

1 Introduction

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2022 (40)** : 1–4. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.46768

Willmore Function on Curvatures of The Curve-Surface Pair Under Mobius Transformation*

Filiz Ertem Kaya

ABSTRACT: We find a geometric invariant of the curve-surface pairs on Willmore functions with the mean and Gauss curvatures. Similar to the work in [5,19], in this work, we define Willmore functions on curve– surface pair and give new characterizations about Willmore functions with necessary and sufficient condition with strip theory in Euclidean 3-space for the first time. In this paper Willmore function on curvatures of the curve-surface pair under Möbiüs transformation is provided invariant.

Key Words: Curve-surface pair, mobius transformation, curvature, Willmore function.

Contents

2	The Curve-Surface pairs			2
		2.0.1	Curvatures of the curve-surface pair and Curvatures of the Curve	2
	2.1	1 Willmore Function on Curvatures of the Curve-Surface Pair Under Möbiüs		3

1. Introduction

Möbiüs differential geometry is a classical subject that was extensively developed in the nineteenth and early twntieth centuries, culminating with the publication of *Blascke's Vorlesungen über Differentialgeometrie III:Differentialgeometrie der Kreise und Kugeln* [3] in 1929.

In 3-dimensional Euclidean Space, a regular curve is described by its curvatures k_1 and k_2 and also a curve-surface pair is described by its curvatures k_n , k_g and t_r . The relations between the curvatures of a curve-surface pair and the curvatures of the curve can be seen in many differential books and papers. Möbius transformations are the automorphisms of the extended complex plane $\mathbb{C}_{\infty} : \mathbb{C} \cup \{\infty\}$, that is the metamorphic bijections [24]. $\mathbb{M} : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$. A möbius transformation \mathbb{M} has the form

$$\mathbb{M}(z) = \frac{az+b}{cz+d}; a, b, c, d \in \mathbb{C} \text{ and } \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$
(1)

The set of all Möbius transformations is a group under composition. The Möbius transformation with c = 0 form the subgroup of similarities. such transformations have the form

$$S(Z) = AZ + B; A, B \in \mathbb{C}, A \neq 0.$$
⁽²⁾

The transformation $J(Z) = \frac{1}{Z}$ is called an inversion. Every Möbius transformation \mathbb{M} of the form (2) is a composition of finitely many similarities and inversions [5,9].

Several authors includinf Fubini [21], Thomsen[22] and White [23] have proven that the two form $H^2 - K dA$ is Möbiüs invariant. It is called Willmore functional [5,19].

In this paper we provide that Willmore function on curve-surface of the curve-surface pair under Möbiüs transformation is invariant.

2010 Mathematics Subject Classification: 53A04,53A05.

1

^{*} This paper is in final form and no version of it will be submitted for publication elsewhere.

Submitted February 26, 2019. Published December 09, 2019

F. E. KAYA

2. The Curve-Surface pairs

In this section, we give some basic definitions from differential geometry and curve-surface pairs

Definition 2.1. Let M and α be a surface in E^3 and a curve in $M \subset E^3$. We define a surface element of M is the part of a tangent plane at the neighbour of the point. The locus of these surface element along the curve α is called a curve-surface pair and is shown as (α, M) .

Definition 2.2. Let $\{\vec{t}, \vec{n}, \vec{b}\}$ and $\{\vec{\xi}, \vec{\eta}, \vec{\zeta}\}$ be the curve and curve-surface pair's vector fields. The curve-surface pair's tangent vector field, normal vector field and binormal vector field is given by $\vec{t} = \vec{\xi}, \vec{\zeta} = \vec{N}$ and $\vec{\eta} = \vec{\zeta} \Lambda \vec{\xi}$ [7,10–18].

2.0.1. Curvatures of the curve-surface pair and Curvatures of the Curve. Let $k_n = -b$, $k_g = c$, $t_r = a$ be the normal curvature, the geodesic curvature, the geodesic torsion of the strip [7, 10 - 18].

Let $\left\{\overrightarrow{\xi}, \overrightarrow{\eta}, \overrightarrow{\zeta}\right\}$ be the curve-surface pair's vector fields on α . Then we have

$$\begin{aligned} \xi' &= c\eta - b\zeta \\ \eta' &= -c\xi + a\zeta \\ \zeta' &= b\xi - a\eta \end{aligned}$$
(3)

We know that a curve α has two curvatures κ and τ . A curve has a strip and a strip has three curvatures k_n, k_g and t_r . Let k_n, k_g and t_r be the -b, c, a [4,6]. From (3) we have $\dot{\xi} = c\eta - b\zeta$. If we substitude $\vec{\xi} = \vec{t}$ in last equation, we obtain

 $\dot{\xi} = \kappa n$

and

$$b = -\kappa \sin \varphi \tag{4}$$

$$c = \kappa \cos \varphi$$

[7, 8, 10 - 18]. From last two equations we obtain,

$$\kappa^2 = b^2 + c^2$$

This equation is a relation between the curvature κ of a curve α and normal curvature and geodesic curvature of a curve-surface pair [4, 5, 7, 10 - 18].

By using similar operations, we obtain a new equation as follows

$$\tau = a + \frac{\acute{bc} - b\acute{c}}{b^2 + c^2}$$

([4, 5, 7, 10 - 18]). This equation is a relation between τ (torsion or second curvature of α) and a, b, c curvatures of a curve-surface pair that belongs to the curve α .

And also we can write

$$a = \varphi + \tau.$$

The special case: if $\varphi = \text{constant}$, then $\varphi = 0$. So the equation is $a = \tau$. That is, if the angle is constant, then torsion of the curve-surface pair is equal to torsion of the curve.

Definition 2.3. Let α be a curve in $M \subset E^3$. If the geodesic curvature (torsion) of the curve α is equal to zero, then the curve-surface pair (α, M) is called a curvature curve-surface pair [4, 5, 7, 10 - 18].

Willmore Function on Curvatures of The Curve-Surface Pair Under Mobius Transformation 3

2.1. Willmore Function on Curvatures of the Curve-Surface Pair Under Möbiüs

The most outstanding problem in Möbiüs differential geometry is the Willmore Conjecture [5,19]. This conjecture is most naturally formulated in terms of surfaces in \mathbb{R}^3 rather than S^3 . Let $f: \mathbb{M}^2 \to \mathbb{R}^3$ be a compact surface immersed in \mathbb{R}^3 [5,19]. Let κ and τ denote principal curvatures of $f, H = (\kappa + \tau)/2$ and $K = \kappa \tau$ denote the mean and Gauss curvatures of f, respectively [5,19]. In 1965 Willmore [5,19] proposed the study of the functional. So it can be written $\tau(f, \mathbb{M}^2)$ on the curve surface pair

$$\tau(f, M^2) = \int_{M^2} \frac{\left[\sqrt{b^2 + c^2} + \left(a + \frac{bc - bc}{b^2 + c^2}\right)\right]^2}{2} dA$$

where dA is the area form on (f, M^2) induced by the immersion f. Several authors includinf Fubini [21], Thomsen[22] and White [23] have proven that the two form $H^2 - K dA$ is Möbiüs invariant. It so-called Willmore functional. Now it is:

$$W(f, M^2) = \int_{M^2} \left\{ \frac{\left[\sqrt{b^2 + c^2} + \left(a + \frac{\dot{bc} - b\dot{c}}{b^2 + c^2}\right)\right]^2}{2} - \sqrt{b^2 + c^2} \left(a + \frac{\dot{bc} - b\dot{c}}{b^2 + c^2}\right) \right\} dA$$

is Möbiüs invariant on curve-surface pair. Thus the Gauss-Bonnet Theorem states that

$$\int_{M^2} \sqrt{b^2 + c^2} \left(a + \frac{\acute{bc} - b\acute{c}}{b^2 + c^2} \right) dA = 2\pi\chi(f, M^2)$$

, where $\chi(f,M^2)$ is the Euler characteristic of $(f,M^2),$ we have

$$W(f, M^2) = \int_{M^2} \left\{ \frac{\left[\sqrt{b^2 + c^2} + \left(a + \frac{\dot{bc} - bc}{b^2 + c^2}\right)\right]^2}{2} - \sqrt{b^2 + c^2} \left(a + \frac{\dot{bc} - bc}{b^2 + c^2}\right) \right\} dA = \tau(f, M^2) - 2\pi\chi(f, M^2)$$

and then $\tau(f, M^2) = W(f, M^2) + 2\pi\chi(f, M^2)$ is also Möbiüs invariant. Note that

$$\frac{\left[\sqrt{b^2 + c^2} + \left(a + \frac{bc - bc}{b^2 + c^2}\right)\right]^2}{2} - \sqrt{b^2 + c^2} \left(a + \frac{bc - bc}{b^2 + c^2}\right) = \frac{1}{4} \left[\sqrt{b^2 + c^2} - a + \frac{bc - bc}{b^2 + c^2}\right]^2$$

so the Willmore functional on curve-surface pair has the property that its integrand is non-negative, it vanishes at umbilic point where $\sqrt{b^2 + c^2} = a + \frac{bc - bc}{b^2 + c^2}$.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to express their sincere gratitude to the referees for valuable suggestions to improve the paper.

References

- 1. A. Beardon, The Geometry Discrete Groups Springer-Verlag, 9-81p., Berlin 1983.
- 2. W. Blaschke, "Vorlesungen Über Differential Geometrie I" Band I, Verlag Von Julius Springer in Berlin, 1945.
- 3. W. Blaschke, "Vorlesungen Über Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln", Grundlehren XXIX, Springer in Berlin 1929.
- 4. A. D. Brannon, M. F. Esplen, J. J. Gray, 1999. Geometry. Cambridge University, Australia.

F. E. KAYA

- Udo Hertrich-Jeromin, Introduction to Möbiüs differential Geomery, (London mathematical Society lecture Notes series, vol.300, Cambridge University Press, UK) Bulletin (New Series) of the American Mathematical Society, Volume 42, Number 4, Pages 549-554, 2003.
- 6. H. Hilmi Hacısalihoğ, Differential Geometry, Ankara Uni. Science Fac. Pub., Volume I-II. Ankara, Türkiye, 1993.
- 7. H. Hilmi Hacısalihoğ, "On The Relations Between The Higher Curvatures Of A Curve and A Strip", Communications de la Faculté des Sciences de Université d'Ankara Serie A1, Tome 31, 1982.
- 8. H. Gluck, 1966. "Higher Curvatures of Curves in Eucliden Space", Amer. Math. Montly. 73, pp: 699-704.
- N. Y. Özgür, "Elipses and Harmonic Möbius Transformations", Na. Şt. niv. Ovidius Constanta, Vol 18 (2), 2010, 201-208.
- Filiz Ertem Kaya, Yusuf Yaylı, H. Hilmi Hacısalihoğlu, 'Harmonic Curvature of a Strip in E³', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 2, Pages 1-14, ISSN 1303-5991. DOI 10.1501Commual_000000659, 2010.
- Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoğlu, 'A characterization of cylindrical helix strip in ', Commun. Fac. Sci. Univ. Ank. Series A1, Volume 59, Number 1, Pages 37-51, ISSN 1303-5991. DOI 10.1501Commual_000000655, 2010.
- Filiz Ertem Kaya, Y. Yaylı, H. Hilmi Hacısalihoğlu, 'The Conical Helix Strip in ', Int. J. Pure Appl. Math. Volume 66, No(2), Pages 145-156, 2011.
- 13. Filiz Ertem Kaya, 'Harmonic curvature of the curve-surface pair under Möbius Transformation', International Journal of Physical Sciences, Vol. 8(7), June, 2013, DOI: 10.5897/IJPS2013.3933, ISSN 1992-1950 Academic Journals, © 2013.
- Filiz Ertem Kaya, 'Terquem Theorem with the Spherical helix Strip', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, Science Publishing Group, DOI: 10.11648/j.pamj.s.2015040102.12, ISSN Print: 2326-9790 ISSN Online: 2326-9812, January 2015.
- Filiz Ertem Kaya, 'On involute and evolute of the Curve and Curve-Surface Pair in Eucledean 3-Space', Pure and Applied Mathematics Journal, Applications of Geometry, Vol. 4, Issue Number 1-2, pp:6-9, Science Publishing Group, DOI: 10.11648/j.pamj.s.2015040102.11, January 2015.
- Filiz Ertem Kaya, A Special Characterization for Joachimsthal and Terquem Type Theorems, International Journal of science and Engineering Investigations, Vol. 6, Issue 61, , pp. 126-131, Paper ID: 66117-17, ISSN: 2251-8843 February 2017.
- Filiz Ertem Kaya, Finding Energy of the Slant Helix Strip by Using Classic Energy Methods on Joachimsthal Theorem, Pure and Applied Mathematics Journal. Special Issue:Advanced Mathematics and Geometry. Vol. 6, No. 3-1, pp. 1-5. Science Publishing Group, doi: 10.11648/j.pamj.s.2017060301.11, 2017.
- Filiz Ertem Kaya, Y. Yaylı, 'Developable Curve-Surface Pair and Spherical Representations By Bishop Frame', Appl. Comput. Math. An International Journal, V.16, N.3, , pp.228-239, Z. Khalilov 23, AZ1148, Baku, Azerbaijan, 2017.
- T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. Al. I. Cusa Iasi, N. Ser., Sect. Ia Mat. 11B, 493-496. MR0202066 (34:1940) 1965.
- T. E. Cecil, Introduction to Möbiüs Differential Geometry, Bulletin (New Series) of the American mathematical Society, Volume 42, BNumber 4, Pages 549-554.on July 1, 2005.
- 21. G. Fubini, Applicabilita projettiva di due sperficie, Palermo Rend. 41, 135-162, 1916.
- 22. G. Thomsen, ÜberkonformeGeometriel: GrundlagenderkonformenFlächentheorie, Hamb. Math. Abh. 3, 31-56, 1923.
- 23. J. H. White, A Global invariant of conformal mapping in space, Proc. Amer. Math. Soc. 38, 162-164, 1973.
- N. Y. Ozgür, C. Ozgür and S. Bulut, On the Images of the Helix under the Möbiüs Transformations, Non Linear Funct. Anal. Appl. 10 (5), 743-749, 2005.

Filiz Ertem Kaya, Department of Mathematics, Faculty of Science and Arts, University of Nigde Omer halisdemir Campus, Nigde, TURKEY. E-mail address: fertem@ohu.edu.tr