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abstract: We find a geometric invariant of the curve-surface pairs on Willmore functions with the mean
and Gauss curvatures. Similar to the work in [5,19], in this work, we define Willmore functions on curve–
surface pair and give new characterizations about Willmore functions with necessary and sufficient condition
with strip theory in Euclidean 3-space for the first time. In this paper Willmore function on curvatures of the
curve-surface pair under Möbiüs transformation is provided invariant.
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1. Introduction

Möbiüs differential geometry is a classical subject that was extensively developed in the nineteenth
and early twntieth centuries, culminating with the publication of Blascke’s Vorlesungen über Differen-
tialgeometrie III:Differentialgeometrie der Kreise und Kugeln [3] in 1929.

In 3-dimensional Euclidean Space, a regular curve is described by its curvatures k1 and k2 and also a
curve-surface pair is described by its curvatures kn, kg and tr. The relations between the curvatures of
a curve-surface pair and the curvatures of the curve can be seen in many differential books and papers.
Möbius transformations are the automorphisms of the extended complex plane C∞ : C ∪ {∞} , that is
the metamorphic bijections [24]. M : C∞ → C∞. A möbius transformation M has the form

M (z) =
az + b

cz + d
; a, b, c, d ∈ C and

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0. (1)

The set of all Möbius transformations is a group under composition. The Möbius transformation with
c = 0 form the subgroup of similarities. such transformations have the form

S(Z) = AZ + B; A, B ∈ C, A 6= 0. (2)

The transformation J(Z) = 1
Z

is called an inversion. Every Möbius transformation M of the form (2) is
a composition of finitely many similarities and inversions [5,9].

Several authors includinf Fubini [21], Thomsen[22] and White [23] have proven that the two form
H2 − KdA is Möbiüs invariant. It is called Willmore functional [5,19].

In this paper we provide that Willmore function on curve-surface of the curve-surface pair under
Möbiüs transformation is invariant.
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2. The Curve-Surface pairs

In this section, we give some basic definitions from differential geometry and curve-surface pairs

Definition 2.1. Let M and α be a surface in E3and a curve in M ⊂ E3. We define a surface element of
M is the part of a tangent plane at the neighbour of the point. The locus of these surface element along
the curve α is called a curve-surface pair and is shown as (α, M).

Definition 2.2. Let
{−→

t , −→n ,
−→
b

}

and
{−→

ξ , −→η ,
−→
ζ

}

be the curve and curve-surface pair’s vector fields .

The curve-surface pair’s tangent vector field, normal vector field and binormal vector field is given by−→
t =

−→
ξ ,

−→
ζ =

−→
N and −→η =

−→
ζ Λ

−→
ξ [7, 10 − 18].

2.0.1. Curvatures of the curve-surface pair and Curvatures of the Curve. Let kn = −b, kg = c, tr = a be
the normal curvature, the geodesic curvature, the geodesic torsion of the strip [7, 10 − 18].

Let
{−→

ξ , −→η ,
−→
ζ

}

be the curve-surface pair’s vector fields on α. Then we have

ξ́ = cη − bζ
ή = −cξ + aζ
ζ́ = bξ − aη

. (3)

We know that a curve α has two curvatures κ and τ . A curve has a strip and a strip has three
curvatures kn, kg and tr. Let kn, kg and tr be the -b, c, a [4, 6]. From (3) we have ξ´ = cη − bζ. If we

substitude
−→
ξ =

−→
t in last equation, we obtain

ξ´ = κn

and

b = −κ sin ϕ (4)

c = κ cos ϕ

[7, 8, 10 − 18]. From last two equations we obtain,

κ2 = b2 + c2.

This equation is a relation between the curvature κ of a curve α and normal curvature and geodesic
curvature of a curve-surface pair [4, 5, 7, 10 − 18].

By using similar operations, we obtain a new equation as follows

τ = a +
b´c − bc´

b2 + c2

([4, 5, 7, 10 − 18]). This equation is a relation between τ (torsion or second curvature of α) and a, b, c
curvatures of a curve-surface pair that belongs to the curve α.

And also we can write

a = ϕ´+ τ .

The special case: ıf ϕ =constant, then ϕ´ = 0. So the equation is a = τ. That is, if the angle is
constant, then torsion of the curve-surface pair is equal to torsion of the curve.

Definition 2.3. Let α be a curve in M ⊂ E3. If the geodesic curvature (torsion) of the curve α is equal
to zero, then the curve-surface pair (α, M) is called a curvature curve-surface pair [4, 5, 7, 10 − 18].
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2.1. Willmore Function on Curvatures of the Curve-Surface Pair Under Möbiüs

The most outstanding problem in Möbiüs differential geometry is the Willmore Conjecture [5,19].
This conjecture is most naturally formulated in terms of surfaces in R3 rather than S3. Let f : M2 → R3

be a compact surface immersed in R3[5,19]. Let κ and τ denote principal curvatures of f, H = (κ + τ )/2
and K = κτ denote the mean and Gauss curvatures of f, respectively [5,19]. In 1965 Willmore [5,19]
proposed the study of the functional. So it can be written τ(f, M2) on the curve surface pair

τ(f, M2) =

∫

M2

[√
b2 + c2 +

(

a + b´c−bc´

b2+c2

)]2

2
dA

where dA is the area form on (f, M2) induced by the immersion f. Several authors includinf Fubini
[21], Thomsen[22] and White [23] have proven that the two form H2 − KdA is Möbiüs invariant. It
so-called Willmore functional. Now it is:

W (f, M2) =

∫

M2











[√
b2 + c2 +

(

a + b´c−bc´

b2+c2

)]2

2
−

√

b2 + c2

(

a +
b´c − bc´

b2 + c2

)











dA

is Möbiüs invariant on curve-surface pair. Thus the Gauss-Bonnet Theorem states that

∫

M2

√

b2 + c2

(

a +
b´c − bc´

b2 + c2

)

dA = 2πχ(f, M2)

, where χ(f, M2) is the Euler characteristic of (f, M2),we have

W (f, M2) =

∫

M2











[√
b2 + c2 +

(

a + b´c−bc´

b2+c2

)]2

2
−

√

b2 + c2

(

a +
b´c − bc´

b2 + c2

)











dA = τ (f, M2) − 2πχ(f, M2)

and then τ (f, M2) = W (f, M2) + 2πχ(f, M2) is also Möbiüs invariant. Note that

[√
b2 + c2 +

(

a + b´c−bc´

b2+c2

)]2

2
−

√

b2 + c2

(

a +
b´c − bc´

b2 + c2

)

=
1

4

[

√

b2 + c2 − a +
b´c − bc´

b2 + c2

]2

so the Willmore funtional on curve-surface pair has the property that its integrand is non-negative,

it vanishes at umbilic point where
√

b2 + c2 = a + b´c−bc´

b2+c2 .
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