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Existence Results for Perturbed Fourth-order Kirchhoff Type Elliptic Problems with

Singular Term

Ahmad Ghazvehi and Ghasem A. Afrouzi

abstract: Under appropriate growth conditions on the nonlinearity, the existence of multiple solutions for
a perturbed nonlocal fourth-order Kirchhoff-type problem involving the Hardy term:

∆2

pu −
[

M(

∫

Ω

|∇u|pdx)
]p−1

∆pu − µ
|u|p−2u

|x|2p
= λf(x, u),

is established. Our main tools are based on variational methods and some critical points theorems. We give
some examples to illustrate the obtained results.

Key Words: p-biharmonic, Kirchhoff-type problem, Navier condition, Hardy-Rellich inequality, Vari-
ational methods.
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1. Introduction

The purpose of this paper is to establish the existence of multiple solutions for the following perturbed
nonlocal fourth-order problem of Kirchhoff-type under Navier boundary condition

{

∆2
pu −

[

M(
∫

Ω |∇u|pdx)
]p−1

∆pu − µ |u|p−2u
|x|2p = λf(x, u) x ∈ Ω,

u = ∆u = 0 x ∈ ∂Ω,
(1.1)

where ∆2
pu := ∆(|∆u|p−2∆u) and, ∆pu := div(|∇u|p−2∇u) denote the p-biharmonic operator and the

p-Laplacian operator, respectively, 1 < p < N
2 , Ω ⊆ R

N is an open bounded domain containing the origin
in R

N , the boundary ∂Ω is smooth, and M : [0, +∞[→ R is a continuous function such that there are two
positive constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all t ≥ 0, and λ > 0, µ ≥ 0 and f : Ω × R → R

is L1-Carathéodory function.
Biharmonic equations can describe the static form change of a beam or the sport of a rigid body. For

example, this type of equation furnishes a model for studying traveling wave in suspension bridges (see
[21]). Due to this, many researchers have discussed the existence of at least one solution, or multiple
solutions, or even infinitely many solutions for fourth-order boundary value problems by using lower
and upper solution methods, Morse theory, the mountain-pass theorem, constrained minimization and
concentration-compactness principle, fixed-point theorems and degree theory, and variational methods
and critical point theory, and we refer the reader to [1,5,7,8,9,10,13,16,17,18,19,20,23,24,25,26,27,30,34,36]
and references therein.

On the other hand, singular elliptic problems have been intensively studied in recent years, see for
example, [3,14,15,22,28,29,31,35,37] and the references. Stationary problems involving singular nonlin-
earities, as well as the associated evolution equations, describe naturally several physical phenomena and
applied economical models. For instance, nonlinear singular boundary value problems arise in the context
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of chemical heterogeneous catalysts and chemical catalyst kinetics, in the theory of heat conduction in
electrically conducting materials, singular minimal surfaces, as well as in the study of non-Newtonian
fluids and boundary layer phenomena for viscous fluids.

Recently, motivated by this large interest, the problem,

{

∆2
pu = |u|p−2u

|x|2p + g(λ, x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(1.2)

where g :]0, +∞[×Ω × R → R is a suitable function, has been extensively investigated. For instance,
Xie and Wang, in [35] proved that the problem (1.2) has infinitely many solutions with positive energy
levels. Later, Xu and Bai [37] studied the infinitely many solutions for perturbed Kirchhoff type elliptic
problems with Hardy potential

{

M
( ∫

Ω
|∆u|pdx

)

∆2
pu − a |u|p−2u

|x|2p = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.
(1.3)

Li in [22] considered the fourth order elliptic problem with Navier boundary conditions

{

∆2
pu + |u|p−2u

|x|2p = λf(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(1.4)

and proved that, the problem (1.4) admits at least two distinct solutions.
Our goal of this work is to show the existence three solutions and two solutions for the following

p-harmonic equation:

{

∆2
pu −

[

M(
∫

Ω |∇u|pdx)
]p−1

∆pu − µ |u|p−2u
|x|2p = λf(x, u) x ∈ Ω,

u = ∆u = 0 x ∈ ∂Ω,
(1.5)

where Ω is bounded domaine in R
N (N ≥ 5) containing the origin and with smooth boundary ∂Ω, 1 <

p < N/2, and f : Ω × R −→ R is a carathéodory function such that

(f1) |f(x, t)| ≤ a1 + a2|t|q−1, ∀(x, t) ∈ Ω × R,

for some non-negative constants a1, a2 and q ∈]1, p∗[, where

p∗ :=
pN

N − 2p

and

(M1) M : [0, +∞[−→ R be a continuous function such that there are two positive constants m0 and m1

with

m0 ≤ M(t) ≤ m1 ∀t ≥ 0.

Recall that a function f : Ω × R −→ R is said carathéodory function, if

(C1) the function x −→ f(x, y) is measurable for every y ∈ R;

(C2) the function y −→ f(x, y) is continuous for a.e. x ∈ Ω.

The plan of the paper is as follows: Section 2 contains some preliminary lemmas. In Section 3, using
of three critical points theorems obtained in [6] which we recall in the next section (Theorems 2.4) we
ensure the existence of at least three weak solutions for the problem (1.1). Finally Section 4 contains our
main results and their proofs to obtain the existence of at least two weak solutions for the problem (1.1).
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2. Preliminaries

Here and in the sequel, X will denote the space W 2,p(Ω)
⋂

W 1,p
0 (Ω). By the Hardy-Rellich inequality

(see [11]), we know that

∫

Ω

|u|p

|x|2p
dx ≤

1

H

∫

Ω

|∆u|pdx, (2.1)

where the best constant is

H =
( (p − 1)N(N − 2p)

p2

)p

. (2.2)

Obviously, for any µ ∈ [0, H),

(1 −
µ

H
)
(

∫

Ω

(|∆u|p + |∇u|p)dx
)

≤

∫

Ω

(|∆u|p + |∇u|p − µ
|u|p

|x|2p
)dx

≤

∫

Ω

(|∆u|p + |∇u|p)dx.

In W 2,p(Ω)
⋂

W 1,p
0 (Ω), for µ ∈ [0, H ], we define

‖u‖ =
(

∫

Ω

(|∆u|p + |∇u|p − µ
|u|p

|x|2p
)dx

)
1
p ,

this norm is equivalent to
( ∫

Ω
(|∆u|p + |∇u|p)dx

)
1
p .

From now let us assume that µ ∈ [0, H [. Moreover, set p∗ := pN
N−2p . By the Sobolev embedding

theorem there exists a positive constant c such that

‖u‖Lp∗(Ω) ≤ c‖u‖ (∀u ∈ X) (2.3)

see, for instance, [33]. Fixing q ∈ [1, p∗[, again from the Sobolev embedding theorem, there exists a
positive constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖ (∀u ∈ X) (2.4)

and, in the particular, the embedding X →֒ Lq(Ω) is compact.

Let us define the functionals Φ, Ψ : X −→ R by

Φ(u) =
1

p

(

∫

Ω

∣

∣∆u|pdx + M̃(

∫

Ω

|∇u|pdx) − µ

∫

Ω

|u|p

|x|2p
dx

)

,

Ψ(u) =

∫

Ω

F (x, u)dx, (2.5)

where

M̃(t) =

∫ t

0

[M(s)]p−1ds t ≥ 0,

and

F (x, u) =

∫ u

0

f(x, t)dt, (x, t) ∈ Ω × R.

In this article, we assume that the following condition holds,

(M1) M : [0, +∞[−→ R is continuous function. Add there are two positive constants m0, m1 such that

m0 ≤ M(t) ≤ m1, ∀t ≥ 0. (2.6)
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Then
mp−1

0 t ≤ ˜M(t) ≤ mp−1
1 t. (2.7)

Throughout the paper, denote

M− = min{1, mp−1
0 }

and
M+ = max{1, mp−1

1 },

then
∫

Ω

|∆u|pdx+M̃(

∫

Ω

|∇u|pdx) − µ

∫

Ω

|u|p

|x|2p
dx

≤

∫

Ω

|∆u|pdx + mp−1
1

∫

Ω

|∇u|pdx − µ

∫

Ω

|u|p

|x|2p
dx

≤ M+‖u‖p, (2.8)

and Since, by (2.1), for any µ ∈ [0, H ]
∫

Ω

(

|∆u|p − µ
|u|p

|x|2p

)

dx ≥ 0,

we have
∫

Ω

|∆u|pdx+M̃(

∫

Ω

|∇u|pdx) − µ

∫

Ω

|u|p

|x|2p
dx

≥

∫

Ω

|∆u|pdx + mp−1
0

∫

Ω

|∇u|pdx − µ

∫

Ω

|u|p

|x|2p
dx

≥ M−‖u‖p. (2.9)

We need the following propositions in the proofs of Theorems. The proof of this propositions are similar
to the proof in [2, Proposition 3.3 and Theorem 3.4].

Proposition 2.1. Let f : R → R be a L1-Carathéodory function satisfies condition (f1). Then we have
the following result:

(1) Ψ ∈ C1(X,R) and for u, v in X, we have

Ψ
′

(u)(v) =

∫

Ω

f(x, u(x))v(x)dx.

(2) The operator Ψ
′

: X → X∗ is compact.

Proof. (1) By condition (f1), we have

|F (x, u)| ≤ a1|u| +
a2

q
|u|q.

Then the Nemytskii operator properties implies that Ψ is a C1 operator in Lq(Ω). Since there is a
continuous embedding of X into Lq(Ω), the function Ψ is also C1 in X and

Ψ
′

(u)(v) =

∫

Ω

f(x, u(x))v(x)dx.

(2) It is enough to show that Ψ
′

is strongly continuous in X . Let {un} ⊂ X be a sequence such that
un ⇀ u. Since, the embedding of X into Lq(Ω) is compact, there exists a subsequence, noted also {un},
such that un → u in Lq(Ω). According to the Krasnoselski’s theorem, the Nemytskii operator

Nf :Lq → L
q

q−1

u 7→ f(., u)
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is continuous. Hence, Nf(un) → Nf (u) in L
q

q−1 (Ω). Then by Holder’s inequality and embedding of X
into Lq(Ω), we have

|
(

Ψ
′

(un) − Ψ
′

(u)
)

v| = |

∫

Ω

(

f(x.un) − f(x, u)
)

v(x)dx|

≤ cq‖Nf (un) − Nf (u)‖ q

q−1
‖v‖.

Thus, Ψ
′

(un) → Ψ
′

(u) in X∗. This completes the proof. �

Definition 2.2. Let X be a reflexive real Banach space. The operator T : X → X∗ is said to satisfy the
(S+) condition if the assumptions lim supn→+∞

〈

T (un) − T (u0), un − u0

〉

≤ 0 and un ⇀ u0 in X imply
un → u0 in X.

Proposition 2.3. Let µ ∈ [0, H ] and T : X −→ X∗ be the operator defined by

T (u)v :=

∫

Ω

|∆u|p−2∆u∆vdx +
[

M
(

∫

Ω

|∇u|dx
)

]p−1
∫

Ω

|∇u|p−2∇u∇vdx

− µ

∫

Ω

|u|p−2

|x|2p
uvdx,

for every u, v ∈ X. Then T admits a continuous inverse on X∗.

Proof. since

T (u)u =

∫

Ω

|∆u|pdx +
[

M
(

∫

Ω

|∇u|dx
)

]p−1
∫

Ω

|∇u|pdx − µ

∫

Ω

|u|p

|x|2p
dx,

≥

∫

Ω

|∆u|pdx + mp−1
0

∫

Ω

|∇u|pdx − µ

∫

Ω

|u|p

|x|2p
dx,

≥ M−‖u‖p,

then T is coercive. Consequently, thanks to a Minty-Browder theorem [38], the operator T is surjection.
For any x, y ∈ R

N , we have the following elementary inequalities from which we can get the strictly
monotonicity of T :

〈

|x|p−2x − |y|p−2y, x − y
〉

≥

{

Cp|x − y|p, if p ≥ 2

Cp
|x−y|2

(|x|+|y|)2−p if 1 < p < 2,
(2.10)

where
〈

., .
〉

denotes the usual inner product in R
N , for every x, y ∈ R

N . Indeed, for 1 < p < 2, it is easy
to see that

〈

T (u) − T (v), u − v
〉

≥

∫

Ω

(|∆u|p−2∆u − |∆v|p−2∆v)(∆u − ∆v)dx

+ mp−1
0

[

∫

Ω

(|∇u|p−2∇u − |∇v|p−2∇v)(∇u − ∇v)dx
]

− µ

∫

Ω

(
|u|p−2

|x|2p
u −

|v|p−2

|x|2p
v)(u − v)dx

≥ Cp

[

∫

Ω

( |∆u − ∆v|2

(|∆u| + |∆v|)2−p
+ mp−1

0

|∇u − ∇v|2

(|∇u| + |∇v|)2−p

− µ
|u − v|2

|x|2p(|u| + |v|)2−p

)

dx
]

> 0,

and for, p ≥ 2, we also observe that

〈

T (u) − T (v), u − v
〉

≥ Cp

∫

Ω

(

|∆u − ∆v|p + mp−1
0 |∇u − ∇v|p − µ

|u − v|p

|x|2p

)

dx

≥ CpM−‖u − v‖p > 0,
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which means that T is strictly monotone. Thus T is injective and admits an inverse mapping. T −1 is
continuous. Indeed, let {fn} be a sequence of X∗ such that fn −→ f in X∗. Let un and u in X such that

T −1(fn) = un and T −1(f) = u.

By the coercivity of T , the sequence {un} is bounded in the reflexive space X . This means that there
exist a subsequence that we call again {un}, such that un ⇀ û in X which implies

lim
n→+∞

〈

T (un) − T (u), un − û
〉

= lim
n→+∞

〈

fn − f, un − û
〉

= 0.

Now we prove that T is a mapping of type (S+), it follows that

un → û in X. (2.11)

Indeed let un ⇀ u in X and lim supn→+∞

〈

T (un)−T (u), un −u
〉

≤ 0. Since T is strictly monotone, then

lim sup
n→+∞

〈

K ′(un) − K ′(u), un − u
〉

≤ 0,

where K ′ : X → X∗ defined as

K(u) :=
1

p

∫

Ω

|∇u|pdx ∀u ∈ X,

and
〈

K ′(u), v
〉

=

∫

Ω

|∇u|p−2∇u∇vdx,

for every v ∈ X . Then un → u in X (see Theorem 3.1 of [12]). So, T is a mapping of (S+) type. On the
other hand since T is the Fréchet derivative, it follows that T is continuous, thus from (2.11) we have,

T (un) → T (û) = T (u) in X∗.

Hence, taking into account that T is an injection, we have u = û. This completes the proof. �

To prove our main result in section 3, we use a three critical point theorem of [6]. We recall it in a
convenient form.

Theorem 2.4 ( [6, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X → R be a sequentially
weakly lower semicontinuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact, such that

inf
X∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄) such that

(i)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ,

(ii) for each λ ∈ Λr :=
]

Ψ(x̄)
Φ(x̄) , r

supΦ(x)≤r Ψ(x)

[

the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical points in X.

Other toll is the following abstract result.

Theorem 2.5 ( [4, Theorem 3.2]). Let X be a real Banach space and let Φ, Ψ : X → R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix r > 0
such that supΦ(u)<r Ψ(u) < +∞ and assume that, for each λ ∈]0, r

supΦ(u)<r Ψ(u) [, the functional Iλ :=

Φ − λΨ satisfies (PS)-condition and it is unbounded from below. Then, for each λ ∈]0, r
supΦ(u)<r Ψ(u) [, the

functional Iλ admits two distinct critical points.
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We say that a function u ∈ X is a (weak) solution of the problem (1.1) if

∫

Ω

|∆u|p−2∆u∆vdx +

[

M

(
∫

Ω

|∇u|pdx

)]p−1 ∫

Ω

|∇u|p−2∇u∇vdx

−µ

∫

Ω

|u|p−2

|x|2p
uvdx − λ

∫

Ω

f(x, u)vdx = 0

for every v ∈ X .

3. Existence of three weak solutions

In this section, we formulate our main results on the existence of at least three weak solutions for the
problem (1.1).

Fix x0 ∈ Ω and pick s > 0 such that B(x0, s) ⊂ Ω where B(x0, s) denotes the ball with center at x0

and radius of s. Put

θ1 :=
2π

N
2

Γ(N
2 )

∫ s

s
2

∣

∣

∣

12(N + 1)

s3
r −

24N

s2
+

9(N − 1)

s

1

r

∣

∣

∣

p

rN−1dr,

θ2 :=

∫

B(x0,s)\B(x0, s
2 )

[

ΣN
i=1

(

12ℓ(xi − x0
i )

s3
−

24(xi − x0
i )

s2
+

9(xi − x0
i )

sℓ

)2
]

p

2

dx,

where Γ denotes the Gamma function, and

L := θ1 + θ2. (3.1)

We present our first existence result as follows. We recall that cq is the constant of the embedding

W 1,p
0 ∩ W 2,p →֒ Lq(Ω) for each q ∈]p, p∗[, and c1 stands for cq with q=1.

Theorem 3.1. Suppose (M1) and µ ∈ [0, H [ hold(with H is as in (2.2)). Also let f : Ω × R −→ R is a
Carathéodory function, satisfying condition (f1). Moreover, assume that

(f2) there exist r > 0 and d > 0 with r < M−

p dpL(1 − µ
H ) such that

̟r :=
1

r

{

a1c1(
pr

M−
)

1
p +

a2

q
cq

q(
pr

M−
)

q

p

}

<
p

∫

Ω\B(x0, s
2 )

F (x, d)dx

dpM+L
;

(f3)
∫

Ω\B(x0, s
2 ) F (x, ζ)dx ≥ 0 for each ζ ∈ [0, d];

(f4) there exist a ∈ [0, +∞[ and γ ∈ (1, p) such that

F (x, t) ≤ a(1 + |t|γ).

Then, for every λ ∈ Λ :=
]

dpM+L

p
∫

Ω\B(x0, s
2

)
F (x,d)dx

, 1
̟r

[

the problem (1.1) possesses at least three weak solu-

tions.

Proof. In order to apply Theorem 2.4 to our problem, We introduce the functionals Φ, Ψ : X → R for
each u ∈ X , as follows

Φ(u) =
1

p

(

∫

Ω

∣

∣∆u|pdx + M̃(

∫

Ω

|∇u|pdx) − µ

∫

Ω

|u|p

|x|2p
dx

)

,

and

Ψ(u) =

∫

Ω

F (x, u)dx,



8 A. Ghazvehi and G. A. Afrouzi

and we put
Iλ(u) = Φ(u) − λΨ(u).

Now we show that the functionals Φ and Ψ satisfy the required conditions. We easily observe that
Φ(0) = Ψ(0) = 0. By proposition 2.1 we know that Ψ is a differentiable functional whose differential at
the point u ∈ X is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =

∫

Ω

f(x, u(x))v(x)dx

for every v ∈ X , and Ψ
′

: X → X∗ is a compact operator. Moreover it is well known thatΨ is sequentially
weakly upper semicontinuous, and Φ is continuously differentiable whose differential at the point u ∈ X
is Φ′(u) ∈ X∗, given by

Φ
′

(u)(v) =

∫

Ω

|∆u|p−2∆u∆vdx +
[

M
(

∫

Ω

|∇u|pdx
)]p−1

∫

Ω

|∇u|p−2∇u∇vdx

− a

∫

Ω

|u|p−2

|x|2p
uvdx, (3.2)

for every v ∈ X , while Proposition 2.3 gives that its Gâteaux derivative admits a continuous inverse on
X∗. Furthermore, Φ is sequentially weakly lower semicontinuous.

Clearly, the weak solutions of the problem (1.1) are exactly the solutions of the equation Φ′(u) −
λΨ′(u) = 0. Now, let v̄ ∈ Xdefined by

v̄(x) =











0 x ∈ Ω̄ \ B(x0, s)

d
(

4
s3 l3 − 12

s2 l2 + 9
s l − 1

)

x ∈ B(x0, s) \ B(x0, s
2 )

d x ∈ B(x0, s
2 ).

(3.3)

A direct calculation shows

∂v̄(x)

∂xi
=

{

0 x ∈ Ω̄ \ B(x0, s) ∪ B(x0, s
2 )

d
(

12l(xi−x0
i )

s3 −
24(xi−x0

i )
s2 +

9(xi−x0
i )

sl

)

x ∈ B(x0, s) \ B(x0, s
2 ),

and
∂2v̄(x)

∂x2
i

=

{

0 x ∈ Ω̄ \ B(x0, s) ∪ B(x0, s
2 )

d
(

12[(xi−x0
i )2+l2]

ls3 − 24
s2 +

9[l2−(xi−x0
i )2]

l3s

)

x ∈ B(x0, s) \ B(x0, s
2 ),

and so that

N
∑

i=1

∂2v̄(x)

∂x2
i

=

{

0 x ∈ Ω̄ \ B(x0, s) ∪ B(x0, s
2 )

d
(

12l(N+1)
s3 − 24

s2 + 9(N−1)
ls

)

x ∈ B(x0, s) \ B(x0, s
2 ).

It is easy to see that
∫

Ω

|∆v̄(x)|pdx = θ1dp

∫

Ω

|∇v̄(x)|pdx = θ2dp (3.4)

Therefore

Φ(v̄) =
1

p

(

∫

Ω

∣

∣∆v̄|pdx + M̃(

∫

Ω

|∇v̄|pdx) − µ

∫

Ω

|v̄|p

|x|2p
dx

)

≤
1

p

∫

Ω

|∆v̄|pdx +
1

p
M̃(

∫

Ω

|∇v̄|pdx)

=
1

p
θ1dp +

1

p
M̃(θ2dp)

≤
1

p
(θ1 + mp−1

1 θ2)dp ≤
M+

p
Ldp, (3.5)
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and

Φ(v̄) ≥
1

p

(

∫

Ω

∣

∣∆v̄|pdx + mp−1
0

∫

Ω

|∇v̄|pdx − µ

∫

Ω

|v̄|p

|x|2p
dx

)

≥
M−

p

(

∫

Ω

∣

∣∆v̄|pdx +

∫

Ω

|∇v̄|pdx − µ

∫

Ω

|v̄|p

|x|2p
dx

)

≥
M−

p

(

(1 −
µ

H
)θ1dp + θ2dp

)

≥
M−

p
dpL(1 −

µ

H
). (3.6)

Due to (f3), one has that

Ψ(v̄) =

∫

Ω

F (x, v̄)dx ≥

∫

B(x0, s
2 )

F (x, v̄)dx =

∫

B(x0, s
2 )

F (x, d)dx,

so, thanks to (3.5) we get

Ψ(v̄)

Φ(v̄)
≥

p
∫

B(x0, s
2 )

F (x, d)dx

M+LdP
. (3.7)

From r < M−

p dpL(1 − µ
H ), one has r < Φ(v̄).

On the other hand, due to (2.9), we get

‖u‖ < (
pr

M−
)

1
p , (3.8)

for every u ∈ X and Φ(u) < r.
Now, from (2.4) and by using (3.8), one has

Ψ(u) =

∫

Ω

F (x, u(x))dx ≤ a1‖u‖L1(Ω) +
a2

q
‖u‖q

L(Ω)

< a1c1(
pr

M−
)

1
p +

a2

q
cq

q(
pr

M−
)

q

p ,

for every u ∈ X such that Φ(u) < r. Hence

supΦ(u)≤r Ψ(u)

r
≤

1

r

(

a1c1(
pr

M−
)

1
p +

a2

q
cq

q(
pr

M−
)

q

p

)

,

and so condition (i) of Theorem 2.4 is verified.
Now we prove that Iλ is coercive. From (2.4) one has

∫

Ω

|u(x)|γdx ≤ cγ
γ‖u‖γ.

and so, for each u ∈ X with ‖u‖ ≥ max{1, 1
cγ

}, from (f4) and (2.9) we have

Iλ(u) := Φ(u) − λΨ(u)

≥
M−

p
‖u‖p − λc{meas(Ω) + cγ

γ‖u‖},

where meas(Ω) denotes the Lebesgue measure of the open set Ω. Since γ < p, coercivity of Iλ is obtained.
Then, taking into account the fact that the weak solutions of the problem (1.1) are exactly critical points
of the functional Iλ, and

Λ ⊆
] Φ(v̄)

Ψ(v̄)
,

r

supΦ(u)≤r Ψ(u)

[

we have the desired conclusion. �
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Remark 3.2. We observe that, if f(x, 0) 6= 0, then by Theorem 3.1, we obtain the existence of at least
three non-zero weak solutions.

Example 3.3. The following function verifies the assumptions requested in Theorem 3.1. Let r > 1 be
a real number and 1 < γ < p < q < p∗. We consider the function f : Ω × R → R defined as

f(x, t) =

{

1 + α(x)|t|q−1, x ∈ Ω, t ≤ r,
1 + α(x)rq−γ tγ−1, x ∈ Ω, t > r,

where α : Ω → R be a Borel, bounded and positive function. condition (f1) is easily verified. Taking into
account that

F (x, t) =











≤ 0 x ∈ Ω, t ≤ 0

t + α(x) |t|q

q , x ∈ Ω, 0 < t ≤ r,

t + α(x)( rq

q + rq−γ

γ tγ − rq

γ ), x ∈ Ω, t > r,

one has F (x, t) ≥ 0 for each (x, t) ∈ Ω × [0, +∞[ and (f3) is verified. Finally, we observe that

F (x, t) =











≤ 0 x ∈ Ω, t ≤ 0

≤ r + α(x) |r|q

γ , x ∈ Ω, 0 < t ≤ r,

≤
(

r + α(x) rq

γ

)

tγ , x ∈ Ω, t > r,

and since F (x, t) ≤
(

r + α(x) rq

γ

)(

1 + |t|γ
)

for each (x, t) ∈ Ω × R, (f4) is verified.

4. Existence of two weak solutions

In this section, our goal is to obtain the existence of two distinct weak solutions for the problem (1.1).

Theorem 4.1. Suppose (M1) and µ ∈ [0, H [ hold(with H is as in (2.2)). Also let f : Ω × R → R be a
Carathéodory function such that (f1) holds. Moreover, assume that

(f5) there exist θ > p and t0 > 0 such that

0 < θF (x, t) ≤ tf(x, t),

for each x ∈ Ω and |t| ≥ t0.

(f6) For every t > 0

M̃(t) ≥ t[M(t)]p−1.

Then, for each λ ∈]0, λ∗[, the problem (1.1) admits at least two distinct weak solutions, where

λ∗ =
1

a1c1

(

p
M−

)1/p

+ a2
cq

q

q

(

p
M−

)q/p
.

Proof. Our aim is to apply Theorem 2.5 to problem (1.1) in the case r = 1 to the space X = W 1,p
0 (Ω) ∩

W 2,p(Ω) and to the functional Φ, Ψ : X → R defined in the proof of Theorem 3.1. First we prove that
Iλ = Φ − λΨ satisfies (PS)-condition for every λ > 0. Namely, we will prove that any sequence {un} ⊂ X
satisfying

Iλ(un) → c, and I ′
λ(un) → 0, (4.1)

contains a convergent subsequence. Due to (4.1), we can actually assume there is a constant C such that

|Iλ(un)| ≤ C and |I ′
λ(un)| ≤ C‖un‖, inX (4.2)
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for every n. By (4.2) we can write

C +
1

θ
.o(1)‖un‖ ≥ Iλ(un) −

1

θ
I

′

λ(un)un

=
1

p

(

∫

Ω

|∆un|pdx + M̃
(

∫

Ω

|∇un|pdx
)

− µ

∫

Ω

|un|p

|x|2p
dx

)

−
1

θ

(

∫

Ω

|∆un|pdx +
[

M
(

∫

Ω

|∇un|pdx
)]p−1

∫

Ω

|∇un|pdx

− µ

∫

Ω

|un|p

|x|2p
dx

)

− λ

∫

Ω

F (x, un)dx +
λ

θ

∫

Ω

f(x, un)undx

≥ (
1

p
−

1

θ
)
(

∫

Ω

|∆un|pdx +
[

M
(

∫

Ω

|∇un|pdx
)]p−1

∫

Ω

|∇un|pdx

− µ

∫

Ω

|un|p

|x|2p
dx

)

+ λ

∫

{x∈Ω:|un|≤t0}

(1

θ
f(x, un)un − F (x, un)

)

dx

+ λ

∫

{x∈Ω:|un|>t0}

(1

θ
f(x, un)un − F (x, un)

)

dx

≥ (
1

p
−

1

θ
)‖un‖pM− − C1.

Which of course implies that {un} is bounded in X . By the Eberlian-Smulyan theorem, passing to a
subsequence if necessary, we can assume that un ⇀ u in X and un → u in Lq(Ω), so

〈

I
′

λ(un), un −u
〉

→ 0.
By (f1), we have

∫

Ω

|f(x, un)(un − u)|dx ≤
(

a1meas(Ω) + a2‖uq−1
n ‖

L
q

q−1
(Ω)

)

‖un − u‖Lq(Ω),

since un → u in Lq(Ω), we have

lim
n→+∞

∫

Ω

|f(x, un)||un − u|dx = 0.

But
〈

Φ
′

(un), un − u
〉

=
〈

I
′

λ(un), un − u
〉

+ λ

∫

Ω

f(x, un)(un − u)dx,

hence,

lim sup
n→+∞

〈

Φ
′

(un), un − u
〉

≤ 0.

Since Φ
′

verifies (S+) condition, we have un → u in X and so Iλ satisfies (PS)-condition. From (f5), by
standard computations, there is a positive constant C such that

F (x, t) ≥ C|t|θ (4.3)

for all x ∈ Ω and |t| > t0. In fact, setting a(x) := min|ζ|=t0
F (x, ζ) and

ϕt(s) := F (x, st), ∀s > 0, (4.4)

by (f5), for every x ∈ Ω and |t| > t0 one has

0 < θϕt(s) = θF (x, st) ≤ stf(x, st) = sϕ′
t(s), ∀s >

t0

|t|
.

Therefore,
∫ 1

t0/|t|

ϕ′
t(s)

ϕt(s)
ds ≥

∫ 1

t0/|t|

θ

s
ds.
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Then

ϕt(1) ≥ ϕt

( t0

|t|

) |t|θ

tθ
0

.

Taking into account of (4.4), we obtain

F (x, t) ≥ F
(

x,
t0

|t|
t
) |t|θ

tθ
0

≥ a(x)
|t|θ

tθ
0

≥ C|t|θ,

where C > 0 is a constant. Thus (4.3) is proved. Fixed u0 ∈ X \ {0}, for each t > 1 one has

Iλ(tu0) = Φ(tu0) − λΨ(tu0)

≤
M+

p
tp‖u0‖p − λCtθ

∫

Ω

|u0|θdx.

Since θ > p, this condition guarantees that Iλ is unbounded from below. Fixed λ ∈]0, λ∗[, from (2.9) it
follows that

‖u‖ <
( p

M−

)1/p

(4.5)

for each u ∈ X such that u ∈ Φ−1(] − ∞, 1[). Moreover, the compact embedding X →֒ L1(Ω), (f1), (4.5)
and the compact embedding X →֒ Lq(Ω) imply that, for each u ∈ Φ−1(] − ∞, 1[) we have

Ψ(u) ≤ a1‖u‖L1(Ω) +
a2

q
‖u‖q

Lq(Ω)

≤ a1c1‖u‖ + a2

cq
q

q
‖u‖q

< a1c1

( p

M−

)1/p

+ a2

cq
q

q

( p

M−

)q/p

,

and so,

sup
Φ(u)<1

Ψ(u) ≤ a1c1

( p

M−

)1/p

+ a2

cq
q

q

( p

M−

)q/p

=
1

λ∗ <
1

λ
. (4.6)

From (4.6) one has

λ ∈]0, λ∗[⊂
]

o,
1

supΦ(u)<1 Ψ(u)

[

.

So all hypotheses of theorem 4.1 are verified. Therefore, for each λ ∈]0, λ∗[, the functional Iλ admits two
distinct critical points that are weak solutions of problem (1.1). �

Example 4.2. We consider the function f defined by

f(x, u) =

{

uq−1, x ∈ Ω, u ≥ 0,
−(−u)q−1, x ∈ Ω, u < 0,

(4.7)

for each (x, u) ∈ Ω × R, where 1 < p < q < p∗. We prove that f verifies the assumption requested in
Theorem 4.1. Condition (f1) is easily verified. We observe that

f(x, u)u − θF (x, u) = |u|q −
θ

q
|u|q = (1 −

θ

q
)|u|q,

for each (x, u) ∈ Ω × R. Thus for every θ such that p < θ < q Condition (f5) is verified too.

Now we consider the following special case of problem (1.1):

{

∆(∆u) −
[

a + be
−(

∫

Ω
|∇u|2dx)]

∆u − µ u
|x|4 = λf(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(4.8)
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where Ω is a bounded smooth domain of RN , N > 4, 0 < µ < (N(N−4)
4 )2, a and b are positive constants.

Set
M(t) = a + be−t t ≥ 0,

then
a ≤ M(t) ≤ a + b,

and
M̃(t) − tM(t) = b(1 − e−t − te−t).

Let g(t) = −(e−t + te−t), then g(0) = −1 and g′(t) = te−t ≥ 0 for all t ≥ 0. Thus for all t ≥ 0 we have

M̃(t) ≥ tM(t).

Hence the condition (f6) is satisfied. In view of Theorem 4.1, we have the following corollary.

Corollary 4.3. Assume f(x, u) satisfies (f1) and (f5), Then, for each λ ∈]0, λ∗[, the problem (4.8) admits
at least two distinct weak solutions, where

λ∗ =
1

a1c1

√

2
min{1,a} + a2

cq
q

q

√

(

2
min{1,a}

)q
.

Example 4.4. Let Ω is a bounded smooth domain of R
N , 4 < N < 8, 0 < µ < (N(N−4)

4 )2, a and b are
positive constants. Then the problem

{

∆(∆u) −
[

a + be
−(

∫

Ω
|∇u|2dx)]

∆u − µ u
|x|4 = λ(1 + u3) x ∈ Ω,

u = ∆u = 0 x ∈ ∂Ω,
(4.9)

Then, for each λ ∈]0, λ∗[, the problem (4.9) admits at least two distinct weak solutions, where λ∗ introduced
in the statement of Corollary 4.3.

In fact, if N < 8, then p∗ = 2N
N−4 > 4. Hence (f1) is satisfied, and for (f5) we have

F (u) =

∫ u

0

(1 + t3)dt = u +
1

4
u4.

If we put θ = 3 and t0 = 2 then (f5) is satisfied too.
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