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ABSTRACT: The aim of the paper is introduced the composition of the two infinite matrices A = (A\,x) and
F= (fnr) - Further, we determine the a-, 8-, y-duals of new spaces and also construct the basis for the space
é; (F). Additionally, we characterize some matrix classes on the spaces ¢ (F) and f;‘ (F). We also investigate
some geometric properties concerning Banach-Saks type p. Finally we characterize the subclasses K(X :Y)
of compact operators by applying the Hausdorff measure of noncompactness, where X € {Zéo(ﬁ), é;\ (F)} and
Y € {co, ¢, oo, l1,bv}, and 1 < p < oco.
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1. Introduction

Define the sequence (f,,)nen, of Fibonacci numbers given by the linear recurrence relations fo = f1 = 1
and f, = fn-1 + fn-2,mn > 2, where Ny = {0,1,2,...}. Fibonacci numbers have many interesting
properties and applications. For example, the ratio sequences of Fibonacci numbers converges to the
golden ratio which is important in sciences and arts. Also, some basic properties of Fibonacci numbers
are given as follows:

g It 1 VD
im = — =
n—oo  fp 2

S fe=fara—1 (neNy),
k=0

a (golden ratio),

1
> — converges,
k

%
foifor1— f2= (=1 (n>1) (Cassini formula).

Substituting for f,41 in Cassini’s formula yields f2_; + fofn_1 — f2 = (=1)"*1 (see [24]).
Let w be the space of all real-valued sequences. Any vector subspace of w is called a sequence space. By
ls, ¢, co and £, we denote the sets of all bounded, convergent, null and p-absolutely summable sequences,
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respectively. Here and after, we suppose unless stated otherwise that 1 < p < co and g = p/(p—1). Also,
we use the conventions that e = (1,1,...) and e(™ is the sequence whose only non-zero term is 1 in the
nth place for each n € Nj.

Let X and Y be two sequence spaces, and A = (a,)) be an infinite matrix of real numbers a,x, where
n,k € Ng. Then we say that A defines a matrix mapping from X into Y and we denote it by writing
A X — Y if for every sequence © = (zk)ken, € X, the sequence Az = {4, ()} the A-transform
of x, is in Y, where

neNg ?

Ap(x) = Z ankxy for each n € Ny. (1.1)
e

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to oco.
By (X :Y), we denote the class of all matrices A such that A: X — Y. Thus A € (X :Y) if and only
if the series on the right-hand side of (1.1) converges for each n € Ny and every x € X, and we have
Ax €Y for all x € X.

A sequence space X is called an F K-space if it is complete linear metric space with continuous coordinates
pn : X — R, where R denotes the real field and p,(x) = z,, for all x = (z,) € X and every n € Ny. A
BK-space is a normed F K-space, that is, a BK-space is a Banach space with continuous coordinates.

¢, is a BK-space with the norm
1/p
2l = (Z |$k|p>
k

and ¢, ¢ and {, are BK-spaces with the norm ||z||cc = sup |zg].
keNg
A sequence (b,) in a normed space X is called a Schauder basis for X if every x € X, there is a unique

m
x— > apby
n n=0
The matrix domain plays an important role to construct a new sequence space. In studies on the sequence
spaces, generally there are some approaches. Most important of them are determination of topologies,
matrix mappings and inclusion relations. The matrix domain X4 of an infinite matrix A in a sequence
space X is defined by

sequence (ay,) of scalars such that © = )" ayby, ie., — 0, as m — oo.

Xa={r=(2) ew: Az e X}. (1.2)

It is easy to see that X4 is a sequence space whenever X is a sequence space. In the past, several
authors studied matrix transformations on sequence spaces that are the matrix domain of the difference
operator, or of the matrices of some classical methods of summability in different sequence spaces, for
instance we refer to [7,8,9,19,20,21,22,25,28,36,37,38] and references therein. The Hausdorff measure of
non-compactness of linear operators given by infinite matrices in some special classes of sequence spaces
were studied in [1,6,27,29,32].

The «, B and v-duals X, X? and X7 of a sequence space X are respectively defined by

X* = {a=(ag) €Ew:ax = (arxy) € {1 forall == (z;) € X},
XP = {a=(ax) €Ew:azx = (apxy) €Ecs forall = (x3) € X},
X7 = {a=(ag) €Ew:ax = (arxk) € bs forall = (z,) € X},

where c¢s and bs are the spaces of all convergent and bounded series, respectively (see [2,31]).
If X D ¢ is a BK-space and a = (ax) € w, then we write
x| = 1} .

lallx = Sup{ Zakxk

k
Let X and Y be Banach spaces. A linear operator L : X — Y is called compact if its domain is all of X
and for every bounded sequence (z,) in X, the sequence (L(x,)) has a convergent subsequence in Y. We
denote the class of compact operators by K(X :Y).
Let us recall some definitions and well-known results.




ON COMPOSITION OPERATORS OF FIBONACCI MATRIX AND APPLICATIONS.... 3

Definition 1.1. Let (X, d) be a metric space, Q be a bounded subset of X nd B(x,r) = {y € X : d(x,y) <r}.
Then the Hausdorff measure of non-compactness x(Q) of Q is defined by

x(Q) = inf{e> 0:QcC UB(xi,ri),xi eX,rm<e (i=1,2,...,n),n€ N} .
i=1
The following results can be found in [3,26].
If Q,Q; and Q2 are bounded subsets of the metric space (X, d), then we have

x(Q) = 0 if and only if @ is a totally bounded set,
x(Q) = x(Q),

Q1 C Q2 implies x(Q1) < x(Q2),

X(Q1 U Q2) = max {x(Q1), x(Q2)},

X(Q1NQ2) < min {x(Q1), x(Q2)}.

If Q,Q1 and Q4 are bounded subsets of the normed space X, then we have

X(Q1 + Q2) < X(Q1) + x(Q2),
X(Q+ ) =x(Q) for all x € X,
X(AQ) = |A| x(Q) for all A € C.

Definition 1.2. Let X and Y be Banach spaces and x, and xo be Hausdorff measures on X and Y.
Then, the operator L : X — Y is called (x; : X3)-bounded if L(Q) is bounded subset of Y for every subset
Q of X and there exists a positive constant K such that xo(L(Q)) < Kx;1(Q) for every bounded subset
Q of X. If an operator L is (x; : X2)-bounded, then the number

(1Ll (x, vy = INf {K > 0: xo(L(Q)) < Kxy(Q) for all bounded Q C X}

is called (x; : X2)- measure of non-compactness of L. In particular, if x; = X5 = X, then we write ||L||,
instead of || L]y -

The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of
non-compactness, and it can be given as follows:
Let X and Y be Banach spaces and L € B(X :Y). Then the Hausdorff measure of non-compactness
I|IL||x of L can be given by || L||, = x(L(Sx)), where Sx = {z € X : ||z|| = 1} and we have L is compact
if and only if ||L|, = 0. We also have |L|| = sup ||Lz]y.

x€ESx

2. The sequence spaces 62‘(1:"\), (1 <p <o) of non-absolute type

Das and Hazarika [10] introduced the spaces ¢}(F) and ¢*(F) derived by the composition of the two
infinite matrices A and F', and obtain some interesting results in terms of the domain of the product of
two infinite matrices.

In this section we introduce the spaces 62‘(1:"\) and £, (ﬁ) derived by the composition of the two infinite

matrices A and ﬁ, and show that these spaces are the BK-spaces of non-absolute type which are linearly
isomorphic to the spaces ¢, and /., respectively.

We assume throughout this paper that A = (Ag) ken, 18 strictly increasing sequence of positive reals
tending to oo, that is, 0 < A\g < A1 < -+ and Ay — 00, as k — oo.

The sequence spaces é?, and £, of non absolute type have been introduced by Mursaleen and Noman (see
[30]) as follows:

o0 n p
1
6;‘ — {x = (z) Ew: Z o Z(/\k — Ae—1)xg| < oo},
n=0|"" k=0
1 n
0 = Qo= (xy) €w:sup|— Z()\k — Ap—1)Ti| < 00 p .
nel | An (5
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Define the matrix A = (A,x) by

o k=) L 0<k<n,
e 0 , k>n

for all k,n € Ny (see [30,33]). Then, with the notation of (1.2), one can redefine the spaces £) and £3, as
g;‘ = (fp)A and ééo = ([OO)A. N

Let n € Ny and f,, be the nth Fibonacci number. The infinite matrix F = (f,;) was defined by Kara
[18] as follows:

o =1,
.: fo _
fnk- Tt y k—n,
0 , 0<k<n-—1or k>n

for all k,n € Ny. Define the sequence y = (y,,), which will be frequently used, by the F_transform of a
sequence x = (x,), i.e.,

~ To , n= 0
= Fn(x) = fn fn+1
——x, — Ly , n>1.
fn+1 n fn n—1

We employ the technique for obtaining a new sequence space by means of matrix domain. We thus
introduce the sequence spaces /5 (F') and €3, (F) defined as follows:
p
< oo} s

é;(ﬁ)—{x—(xk)EW:Z
L Z()\k — Ap—1) (}{i T — f’}zlxkq) < oo}.
n k=0 1

We use the convention that any term with negative subscript is equal to zero, e.g. Ay =0 and z_; = 0.
With the notation of (1.2), we can redefine the spaces £ (F) and £}, (F) as follows:

n

)\l—n Z (A — Ak—1) <fick Tk — f‘l;;:ll’k—l)

k=0 +1

o (F) —{1’— (zk) Ew: sup

neNg

O(F) = ()= and £, (F) = (62) 5. (2.1)

It is immediate by (2.1) that the sets é;}(ﬁ) and (éo(ﬁ) are linear spaces with coordinatewise addition
and scalar multiplication. On the other hand, we define the matrix E = (e,) for all n,k € Ny by

[()\k - )\k 1) flc+1 ()\k+1 Ak) flc+1:| ’ k< n,
enk 1= = = An) 2 . k=n, (2.2)
0 , k>n.

Then it can be easily seen that

D=3 0 i, Jfen
_/\ Z (A — Ak—1) ( Tk T Tk—1

Srt1

holds for all n € Ny and & = (x) € w which leads us to the fact that

G(F) = (4) and O (F) = (o) - (2:3)

Since E is a triangle, it has a unique inverse E~! = (g,) for all n, k € Ny given by

1
)\kf’”rl (A —Ak— 1)fkfk+1 T =) Fera frre , 0<k<n,
Ink = S _
" (G vy ¥ oy , k=n,
, k>n.
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Further for any sequence x = (x) we define the sequence y = (yx) such that y = Ez, that is,

k—1
1 .
yr = Ep(z )\—{ j JI)L_(AJ+1_>‘)f+2
=0 k f]+1 f]+1
1 fr
+— (A — A\ 2.4
)\k( ¥ g 1)fk+1mk (24)

for all £ € Np.
Now we may begin with the following theorem which is essential in the text.

Theorem 2.1. The sequence spaces 62‘ (ﬁ) and ééo(l:"\) are BK -spaces with the norms

1/p
lall oy = |Ex||p:<Z|En<x>|P> ,

lelloy ) = 1Elloc = sup|Ea(z)].
i neN

Proof. Since (2.3) holds and ¢, and ¢, are BK-spaces with respect to their natural norms and

the matrix E is a triangle, Theorem 4.3.12 of Wilansky [39] gives the fact that é;(ﬁ) and £}, (ﬁ) are
BK-spaces with the given norms.

Remark 2.2. One can easily check that the absolute property is not satisfied by ¢, (F) and ¢ (F), that
is, Hx||£?)(ﬁ) + H|x|||£?)(ﬁ) and ”foéo(ﬁ) + H|x|”£go(ﬁ)' This shows that (3(F) and (3, (F) are sequence

spaces of non-absolute type, where |z| = (Jxg|).

Theorem 2.3. The sequence spaces é;(ﬁ) and ééo(ﬁ) of nmon-absolute type are linearly isomorphic to
the spaces €, and (o, respectively, that is, () (F) =~ ¢, and O (F) =

Proof. To prove the fact é;‘(ﬁ) & (,, we should show the existence of a linear bijection between the
spaces é;}(ﬁ) and ¢,,. Consider the transformation T' defined with the notation of (2.4), from é;(ﬁ) to £,

by Tx =y = Ex € {, for every x € é;‘(ﬁ) Since T has a matrix representation, the linearity of 7' is
clear. Further it is trivial that x = 6 whenever Tx = 6. Hence T is injective.
Further let y € (yx) € {,. Now we define the sequence z = (zx) by

o i = Ni—1)fifin

7=01i= 1

for all & € Ny. It is immediate by the fact that Fx =y € £, that = € é;(ﬁ) Hence T is surjective.

Moreover for every z € é;(ﬁ) we have |[Tz||, = |yll, = || Bz, = ||x||£;(13) which means that 7" is norm

preserving. Consequently 7' is a linear bijection which shows that é;(ﬁ ) and ¢, are linearly isomorphic.
Similarly one can show that (X (F) 2 fo.. So, we omit the details. This concludes the proof.

Theorem 2.4. FExcept the case p = 2, the space é;(ﬁ) is not an inner product space and hence is not a
Hilbert space.

Proof. We have to prove that the space £(F) is the only Hilbert space among the é;}(ﬁ) spaces.
Since the space @‘(ﬁ) is the BK-space with the norm ||x||p(ﬁ) = |Ez||2 by Theorem 2.1 and its norm
2
can be obtained from an inner product, i.e., the equality

2 2
”xH@(ﬁ) = <x,x>1/ (Ew, Ex)l/
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holds for all z € £3(F), the space £3(F) is a Hilbert space, where (-, -), denotes the inner product on fs.
Let us consider the sequences u = (uy) and v = (vi) defined by

1 R —
U = f22+f2 , k=1
2 1 A1 S
3 (1 + E) “ ek 0 B2
1 R —
Ve = f22_ (%ﬁ:g) f2 , k=1,

2 Mt A1 f
f3 [1 (Allfko())fz} + (Azj)\i)fz , k=2

Thus we have Fu = (1,1,0,0,...) and Ev = (1,—1,0,0,...). Therefore it can be easily seen with p # 2
that

o1y 7y + lu = 12y 5y = 87 4 (277) = 2 (Jlul?y 7y + 012y 7))

i.e., the norm || - || o () With p # 2 doesn’t satisfy the parallelogram identity. This means that the norm
P

Il - Hﬁ%(ﬁ) can’t be obtained from an inner product. Hence é;(ﬁ) with p # 2 is not a Hilbert space.
P
Remark 2.5. (A (F) is not an Hilbert space.
. . N/ 3 N/ D .
Theorem 2.6. If 1 < p < q < oo, then the inclusion €, (F) C £y (F) strictly holds.

Proof. Let 1 <p < ¢ < co. Since ¥, C {4, we have K?(ﬁ) C f;‘(ﬁ) Further since the inclusion £, C £,
is strict, there exists a sequence = = (z1) € £, but not in £,. Let us now define the sequence y = (y;) in
terms of the sequence z = (x;) as follows:

0 Dl D] (e [
=L 2 EYEYE I

ERS Tk Jr+1 B
E.(y) = . kZ:O (A — Ak—1) (Jfk—ﬂxk - wk1) =y

which shows that Ey = = € £,\{,,. Hence y € @(ﬁ) but is not in éﬁ(ﬁ) That is to say that the inclusion
@;(ﬁ) C @(1:"\) is strict. This concludes the proof.

Theorem 2.7. The inclusions K?(ﬁ) C c())‘(ﬁ) C c)‘(l:"\) C Kéo(ﬁ) strictly hold.

Proof. It is trivial that the inclusion c(}(ﬁ) C ¢M(F) strictly holds. Let = = (2) € éﬁ(ﬁ) This means

that Fz € ¢,. Since ¢, C ¢y, Ex € ¢y which gives z € cé‘(ﬁ) Hence 62‘(1/7\) C cé‘(ﬁ) holds. Now we have
to show that the inclusion is strict.
Let us define the sequence z = (zy) by

T = (=17 -
J=0i=j—1 (A= Aj—1) (i + 1)/ fifit

for all & € Ny. Then for all n € Ny we have E,(x) = (n + 1)~!/? which shows that Ex is not in £, but is
in cg. Thus the sequence  belongs to the set ¢ (F) \ K;(F). Hence the inclusion @(F) C cQ(F) is strict.
Since ¢ C lo holds, we have ¢*(F) C ¢2 (F). Let us consider the sequence y = (y;,) defined by

LYY N
WL 2 (Aj = Aj—1)fifima
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for all k € No. Then for all n € No we have E,(y) = (=1)" which shows that Ey € fl\c. Thus
y € (X (F)\cMF). Therefore the inclusion ¢*(F) C ¢X (F) is strict. This completes the proof.

Theorem 2.8. The inclusion ¢ C Kéo(ﬁ) strictly holds.
Proof. Let x = (x1) € {o. Then we have

%[y (7 = sup [En(z)| = sup
i n€Ng n€Ng

sl <2 for all k € Ny, one can see that

1 n
)\—nz (A — Ak—1)
=0

Since f

el s 7 < 4l12lloc. sup < 4]l

neNy

Hence the inclusion ¢, C ééo(ﬁ) holds.
Now let us consider ¢ = (i) defined by

1 , k=0,
tk = k
f]3+1 (Z] 1f_7f7+1 +1) ) kZ].

Then we obtain E,(t) = 1 for all n € Ny which leads to the fact that t € £2 (F)\loo

loo C X (F) is strict. This completes the proof.
Theorem 2.9. If the inclusion £, C @(1:"\) holds, then (1/X\,) € £

1 fr Jrg1
EZ (A — Ap—1) ( Ty — A Th—1

. Hence the inclusion

0) _

Proof. Let us assume that the inclusion ¢, C K;(ﬁ ) holds and consider the sequence e(®) =
{1,0,0,0,...} € £,. Then we have e(®) € é;(ﬁ) by our assumption and hence Ee(®) € ¢,. We have

E, () = (3X\o — 2\1) /A, and therefore we obtain

Z‘E ( O) )’ |3)\0—2/\1|”Z (%ﬂ)p < o0

which implies that (1/A,,) € £,. This completes the proof.

Lemma 2.10. [30] If (1/\,,) € {1, then M = sup E w < 0.
n€No n=k

Theorem 2.11. If (1/\,) € {1, then the inclusion £, C éﬁ(ﬁ) strictly holds.

Proof. Let x = (xy) € ¢, with p > 1. Then by applying Hélder’s inequality we have

= () (A f?«?x“ﬂ
< l = ()\k - )\k1>
k=0 An

P Zn: <)\k —/\k—l)
k=0 A

.

which gives
Tk o Jra1
Jr—1 fr

xk_l‘ .

By Lemma 2.10 we have

. fk+1 b
w)|p<zM‘— Ty — Th—1

Ix fk+1x 'p i()\k_Ak 1) o
[ pors
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and hence
Hx”;(A) < M2t <Z x| + Z |xk1|p> < M2%||z|)h,.
P % % ?

Therefore ||x|\£;(ﬁ) < 4M*'Y?||z||, < co. This shows that = € é;‘(ﬁ) Hence the inclusion £, C @;(ﬁ) holds

for p > 1.
Now let us consider the sequence v = (vy,) defined by

1
Vg = 2 Ao f
{ L-oon » k2L

Then we have Ev = e(®) € ¢,. Therefore v € é;(ﬁ) \ £p. This means that the inclusion ¢, C 62‘(1:"\) is
strict.
Similarly one can show that the inclusion ¢; C @(ﬁ) also strictly holds.

It is known from Theorem 2.3 of Jarrah and Malkowsky [16] that if T is a triangle then the domain
Ar of T' in a normed sequence space A has a basis if and only if A has a basis. As a direct consequence
of this fact, since the transformation 7" defined from %‘(F) to £p,, is an isomorphism, the inverse image of

the basis {e(k’)}keNO of the space £, is the basis for the new space é;(ﬁ) with 1 < p < oo, we have

Corollary 2.12. Define the sequence b*) = {b;k)}neNo for every fized k € Ny by

0 , n<k,
i f2
k) . __ “hkingl =
b,(l) = N —Ak—1) fr o1 , n=k
Aifmiy Mefn n>k

k=2 D Fefre1 Okr1—M) Fot1frrz
Then the following statements hold:
(i) The space (éo(ﬁ) has no Schauder basis.

ii) The sequence {b(*) is a basis for the space £ F) and every x € 2 F) has a unique represen-
kENg P P
tation of the form x =3 apb®) | where oy, = Ey(z) for all k € Ny.
k

Corollary 2.13. While the space é;,‘(ﬁ) is separable but 02 (F) is not separable.

3. The a-, /- and ~-duals of the spaces é;(ﬁ) and @o(ﬁ)

In this section we determine the «, 5 and 7-duals of the sequence spaces 62‘ (ﬁ) and ééo(l:"\) of non-
absolute type.
We assume throughout that the sequences © = (z3) and y = (yx) are connected by the relation (2.4).
Let A = (an) be an infinite matrix. Now we may begin with quoting the following lemmas which are
required for proving the next theorems.

Lemma 3.1. [35] A = (ank) € (€, : 61) if and only if
(i) For1 <p < o0,

q
sup Z < Q.

Keg =,

§ Ank

nekK

(i) Forp=1,

sup Z |ank| < oo.

keNg n
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Lemma 3.2. [35] The following statements hold:
(i) Let 1 <p < oo. Then, A= (ank) € ({p : ¢) if and only if

li_>m ank exists for each fixed k € Ny, (3.1)
sup Z lank|? < oo. (3.2)
n&eNp k

(i) A= (ank) € (¢1 : ¢) if and only if (3.1) holds and

sup |ank| < 0. (3.3)
n,kENy

(i) A= (ank) € (o : ¢) if and only if

p > el < o
neNp L

lim E
n— o0
k

apk — lim a,k| = 0.
n—oo

Lemma 3.3. [35] Let 1 < p < co. Then the following statements hold:
(i) A= (ank) € (bp : loo) if and only if (3.2) holds.
(i) A= (ank) € (b1 : loo) if and only if (3.3) holds.

Theorem 3.4. Define the sets di and do by

q
dy = a:(ak)ew:supz ank <00y,
Ke?k nek
dy = a=(ar) €Ew: sup bnk| < 00 2,
2 { (ak) keNOj;:| k| }

where the matriz B = (byy) is defined via the sequence a = (a,) € w by

M fn NS
{(Ak*)\k—drflkfk.;_l B (Ak+1ka)ﬁ11fk+2} n o, k<mn,
bk 1= Mef2iy E=n
Ao =Ak—1) fre fot1 ) -
0 , k>n
for all n,k € No. Then [(}(F)]" = dy and [£)(F)]" = di.
Proof. Let a = (a,) € w. Then we immediately derive by (2.4) that
Ty = —1)k—d Jintl any; = By, 3.4
Z Z (=1) Ak — A=) frfrr Y W) (3:4)

k=0 j=k—1

for all n € Ny. Thus we observe by (3.4) that ax = (anz,) € ¢4 when & = (z1) € é;(ﬁ) if and only if
By € {1 when y = (yx) € ¢, i.e., a = (ay,) is in the a-dual of the space é;(ﬁ) if and only if B € (¢, : (1) .
Therefore we see by Lemma 3.1 that a € [@(ﬁ)]a iff

wup 3|3 b

KedF k IneK

q
< 0
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which gives that [é;(ﬁ)} “=d.
Similarly we get from (3.4) that a € [f{‘(ﬁ)]a if and only if B € (¢; : 1) which is equivalent to

sup bni| < o0.
k€N0;| " |

This leads us to the desired result that [@‘(F)] =ds.
Theorem 3.5. Define the sets ds,dy,ds, ds,d7 and dg by

oo
ds = a=(ay) €Ew: Z ajfj2+1 exists for each k € Ny o,
Jj=k+1

dy = <a=(a) Ew: sup Z|ak(n)|q<oo},

ds = <Sa=(ax) Ew: sup

neNy (An_ n—l)fnfn+1

dg = {az(ak) cw: sup l|ag(n)| <oo},

an <oo},

n,keNy

d; = a:(ak)Ew:nlgréogk]ak(n)_aﬂzo}’

a=(ar) €Ew: supZ|a;€ |<oo},

neNp k

dg =

where

- B akfl?ﬂ
ag(n) = A { (A = A1) fr frta

1 1
' { {(/\k M) fifrrr err — A fk+1fk+2] Z fjHaJ}

j=k+1

with k <n and @ = lim_ax(n). Then [A(F)] = ds ndynds, [2(F)]” = ds Nds N dg and [ (F))” =

ds Nd7 Ndg, where 1 < p < oo.
Proof. Let a = (ax) € w and consider the equality

SISy oy M
o EYEVE Al N A
1

NE

AxTk

>
Il

0 j=0 [i=j—1

A { ak'f13+1
g (M — Mo—1) fre o1

k
n

k=0

1 1
’ [()‘k — M) frferr err — M fk+1fk+2] Z fﬁla]}yk

=k+1
. Anfaia -
()\n - )\nfl)fnfnJrl
n—1
_ Anfaia
= ar(n)yr + AnYn
E—0 ( ) ()\n - )\n—l)fnfn—i-l

=T, (y) for all n € Ny,
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where T = (t,,x) is defined by

ar(n) . k<n,

.— Anf727.+1 —
t’l’Lk} T ()\nf)\nfl)fnfn+1 ’ k - n’
0 , k>n

for all n,k € Ny. Then we have azx = (arzy) € cs whenever z = (x) € 62‘(1:"\) if and only if Ty € ¢

whenever y = (yi) € {p. Therefore a = (ay) € [@(ﬁ)]ﬁ if and only if T' € (¢, : ¢) with 1 < p < oo. Then,
we derive by using Lemma 3.2 for 1 < p < oo that

(o]

E ajff_H exists for each k € Ny,
j=k+1
sup g lag(n)|? < oo,
neNy =0

sup An 721“ a
n
neNy (>\n - )\nfl)fnfnJrl

< 00.

Therefore we conclude that [62‘(13‘\)]6 =d3NdyNds for 1 <p < oo.
Similarly, for p = 1 and p = oo we can see by using Parts (ii) and (iii) of Lemma 3.2 that [@‘(ﬁ)}ﬁ =
d3 Nds Ndg and [Zéo(l:"\)] P _ ds Nd7 Ndg. This completes the proof.

Theorem 3.6. Let 1 < p < oo. Then we have [@(ﬁ)]v =ds Ndg and [6;,‘(1:"\)]AY =ds Ndg.

Proof. This is obtained in the similar way used in the proof of Theorem 3.5 with Lemma 3.3 instead
of Lemma 3.2.

4. Some matrix transformations on the sequence spaces é;‘(ﬁ) and (2, (F)

In this section we characterize the classes
((;(ﬁ) : &X,) , (ﬁ;‘(ﬁ) : co) , (é;‘(ﬁ) : c) ,
(zzg(ﬁ) : 41) , (@(ﬁ) : ep) , and (ego(ﬁ) : ep) :

of matrix transformations where 1 < p < oc.
We assume that the sequences z and y are connected by y = Ex. We write for simplicity in notation that

B R
enk(m) = Ak { (A — Me—1) fre fre1

1 B 1 )
+ |:()\k _Ak'—l)fkfk—',-l ()\k—'rl Ak fk+1fk+2:| Z f]—‘rlanj )

=k+1
where k < m and
fl?ﬂank
en, — )\ +
¥ i { (M = A1) fie frt1
1 1
B ) 41
[(Ak =N fefiorr N1 — Ak fkﬂfHJ jzk;rl e -y

for all k,m,n € Ny provided the convergence of the series.
Now we quote the following lemmas which are needed in proving our theorems:
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Lemma 4.1. [35] A= (ank) € (€, : co) if and only if
(i) Forp=1,

lim an, =0 for all k € Ny,
n—0o0

sup |ank| < oc.
n,kENg

(i) For 1 < p < o0, (4.2) holds and

sup Z |ank|? < oo.
neNy k

(iii) For p = oo,
Jim, > lant] =0
k
Lemma 4.2. [35] A = (ank) € (61 :4p) if and only if

oup 3 fankl? < 00
keNp n

Lemma 4.3. [35] Let 1 <p < oo. Then, A= (ank) € (boo : £p) if and only if

up |5

Keg ke K

p
< 0.

Theorem 4.4. Let A = (ank) be an infinite matriz. Then the following statements hold:

(1) Let 1 < p < oo. Then A € ((;(ﬁ) : (DQ) if and only if

o0

Z anjffﬂ exists for each k € Ny,
j=k+1

i
{( kka ank} € ls for each m € Ny,

Ak = Ae—1) frfrt1

sup Z lenk|? < oo,
keNy n

(ank’)keNO S dg N d4 n d5.

(i) A€ (6{‘(13) : (DQ) if and only if (4.3) and (4.4) hold, and

sup |enk| < oo.
n,kENy

(iii) A€ (@O(ﬁ) : 600) if and only if (4.3) and (4.4) hold, and

sup Z lenk| < oo,
keNg n

W}gnooz lenk(m) — enk| = 0.

n

(4.8)
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Proof. (i) Suppose that the conditions (4.3)-(4.6) hold and let x = (zy) € é;,‘(ﬁ) for 1 < p < 0.

Then we have by Theorem 3.5 that (@, )ren, € [é;(ﬁ)]ﬂ for all n € Ny and this implies that Az exists.
Also it is clear that the associated sequence y = (yx) such that Tz = y is in the space £, C co.

Let us now consider the following equality derived from the mth partial sum of the series >, anrai by
using the relation y = Fx :

m m—1 2
Am
kT = enk(m)y + ass A Ym (4.9)
kZ:O kZ:O fmferl()\m - )\mfl)

for all m,n € Ny. By using the conditions (4.3)-(4.5), we obtain from (4.9), as m — oo, that

Zankxk = Z enkyr for all n € Ny. (4.10)
k k

Furthermore E = (en) € (¢p : {oo) by Lemma 3.3, we have Ey € (. Therefore one can see by applying
Holder’s inequality that

1/q 1/p
Z ankxi| < sup Z lenk|? Z lye|” < 00
e nelo \ 7 k

which shows that Az € {. Hence, A € (62‘(1:"\) o).

Conversely suppose that A = (anx) € (é;(ﬁ) i {s), where 1 < p < 0o. Then (ank)ken, € [62(?)]5 for all
B

|[Az[|oc = sup
neNp

n € Ny which implies the necessity of the condition (4.6) with Theorem 3.5. Since (ank)ren, € [é;‘(ﬁ)]
for all n € Ny, (4.10) holds for all x € %‘(ﬁ) and y € £,
Let us now consider the linear functional f,, on é;}(ﬁ) by

fulz) = Zankxk for all n € Ny.
k

Then, since /) (F) and ¢, are norm isomorphic, it should follow with (4.10) that

1/q
| full = | Enllg = <Z |enk|q> for all n € Ny,
k

where E,, = (enk)keNo €ly.

This just show that the functional defined by the rows of A on €;‘(ﬁ) are pointwise bounded. Then, we
deduce by Banach-Steinhaus Theorem that these functionals are uniformly bounded. Hence there exists
a constant M > 0 such that || f,|| < M for all n € Ny which gives us sup,ey, >, |enk|? < 00.

This completes the proof of Part (i).

Similarly, Parts (ii) and (iii) can be proved by Parts (i) and (ii) of Lemma 3.3.

Theorem 4.5. Let A = (ank) be an infinite matriz. Then the following statements hold:
(i) Ae (6{‘(13) : c) if and only if (4.3) and (4.4) hold, and
1i_>m enk = i for all k € Ny. (4.11)
(#) Let 1 <p < oo. Then A € (Zi,‘(ﬁ) : c) if and only if (4.3)-(4.6) and (4.11) hold.
(ii) A € (éé‘o(ﬁ) : c) if and only if (4.3), (4.4) and (4.8) hold, and

lim Z leny — ag| = 0.
n— oo k‘
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Proof. Assume that A satisfies the conditions (4.3)-(4.6) and (4.11), and = € (;(ﬁ), where 1 < p < oc.
Then Az exists and by using (4.11), we have for every k € Ny that |e,x|? — |ax|?, as n — oo, which
leads us with (4.5) to the following inequality

k k
D oyl < sup Y ens|T = M < o0
=0 "ENOJ’:O

which holds for every k € Ng. This shows that (o) € £,4. Since = € é;‘(ﬁ), we have y € £,. Therefore by
Hoélder’s inequality we derive that (agyx) € ¢4 for each y € £,,.
Now for any given € > 0, choose a fixed ky € Ny such that

o 1/p
P _°
( Z |yk|> §4M1/q'

k=ko+1
Then it follows from (4.11) that there is mg € Ny such that

ko

> (enk — ar) v

k=0

<§ for all n > ng.

Therefore by using (4.10), we get for all n > ng that

E ank’xk’_g ALYk
k k

> (enk — an) vk

k
k’g o0
<D (enr —ar)ur| | D (enk — ar) uk
k=0 k=ko+1
00 1/q oo 1/p
€
SEIDY (|enk|+|ak|>q] l > |yk|p]
k=ko+1 k=ko+1
0o 1/q 00 1/q
€ € q q
<§+m ( Z |€nk|> +< Z |Oék|>
k=ko+1 k=ko+1
<fh oMY
2 4M1/a '

Hence Ay (z) = Y, aryr, as n — oo, which means that Az € cie. A€ (é;,‘(ﬁ) : c) .

Conversely let A € (ég(ﬁ) : c) with 1 < p < oo. Since ¢ C lo, we have A € (é;(ﬁ) : 600) . Thus, the

necessity of the conditions (4.3)-(4.6) is immediately obtained by Theorem 4.4, which together imply that
(4.10) holds for all x € %‘(ﬁ) Since Ax € ¢ by the hypothesis, we get by (4.10) that Ey € ¢ which means
that E = (enr) € (¢p : ¢) . The necessity of (4.11) is immediate by Lemma 3.2. This completes the proof
of Part (i).

Since Parts (i) and (iii) can be proved similarly, we omit their proof.

Theorem 4.6. Let A = (ank) be an infinite matriz. Then the following statements hold:
(i) Ae (éi‘(ﬁ) : co) if and only if (4.3) and (4.4) hold, and

1i_>m enk = 0 for all k € Ny. (4.12)

(i) Let 1 <p < oo. Then A € (é;‘(ﬁ) : co) if and only if (4.3)-(4.6) and (4.12) hold.
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(ii) A € (éé‘o(ﬁ) : co) if and only if (4.3), (4.4) and (4.8) hold, and
nl;rr;oz lenk] = 0.
k
Proof. It is natural that Theorem 4.6 can be proved in the same method used in the proof of Theorem

4.5 with Lemma 3.2 and so we omit the detail.

Theorem 4.7. Let A = (ank) be an infinite matriz. Then the following statements hold:

(i) Ae (éi‘(ﬁ) : 81) if and only if (4.3), (4.4) and (4.7) hold, and

sup Z lenk] < 0.

neNp n

(i1) Let 1 < p < oo. Then A € ((;‘(ﬁ) : él) if and only if (4.3)-(4.6) hold, and

q
sup < 0. 4.13
2 (1)

D en

ner

(iii) A€ (ego(ﬁ) : 41) if and only if (4.3), (4-4) and (4.8) hold and

Proof. (ii) Suppose that A satisfies the conditions (4.3)-(4.6) and (4.13) and take any x € é;(ﬁ)
with 1 < p < co. We have by Theorem 3.5 that (ank)kren, € [62‘(13‘\)}'8 for all n € Ny and this implies
that Az exists. Besides it follows by combining (4.13) with Lemma 3.1 that E € (¢, : £1) and so we have
Ey € ¢;. Also we derive from (4.3)-(4.6) that the relation (4.10) holds which yields that Ay € ¢; and so
A (BF):tr).

Conversely assume that A € (é;(ﬁ) : (1) with 1 < p < o0o. Since 1 C lo, we get A € (é;(ﬁ) :éoo)
Thus Theorem 4.4 implies the necessity of the conditions (4.3)-(4.6) which leads to the relation (4.10).
Since Az € {1, we deduce by (4.10) that Fy € ¢; which means E € (¢, : ¢1). Now the necessity of (4.13)
is immediate by Lemma 3.1. This completes the proof of Part (ii).

Parts (i) and (iii) can be proved in the similar way, so we omit the details.

Theorem 4.8. A = (ayi) € ((%(ﬁ) :ép) if and only if (4.3), (4.4) hold, and

P
sup enk| < 00. 4.14
b En |enk] ( )

Proof. Suppose that the conditions (4.3), (4.4) and (4.14) hold and take x € é{‘(ﬁ) Then we have

by Theorem 3.5 that (ank)ren, € [@‘(ﬁ)]ﬁ for all n € Ny which implies that Az exists. From (4.14), we
have

1/p
sup |enk| < sup Z lenk|” < oo for each n &€ Np.
keNg keNg n
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Hence ) |enk| absolutely converges for each fixed n € Ny. Since (4.3) and (4.4) hold, therefore as m — oo
n (4.9), the relation (4.10) holds. Thus by applying Minkowski’s inequality and using (4.10) and (4.14)

we obtain that
p\ 1/p p\ 1/p 1/p
<Z > ankai ) = (Z > ennyi ) <> Iyl (Z |enk|p> <00
n k n k k n

which means Az € £, that is, A = (ank) € (Zi‘(ﬁ) : €p) .

Conversely let A € (Z{‘(ﬁ) : €p) . Since ¢, C o, A € (6{‘(?) : éoo) . Thus Theorem 4.4 gives the

necessity of (4.3) and (4.4) by the relation (4.10). Since Ax € ¢,, we deduce by (4.10) that Ey € £, which
means E € ({1 : £,). Now the necessity of (4.14) is immediate by Lemma 4.2. This step completes the
proof.

Theorem 4.9. Let 1 <p < co. Then A = (ank) € ((éo(ﬁ) : Kp) if and only if (4.3) and (4.4) hold, and

Z lenk| converges for all n € Ny,

k

P
sup E enk| < 00.
KedF ) keK

Proof. This is obtained in the same way as done in Theorem 4.8 by Lemma 4.3. So we omit the
details.

Lemma 4.10. [},5] Let X andY be any two sequence spaces, A be an infinite matriz and B be a triangle.
Then A€ (X :Yg) if and only if BA€ (X :Y).

Corollary 4.11. Let A = (ank) be an infinite matric and define the matric C = (cqr) by

R PN fio  fimn
Cnk = \ ;(A’L )\171) <fi+1alk f1 azl,k)

n .
(2

for all n,k € Ng. By applying Lemma /.10 we get A belongs to any one of the classes (co : (;(ﬁ)) ,
(c : éf,‘(ﬁ)) , (éoo : ﬁz(ﬁ)) , ((1 : éé‘(ﬁ)) , (ép : ﬁi‘(ﬁ)) and (ép : éé‘o(ﬁ)) if and only if the matriz C
belongs to the classes (co : lp), (c:€p), (boo 1 Lp), (b1:4p), (by: 1) and (€ : Ls), Tespectively, where
1<p<oc

Corollary 4.12. Let A = (an) be an infinite matriz and define the matriz C' = (c,,;.) by

n

1 i i
e = N Z ()\; — /\2_1) ( / i — ffl a¢_17k) ; (n,k € Np).

ni—0 fi+1 fz

Then the necessary and sufficient conditions such that A belongs to any one of the classes ((; (13) 2 (13)),

((;(ﬁ):cx(ﬁ)), ((;(ﬁ):cx(ﬁ)), (e;(ﬁ):@’(ﬁ)), (@(ﬁ):eg’(ﬁ)) and (ego(ﬁ):eg’(ﬁ)), where
1 < p < oo are obtained from the respective Theorems 4.4 to 4.9 by replacing the entries of matriz A
by those of C and N = (/\;) is a strictly increasing sequence of positive reals tending to infinity and
E = (eqk) is a triangle defined by (2.2) with \' instead of .

5. Some geometric properties of 62‘(1:"\), (1<p<oo)

In this section we study some geometric properties of the space é;‘(ﬁ), where 1 < p < o0.
A Banach space X is said to have the Banach-Saks property if every bounded sequence (z,,) in X admits
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a subsequence (z,) such that the sequence Cj(z) is convergent in the norm of X, (see [11]), where
Ci(z) = (t,) defined by

(20 + 214+ 2n)

ty, =

n+1

for all n € Ng.
A Banach space X is said to have the weak Banach-Saks property whenever, given any weakly null
sequence (z,) in X, there exists a subsequence (z,) of (x,) such that the sequence (t,) is strongly
convergent to zero.

Garcia-Falset [14] introduced the following coefficient:

R(X) =sup {11nr21£f lwn — || : (xn) C B(X), x, — 0 weakly, = € B(X)} ,

where B(X) denotes the unit ball of X.
Remark 5.1. [15] A Banach space X with R(X) < 2 has the weak fixed point property.

Let 1 < p < co. A Banach space is said to have the Banach-Saks type p if every weakly null sequence
(x1) has a subsequence (x, ) such that for some C' > 0,

n
>k

=0

< C(n+1)Yn

for all n € Ny (see [23]).
Theorem 5.2. Let 1 < p < oo. The space (;(ﬁ) has Banach-Saks type p.

Proof. Let (e,) be a sequence of positive numbers for which > ° €, < 1/2. Let (z,,) be a weakly
null sequence in B ((2‘(13)) . Let uwg = xp and u; = x,,. Then there exists t; € Ny such that

o0

Z uy (i)e®

1=t +1

< €7.
£(F)

Since (x,,) is a weakly null sequence implies x,, — 0 (coordinatewise), there exists no € Ny such that
t1

Z Zn(i)e®
i=0

where n > ng. Set ug = x,,. Then there exists to > t1 such that

< €1,
0 (F)

[ee]

Z g (i)e®

i=to+1

< €.
O(F)

By using the fact that z,, — 0 with respect to coordinatewise, there exists ng > ng such that

to
Z 2 (i)e®
i=0

< €9,
£(F)

where n > ng3. If we continue this process, we can find two increasing sequences (t;) and (n;) of natural
numbers such that

< €5
0y (F)

tj
Z T (i)e®
i=0
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for each n > n;,, and

Z Uj < €5,
i=t;+1 Z*(ﬁ)
where u; = x,,,;. Hence
n n —t_]fl tj 00
Sl = ST w0 s 3 w0+ 3 e
=0 o F) j=0 | i=0 i=t;_ 141 i=t;+1 o F)

INA

NE
l” 1
I M

IS

+

)

]

7=0 |i=t;_1+1 W\(ﬁ) Jj=0
On the other hand, we have ||x|\p(F < 1. Thus ||x|\p(F < 1 and we have
n 2] n t;
S5 wow)| <%
J=0 \i=t;_1+1 oF) J=0i=t;_1+1
7=0 =0
Therefore
n ty
S5 o) cwiym
j=0 \i=tj—1+1 fé(ﬁ)

By using the fact that 1 < (n + 1)/ for all n € Ny and 1 < p < 0o, we have

u; <(n+DYP+1<2(n+1)7.

0 (F)

j=0
Therefore the space ék( ) has Banach-Saks type p.

Remark 5.3. Note that R (é;(ﬁ)) = R(¢,) = 2"/7, since é;‘(ﬁ) is linearly isomorphic to £,,.
Theorem 5.4. The space KA( ) has the weak fized point property, where 1 < p < oc.

6. Compact operators on the spaces 4;‘(1/7\), (1<p< o)

In this section we establish some estimates for the operator norms and the Hausdorff measures of non-
compactness of certain matrix operators on the spaces /5 (F) and £}, (F). Further by using the Hausdorff
measure of non-compactness, we characterize some classes of compact operators on these spaces.

For our investigations we need the following results:

Theorem 6.1. [26,39] Let X andY be FK spaces. Then (X :Y) C B(X :Y), that is, every A€ (X :Y)
defines a linear operator Ly € B(X :Y), where Lax = Az and © € X.

Theorem 6.2. [27] Let X D ¢ and Y be BK -spaces. Then A € (X : L) if and only if

1415 = sup [[An]x < oo

n&Ng

Furthermore, if A € (X : {) then it follows that ||La|l = || A|l%-
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Theorem 6.3. [25] Let X be a BK -space. Then A € (X : 1) if and only if

*

HAH(X@1 = Sup <Z ank) < 00,
keNp || x

neN
where N s finite. Moreover if A € (X : £1) then ||A[[{x ) < [|Lall < 4] Al|7y.,,)-

Throughout let T' = (t,k)knen, be a triangle, that is, ¢, = 0 for & > n and t,,, # 0 for all n € Ny,
S its inverse and R = S, the transpose of S. We recall the following known results.

Theorem 6.4. [17,39] Let (X, || - ||) be a« BK-space. Then Xr is a BK -space with || - ||z = ||T - ||.

Remark 6.5. [17] The matriz domain X of a normed sequence space X has a basis if and only if X
has a basis.

Theorem 6.6. [17] Let X be a BK -space with AK and R = S*. If a = (ax) € (X7)", then Sagxy =
%
ERk( VT () for all x = (xr) € Xp.

Remark 6.7. [17] The conclusion of Theorem 6.6 holds for X = ¢ and X =l

Theorem 6.8. [26] Let X andY be Banach spaces, Sx ={x € X : ||z| =1}, Kx ={zx € X : ||z|| < 1}
and A € B(X :Y). Then the Hausdorff measure of non-compactness ||Ally of a compact operator A is
given by [|Afly = x (AK) = x (AS).

Furthermore A is compact if and only if ||A||, = 0, (see [26]). The Hausdorff measure of non-
compactness satisfies the inequality || All, < [|A]], (see [26]).

Theorem 6.9. [26] Let X be a Banach space with Schauder basis {e1,e2,...}, Q be a bounded subset of
X and P, : X — X be the projector onto the linear span of {e1,ea,...,en}. Then

4 n—ooco |zeQR n—00

wmwﬁmupm] @<MW$%WHM

where a = limsup ||I — P,||.
n—oo

Theorem 6.10. [34] Let X be any of the spaces £, or ¢y and Q) be a bounded subset of a normed space
X. If P, : X — X is an operator defined by P, (x) = (xo,21,...,2n,0,0,...), then

x@hhmggw—mm)

n—roo

Theorem 6.11. [12] Let X be a normed sequence space and xr and x denote the Hausdorff measures
of non-compactness on Mx, and Mx, the collection of all bounded sets in Xt and X, respectively. Then

xr(Q) = x(T(Q)) for all @ € Mx,.

Lemma 6.12. [26] Let X denote any of the spaces co, ¢ or boo. Then XP =t and |a|ls = ||al|1 for all
a € .

If A = (@nk)k nen is an infinite matrix, and NN is any finite subset of Ny, we write pV) = (b,(CN)) =

keN,
(> ank)ken,- Also, we have a,, = R A, for all n,k € Ny. ’
nenN

Theorem 6.13. [13] Let X be any of the spaces £, with 1 < p < 0o or ¢o. Then the following statements
hold:
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(a) LetY € {co,c,l0}. If A € (X7 :Y), then we put
sup [|Exllq

neNp

sup > [Gnk| )
neNg k

1/q
= sup <Z |Eink|q> . (X =4, for 1 <p<o0),
&

neNp
sup |ang| , (X =10).

k,n€ENg

1Al (xreen)y =
(X - 007600)7

Therefore we have ||La|l = || All(xp:6.0)-

(b) LetY =t1. If A€ (Xp :£1). Then we put

sup ||b(N)||q
N

sup E \EneNanki ) (X = Co,éoo),
NeT k

ol

NeJF \ k

Al i)

Z ank

qy\ 1/a
) ., (X =4, for 1<p<oo)
neN

and
oo
k ~
Al ((e)rie) = sup [ E¥[ly = sup > [kl -
keNg keNo 7 20

If X = {y, then ||Lall = ||All((¢,)7:0,) holds, otherwise we have ||A|l(x,:0,) < | Lall < 4| Al (x7:01)-

By N,., we denote the subset of Ny with the elements that are greater than or equal to r € Ny and
supy, for the supremum taken over finite subset of N,..

Theorem 6.14. [15] Let A = (ank) be an infinite matriz and 1 < p < oo. Then the following statements

hold:
(a) If A e ((Lp)r : co) or A€ ((co)r : o), then we have

Zal = Jim (sup 1B,
7= \neN,
lim (sup Z|Eink|> . (X =co,lx)s
=0 \neN, k

1/q
lim | sup (Z |Zink|q) ] ., (X =4, for 1 <p<o0),

T IneN, \ k

hm<sw @m) L (X =0).

=00 \ neN,.,keN

(b)) If A€ ((Lp)r:¢1) (1 <p<oo)orAe ((co)r: ), then we have

S5

neN,

> 5

<||Lallx <4 lim | sup
T—>00
neN,.

r

lim | sup
T—>00 N'r

q q

if Ae ((01)r : ¢1), then we have

[Lall = lim Lsup <Z @mI)] :

€No n=r
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(c) If A€ ((Lp)r :c) or A€ ((co)r : ¢), then we have
1
~ i E, —adllq ) < [|Laly < i En—alq),
5 Jim <f§1§ I a||q> < [[Lally < lim (535 I a||q>

where o = (ak)keNO with Gpp — Ak, as n — oo, for every k € Ny.

Theorem 6.15. Let A = (ank) be an infinite matriz and define the matric E = (enk)knen by (4.1).
Then the following statements hold:

(a) LetY € {co,c,loc}. If A € (é;‘(ﬁ) : Y) with 1 < p < oo, then we have

sup |kl , (p=00),
neNg k
1/q
||A||(e;(ﬁ):eoo) = sup (Z IGnqu) , (1 <p<o0),
neNg \ k
sup  |dnk| , (p=1).
k,neNg

Then we have || Lall = [ All o7y

(b) If A e (@(ﬁ) : 61) with 1 < p < oo, then we have

NeT k |neN
q\ 1/a
1AW ez (#y:er) = | sup (E > Qnk ) , (I<p<oo),
NeF \ k |neN
sup > [kl , (p=1).
keNg n=0

Then for p=1, || La|l = ”A”(é},(ﬁ):él) holds, otherwise ”A”(é;(ﬁ):él) <|Lall £ 4||A||(£?(ﬁ):41).

Proof. Suppose that A € (é;‘(ﬁ) : Y) . Then we have A,, € [6;,‘(13‘\)]6 for all n € Ny and it follows
from Theorem 6.6 that

An(x) = Z AnkTl = Z Rk(An)Tk(x)
k k

for all z € ¢MF) and n € Ng, where Ry(A,) = > ThiGn; = Y. Sjkan;. Here T = FE and S = E~L.
J J

Therefore we have Ry(A,) = ey for all k,n € Ny.
Proof of Part (a) can be obtained by applying Theorem 6.13. Since the proof of Part (b) is similar to
the proof of Part (a), we omit the details.

Theorem 6.16. Let A = (ank) be an infinite matriz and E = (enk)knen, be defined by (4.1). Then, for
1 <p < o0, we have

(a) If A € (@(ﬁ) : co) , then we have

lim (supz|ank|) . (p=o0),

=0 \neN, k

1/q
[Lally =< Jim (SUP (ijlanqu> ) . (1<p<o0),

=00 \ neN,

700\ n>r k>0

lim [ sup |ank|> (=1
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(b) If A € (ﬁg(ﬁ) : él) with 1 < p < oo, then we have

SR

neN,.

> E

neN,.

lim | sup
T—00 N,

< [[Zall <4 lim | sup

r

q q

If A e (éi‘(ﬁ) : 61) , then we have

L = lim |su an, .
[Lallx = lim L@Ifo <Z| k|>1

n=r

(c) If A e (@(ﬁ) : c) , then we have

1 . ~ . ~
3 1 (s 12, -4l ) < Ll < tin (s 15, - al, )
T—00 neN,.

T—00 neN,.

where & = (Qk) ey With Qy = nh_{lgo ank for all k € Ng.

Proof. Proof of Theorem 6.16 can be given in the same way as that of Theorem 6.15 by applying
Theorem 6.14 instead of Theorem 6.13.

Corollary 6.17. Let 1 < p < oo. Then the following statements hold:
(a) If A € (ég(ﬁ) : co) , then L4 is compact if and only if

(1) for p = oo,

neN,

Jim <sup > |ank|> =0,
%
(i) for 1l <p< oo,

1/q
: -~ q —
ti | (S} [ <0

neN, \ ‘7
(iii) forp=1
Jn, ( W) v
(b) If A € (ﬁg(ﬁ) : él) , then L4 is compact if and only if

(i) for1 < p < oo,

S5

neN,.

lim | sup
r—>00 Nr

(i) forp =1,
lim | sup ankl | = 0.
700 <k€N0 nz:;| |>

(¢) If A€ (ﬁg(ﬁ) : c) , then L4 is compact if and only if

i (sup 1, —al, ) =0
r—00 neN,.

where & = () ey, with @ = lim apy for all k and the matriz E = (enk)y, ey 05 defined by (4.1).
n— 00 ’
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7. Conclusion

We should state that although the domains of the matrices A and F in the classical sequence spaces £,

and £, are investigated by Mursaleen and Noman [30], and Kara [18], since we employ the composition of
the triangles A and F the main results of the present paper are much more general than the corresponding
results obtained by Mursaleen and Noman [30], and Kara [18]. It is worth mentioning here that in spite
of the domain of the matrix E in the space £, of absolutely p-summable sequences has been studied in
the present paper for the case 1 < p < oo, one can derive the similar results concerning the domain of the
matrix £ in the space ¢, for 0 < p < 1 which are new and are also complementary of our contribution.
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