattouch and H. Belhadj

abstract: This work is devoted to a modified fixed point method applied to the bio-chemical transport
equation. To have a good accuracy for the solution we treat, we apply an implicit scheme to this equation
and use a modified fixed point technique to linearize the problem of transport equation with a generalized
nonlinear reaction and diffusion equation. Next, we apply this methods in particular to the the dynamical
system of a bio-chemical process.
Eventually, we accelerate these algorithms by the optimized domain decomposition methods.
Several test-cases of analytical problems illustrate this approach and show the efficiency of the proposed new
method.
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1. Introduction

Our general equation of bio-chemical transport equation, could be written as:







∂u
∂t

+ −div (D(u)∇u) + ∇vu + F (u) = f(x, y) on Ω
u = h on ∂Ω
u = ho on t = 0

(1.1)

Where u = (ui) the concentration (dispersal) of reactant, F is the reaction model and D is the diffusion
flux. The lists of bio-chemical model is too wide to cite in this paper, but our boundary equation
(1.1), generalizes a lot of bi-chemicals models (with second order derivative). As concerned biochemical
models, we cite the Fisher equation (for tumors model [5], [15]), Murray Model [6], Keller and Segel(
for Chemotaxis process [7]) and FitzHugh-Nagumo (for the simulation of electric propagation in nerves
[8]),...
The use of Hopf biffurcation or continuation methods are insufficient for modeling in general these type
biochemical dynamic and solving these models cost heavy time. Then, the use of accurate numerical
methods is necessary to solve the dynamics. Notice, the use of the Newton type methods is ineffective
for solving nonlinear equation of dynamics because the dimension of variables in these equations is large
(more than 3 variables). Also, the use of explicit scheme to solve these equations is not accurate, stable
and efficient in general . So In order to make ours bio-chemicals simulations fast, stable and efficient,
we apply in this paper, the modified fixed point (we propose in [1], [2], [4]) to solve problem (1.1) type.
Modifying the treated equations someway to make the global energy of the system contracting at each
step of time, we guarantee that our method converge quickly to the stationary solution and the time step
size is realistic compared to an explicit method (because of the CFL condition impose a very small time
step size for explicit scheme). Also, modifying the equations of dynamics give stable solutions: The use
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of finite element or finite volume discretization is sensitive to the anisotropic and convective equations:
modifying equations by q relaxation procedure solves this issue and we show the weak formulation of
problem (1.1), has one and unique solution.
In the first part of this paper, we will present the modified fixed point method applied to our equation
(1.1). In the second part we apply this method to the particular case of a dynamical reaction equation
without a diffusion or convection term. We are interested in this section, because the equations type
we treat, model a lot of bio-chemical process (the Michaleis-Menton for Enzyme kinetics [9], [16], Hill
Kinetics [10], Goldbeter-Koshland for switch phenomena [11], Tyson Model for cell cycles [12], Burgos
Fang Model [13] ...). The equations we treat in this paper in general are unstable and hard to solve by
classical methods, so we apply the modified fixed point to make the solutions robust and stables.
Finally, we give some numerical results and implementation that prove the efficiency of the method.

2. Nonlinear reaction diffusion equation

By a full implicit scheme, equation (1.1) becomes

{

cu − div D(u)∇u + vu = f(x, y) on Ω
u = h on ∂Ω

(2.1)

The fixed point method is constructed successively as:

{

cun+1 − div D(un)∇un+1 + ∇vun+1 + F (un+1) = f(x, y) on Ω
un+1 = o on ∂Ω

(2.2)

Where u0 is an initial function value.
Let

V = {u ∈ H(Ω)/ D(u) ∈ L1(Ω) and ‖u‖H < M}

H is the specific Sobolev space adopted for problem (1) (we take H(Ω) = H1
0 (Ω) for a dirichlet condition

on the boundary and H(Ω) = H1(Ω) for a Neuman condition) and ‖u‖H is the norm on the Sobolev
space H (‖u‖H = ‖∇u‖ in the case of dirichlet condition and ‖u‖H = ‖u‖ + ‖∇u‖ in the case of neumann
condition). M is a positive constant that we choose to make the solution of the variational formula of
equation (2.1) to be bounded (for physical reason). The energy of equation (2.1) is:

E(u) =

∫

Ω

cu u +

∫

Ω

u ∇vu +
1

2

∫

Ω

D(u)∇u ∇u −

∫

Ω

fu

Equation (2.1) is equivalent to the global minimization of the Energy E on the space H with some
constraints. We can prove that E is a K contraction on V for a small number M (see [1], [2] for prove
and explanation in the case of nonlinear diffusion). This method is local and could diverge for an initial
sequence departure is u0 = h0. the same thing could be said if we apply a Newton type method. As a
solution to this problem we make some modifications to the equation to have successive sequences that
are not distant from the initial value u0 = h0. As in [2] where, we proposed a modified fixed point to a
just a semi linear equation, and in [1] where, we applied a modified fixed point to a nonlinear equation,
we generalize this method to our equation by mean of solving the following iterative equations:

{

cun+1 − div((D(un) + r(un)), ∇un)∇un+1) + (un+1) = f(x, y) − div(r(un), ∇un)∇un) + K(un) on Ω
un+1 = o on ∂Ω

(2.3)

the function r and K are selected such a way that the valuational energy of this equation is a K contraction
where, K is very small for reasonable choice of bound M (Generally M Must be less than ‖u0‖H). This
small K make the convergence of the method fast and reduce the number of successive iterations in time
compared to Newton or Fixed method ones. Also, the convergence to the solution is stable because the
energy is a contraction (there is one and only one solution for the problem and the error is controlled).
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3. Dynamical reaction model

In this section, we treat a particular case of equation (1.1): We eliminate the convective and diffusive
term and take into account a non linear reaction: Without the transport term in equation, we obtain a
dynamical equation:

dy

dt
= F (y), y(0) = u0 (3.1)

F is non linear function that could have many roots, which make the equation unstable and accurate
using classical model from initial value u0.
An implicit scheme of this equation could be writing as:

yn+1 = F (yn+1) + Kyn y0 = u0 (3.2)

We do the same job of section 2 and apply a modified fixed point method to the problem (instead of a
continuation method that make a lot of time to process):

yn+1 = F (yn) + cnyn+1 + (K − cn)yn (3.3)

cn is choose such a way that the energy of y, should be a contraction.
We can take for example::

cn = ∇F (yn) +
1

2
yn.HessF (yn)

Hess is the matrix hessian for the function F.

4. Numerical simulation

We treat first the simulation of equation 1.1 where Ω is a squared domain, we take different values
for the diffusion D and the convection v, the functions f, h and h0 are given by taking an exact solution
uexact to the problem 1.1 on the square Ω. We implemented the modified fixed point method to several
academic solution uexact. We take in this paper in the case of function of two variable:

uexact(x, y, t) = ((2x − y)e−t(x2+y2+ + xsin(πy), (2x + y)e−t(x2+y2) + ycos(πx) + 1)

The next figures show the error between the approximate solution by a finite element method and the
analytical solution of equations 2.3: uexact(., t) in the given step t for different value D, F, v=(a,b), ∆t,
the step t and the mesh h of the finite element.

Figure 1: case1. Figure 2: case2.
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Figure 3: case3 Figure 4: case4

Figures 1,2,3,4 showing the spatial error at a given time t in ms between the approximate solution by
the fixed point method and the given exact solution of the problem (1.1) in terms of the given iterations.

case1: ∆t=0.1, t=0.1,D=I,a=b=0 h=0,025.F (u, v) = (u ∗ v − v, u)t.
case2: ∆t=0.1, t=0.5, D=0,1I,a=-2,b=1 and h=0,001.F (u) = a/(b + ‖u‖)(1, 1)t

case3: ∆t=0.1,t=10,D = [1, 1 − e−(x+y); −1, 2],a=-1,b=0 and h=0,001.F (u) = (u, u3 − vu)t,
case4: ∆t=0.5,t=1, D=0.5I, a=2, b=-1,5 and h=0,001.F (u) = ( u

1+u2 , v
1+u2 )t.

h is the mesh grid and I is the matrix identity.

These figures shows that the modified fixed point method converge quickly to the solution and give a
good accuracy. To reduce time computation due to the implicit scheme, we have combined this method
an optimized wave domain decomposition method to accelerate the algorithm.
For the dynamical system (Equation (3.2))we give the simulation of a reaction with four reactant the
bio-chemical equation (Equation (3.1)).

X1 + E ⇋ X2 +
1

2
X3 ⇋ X4 + F

We take for F a polynomial function as for the Michaleis-Menton model for enzymes ( [16]). We take
for the initial value [X1] = 1 and [Xi] = 0 for i=2,3,4. the next figure show the result of concentration
species by solving the equation using the proposed modified fixed method in section 3.

Figure 5: Evolution of the concentrations per time

These results are close to a simulation with a benchmark of biochemical simulation (PyMol).

5. Conclusion

We have applied a modified fixed point method to resolve the general nonlinear transport equation,
then we applied the method to a dynamical system. We assume that we can prove by theory the fast
convergence of the method applied to this equation.
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Several test-cases show the efficiency of the modified Fixed point method.
As a perspective of this article about modified fixed point method we can treat:

• Applying the method to the Groundwater equations

• Applying the Fick and Darcy equations

• Comparing results with realistic experiments.
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