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A Maximization Algorithm of Pseudo-convex Quadratic Functions on Closed Convex Sets

in Euclidean Spaces
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abstract: We give an algorithm to find maxima of pseudo-convex quadratic functions on closed convex
sets and show its convergence. Some computational results are given at the end.
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1. Introduction

Our aim in this paper is the search for the maxima of vectorial pseudo-convex quadratic functions.
The motivation behind the choice of these functions is mainly computation. We shall give an algorithm
to find such maxima and give some computational results at the end. Many papers were devoted to the
numerical search of minima and maxima of convex functions, we cite for example [1,8]. In this paper,
we show that some results of Enkhbat and Ibaraki [1,8] given in a context of convex functions can be
carried on to pseudo-convex functions.

We will give some necessary and sufficient conditions of optimality in the third section. We will also
derive an algorithm to apply this program. We deal with the convergence of the algorithm in the fourth
section. Some numerical results from problems that were treated in [1,2,7,8,9,10] are given at the end
for illustration.

Consider a quadratic and pseudo-convex f : Rn → R. The problem we are interested in is:

(P )

{

maximize f(x),
for x ∈ C, a closed convex set.

Recall that a differentiable function f is pseudo-convex (cf. [6]) if:

〈∇f(x), y − x〉 ≥ 0 ⇒ f(y) ≥ f(x), ∀x, y ∈ C.

Since f is quadratic, there is a square real matrix Q of order n and x, p ∈ R
n such that:

f(x) =
1

2
〈Qx, x〉 + 〈p, x〉.

The derivative of f at x is ∇f(x) = Qx + p.
In this work, we do not suppose that Q is symmetric, nevertheless we can always transform our

problem via a change of basis and a change of variable to the maximization of a function of the form
f(x) = f(x0) + 1

2 〈Dy, y〉 where D is a diagonal matrix and y that will be clarified below.
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2. Properties of the function under study

We begin by the following result.

Proposition 2.1. Let f(x) = 1
2 〈Qx, x〉 + 〈p, x〉, where Q is not necessarily a symmetric matrix. We can

make a change of variable to obtain

f(x) = f(x0) +
1

2
〈Dy, y〉,

where D is a diagonal matrix and x0 is a vector such that ∇f (x0) = 0.

Proof. Claim: Consider two matrices defined as follows:

A = [aij]1≤i,j≤n and Q = [qij]1≤i,j≤n,

with aii = qii and ∀i 6= j, aij = 1
2 (qij + qji). Then, A is symmetric and 〈Qx, x〉 = 〈Ax, x〉.

Indeed, by construction of the matrix A, aij = aji. So A is symmetric. On the other hand,

〈Qx, x〉 =

n
∑

j=1

n
∑

i=1

qji xixj

=
n

∑

i=1

qiix
2
ii +

n
∑

j=1
j 6=i

n
∑

i=1

(qji + qij)xixj

=

n
∑

i=1

aiix
2
ii +

n
∑

j=1
j 6=i

n
∑

i=1

(aji + aij)xixj

= 〈A.x, x〉

For the second part, we refer to Best [4] who shows that if f(x) = 1
2 〈Ax, x〉 + 〈p, x〉, where A is a

symmetric matrix. We can make a change of variable and obtain

f(x) = f(x0) +
1

2
〈Dy, y〉,

where D is a diagonal matrix and x0 is a vector such that ∇f (x0) = 0.
Indeed, A is real symmetric, so there is an orthogonal matrix S and a diagonal matrix D such that

A = S.D.ST and S⊤ = S−1. Also, Ax0 + p = 0 implies that x0 is a solution of a linear system. Consider
the vector y such that x = S.y + x0.

�

Therefore, whatever the real matrix Q that defines the function f(x), we can always find a symmetric
matrix D such that

f(x) =
1

2
〈Q.x, x〉 + 〈p, x〉 = f(x0) +

1

2
〈D.y, y〉

That way we have an equivalent formulation of f with terms of the form y2
i only and no yi.yj .

Characterization of pseudoconvex quadratic functions

Denote by ν(D) the number of negative eigenvalues in D and π(D) the number of positive eigenvalues.
Suppose in the sequel that D = (λi)i is a diagonal matrix and ν (D) = 1, π (D) = k − 1 and k ≤ n.

We sort the eigenvalues of the matrix D so that λ1 ≤ 0. Denote the sets:

T +
k =

{

x ∈ R
k;

k
∑

i=1

λi.x
2
i < 0; x1 > 0

}

and T −
k =

{

x ∈ R
k;

k
∑

i=1

λi.x
2
i < 0; x1 < 0

}

T + = {x ∈ R
n; f(x) < 0; x1 > 0} and T − = {x ∈ R

n; f(x) < 0; x1 > 0}
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According to Greub [3], the following sets represent the solid cones:

T + = {x ∈ R
n; f(x) ≤ 0; x1 ≥ 0} and T − = {x ∈ R

n; f(x) ≤ 0; x1 ≥ 0}

And according to Ferland, [2], if the real diagonal matrix D satisfies ν(D) = 1, then the quadratic form
f(x) = 〈Dx, x〉 is pseudoconvex on either of the sets T + \ N and T − \ N defined by:

T + \ N =
{

x ∈ R
n; x ∈ T + and Dx 6= 0

}

and T − \ N =
{

x ∈ R
n; x ∈ T − and Dx 6= 0

}

Proposition 2.2. If a function f is quadratic pseudoconvex, then we can easily check that:

(i) ∀x, y ∈ C, if 〈Ax, y − x〉 ≥ 0, then f(y) ≥ f(x)

(ii) ∀x, y ∈ C,if f(y) < f(x), then 〈Ax, y − x〉 < 0.

(iii) When f is pseudoconvex, it is quasiconvex.

(iv) ∀x, y ∈ C, if f(y) = f(x), then 〈Ax, y − x〉 ≤ 0

3. Optimality Conditions and Algorithm

We define a level set as follows:

Cx = {y ∈ R
n; f(y) = f(x)}

Theorem 3.1 (Hassouni and Jaddar [5]). A vector x∗ is a solution of (P ), if and only if

∀y ∈ Cx∗ and ∀x ∈ C, 〈Ay, x − y〉 ≤ 0.

For the construction of the algorithm to solve our problem, we define the following functions:

Y (y) = max
y∈Cx

〈Ay, x − y〉 and X(x) = max
y∈C

Y (y).

Theorem 3.2. If X(x∗) ≤ 0, then x∗ is a solution of (P ).

Proof. By definition of X(x) and Y (y), ∀y ∈ Cx:

X(x) = max
y∈C

Y (y) ≥ Y (y) = max
y∈Cx

〈A.y, x − y〉 ≥ 〈Ay, x − y〉

Hence, ∀y ∈ Cx, X(x) ≥ 〈Ay, x − y〉. So, for x∗, we have

∀y ∈ Cx∗ , 0 ≥ X(x∗) ≥ 〈Ay, x∗ − y〉.

By Theorem 3, we have that x∗ is a solution of (P ). �

Algorithm

See Figure 1 below for our algorithm to find the maxima of f .

Lemma 3.3. The sequence (f(x(k))k is strictly increasing.

Proof. For the general case, we suppose that x(k) is not a solution of the problem.
First, let’s prove that the sequence is increasing. Since x(k) is not a solution, X

(

x(k)
)

> 0. Hence

〈A.y(k), x(k+1) − y(k)〉 > 0 =⇒ 〈Ay(k), x(k+1) − y(k)〉 ≥ 0

By (i), f
(

x(k+1)
)

≥ f
(

y(k)
)

= f
(

x(k)
)

. So the sequence (f(x(k))k is increasing.
Let’s prove now that the sequence is strictly increasing.
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k = 0 x(0) 6∈
x∈Rn

f(x)

x(k)

y(k) Y (y(k)) =
max

y∈C
(k)
x

〈Ay, x(k) − y〉 = 〈Ay(k), x(k) − y(k)〉

x(k+1) X(x(k)) =
max

y∈C(k)
Y (y(k)) = 〈Ay(k), x(k+1) − y(k)〉

X(x(k)) ≤ 0

x(k)

k := k + 1
x(k) := x(k+1)

Figure 1: Algorithm

By absurdum, suppose that ∃k such that f
(

x(k+1)
)

= f
(

x(k)
)

. Then, f
(

y(k)
)

= f
(

x(k+1)
)

, and by

(iv), 〈Ay(k), x(k+1)〉 ≤ 〈Ay(k), y(k)〉, so

〈A.y(k), x(k+1) − y(k)〉 ≤ 0

But, since x(k) is not a solution of the problem and satisfies 〈Ay(k), x(k+1) − y(k)〉 > 0.

A contradiction.

�

Lemma 3.4.

∃L ∈ R such that lim
k→∞

f(x(k)) = L

Proof. The sequence (f(x(k))k is strictly increasing and bounded from above by f(x∗), where x∗ is a
solution of (P). So for all k = 1, 2, . . ., we have f

(

x(0)
)

< f(x(k)) ≤ f(x∗), and the function f(x) is
bounded. Since it’s also continuous, we deduce that:

There exists L ∈ R such that f(x(k)) = L.

�

Lemma 3.5.

lim
k→∞

X(x(k)) = 0
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Proof. We have

X(x(k)) = 〈Ay(k), x(k+1) − y(k)〉
= 〈Ay(k), x(k+1)〉 − 2f(y(k))

= 〈A(y(k) − x(k+1) + x(k+1)), x(k+1)〉 − 2f(x(k))

= 〈A(y(k) − x(k+1)), x(k+1)〉 + 〈Ax(k+1), x(k+1)〉 − 2f(x(k))
= 2

(

f
(

x(k+1)
)

− f
(

x(k)
))

+ 〈A(y(k) − x(k+1)), x(k+1)〉

By Lemma 3.3, f
(

x(k+1)
)

> f
(

x(k)
)

= f
(

y(k)
)

. By (ii), 〈Ax(k+1), y(k) − x
(k+1)

〉 < 0.

Hence, X(x
(k)

) < 2
(

f
(

x(k+1)
)

− f
(

x(k)
))

. Since X(x
(k)

) = max
x∈C

Y (y(k)) ≥ max
y∈Cx(k)

〈A.y, x(k) − y〉 ≥ 0.

We get 0 ≤ X(x(k)) < 2
(

f
(

x(k+1)
)

− f
(

x(k)
))

. which gives us lim
k→∞

X(x(k)) = 0. �

4. Numerical Simulations

Now, that we have an algorithm to find solutions of (P ), we will use it on the following set of problems:

P1
f(x) = x2

1 + x2
2 + x2

3 + (x3 − x4)2 → max
−2.3 ≤ xi ≤ 2.7, i = 1, 2, 3, 4

(4.1)

P2

f(x) = 4(x1 − 1)2 + 25(x2 − 2)2 → max
8.3x1 + 20.5x2 ≤ 170.15
−7.5x1 + 18x2 ≤ 135

−10.5x1 + 7.7x2 ≤ 80.85
−3.7x1 − 10.2x2 ≤ 37.74

−2.7x1 − 13x2 ≤ 35.1
4.5x1 − 7x2 ≤ 31.5

−20 ≤ x1 ≤ 20, −20 ≤ x2 ≤ 20

(4.2)

P3
‖x‖2 → max

−(n − i + 1) ≤ xi ≤ n + 0.5i i = 1, 2, . . . , n
(4.3)

P4

f(x) = −x2
1 + x2

2

−x1 − x2 ≤ −6
0.4x1 − x2 ≤ 1
−x1 + x2 ≤ −2

x1 + x2 ≤ 13
0.5x1 + x2 ≤ 8.5

(4.4)

P5
f(x) = −0.5x2

1 − 2x1x2 − 7x1x3 − 5x1

i ≤ xi ≤ n + 3i, i = 1, 2, 3
(4.5)

P6

f(x) = −x2
1 +

∑

i>1

‖x‖2

i + 0.5 ≤ xi ≤ n + 0.5i, i = 1, 2, . . . , n
(4.6)

The results of the numerical simulations are as follows (n is the number of variables):

Problem n x(0) f(x(0)) x(∗) f(x(∗))

P1 4 x
(0)
i = −2.29 15.7323 (2.7; 2.7; 2.7; −2.3)T 46.87

P2 2 (-7.21907; 0.65376) 315.5215 (0.97; 7.91)T 871.946

P3 10 x
(0)
i = 0.01 0.001 x∗

1 = 10.5,
x∗

i>1 = x∗
i−1 + 0.5

1646.25
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P4 30 x
(0)
i = 0.01 0.003 x∗

1 = 30.5,
x∗

i>1 = x∗
i−1 + 0.5

43313.75

P3 70 x
(0)
i = 0.01 0.007 x∗

1 = 70.5,
x∗

i>1 = x∗
i−1 + 0.5

546148.75

P3 100 x
(0)
i = 0.01 0.01 x∗

1 = 100.5,
x∗

i>1 = x∗
i−1 + 0.5

1589587.5

P4 2 x1 = 4.01 x2 = 1.01 -15.6 x1 = 4, x2 = 2 -12.00

P5 3 x
(0)
1 = 6.01,

x
(0)
i6=1 = x

(0)
i−1 + 3

-661.671 x∗ = (1, 2, 3)T -30.50

P6 5 x
(0)
1 = 1.51,

x
(0)
i>1 = x

(0)
i−1 + 1

67.0403 x∗
1 = 1.5, x∗

2 = 6.0,
x∗

i>2 = x∗
i−2 + 0.5

181.250

P6 20 x
(0)
1 = 1.51,

x
(0)
i>1 = x

(0)
i−1 + 1

3084.84 x∗
1 = 1.5, x∗

2 = 21.0,
x∗

i>2 = x∗
i−2 + 0.5

12495.0
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