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Analysis of Estimators for Stokes Problem Using a Mixed

Approximation
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abstract: In this work, we introduce the steady Stokes equations with a new
boundary condition, generalizes the Dirichlet and the Neumann conditions. Then
we derive an adequate variational formulation of Stokes equations. It includes algo-
rithms for discretization by mixed finite element methods. We use a block diagonal
preconditioners for Stokes problem. We obtain a faster convergence when applying
the preconditioned MINRES method. Two types of a posteriori error indicator are
introduced and are shown to give global error estimates that are equivalent to the
true discretization error. In order to evaluate the performance of the method, the
numerical results are compared with some previously published works or with others
coming from commercial code like Adina system.
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1. Introduction

This paper describes a numerical solution of Stokes equations with a new bound-
ary condition. This condition generalizes the known conditions, especially the
Dirichlet and the Neumann conditions. We use the discretization by mixed finite
element (MFE) method. The idea of mixed finite element is to approximate simul-
taneously the piezometric head and the velocity. This approximation gives velocity
throughout the field and the normal component of the velocity is continuous across
the inter-element boundaries. Moreover, with the mixed formulation, the velocity
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is defined with the help of Raviart Thomas basis functions [1, 2, 3] and, there-
fore, a simple integration over the element gives the corresponding streamlines.
This method was widely used for the prediction of the behavior of fluid in the
hydrocarbons tank.

A wealth of literature on solving saddle point systems exists, much of it related
to particular applications. Perhaps the most comprehensive work is the survey by
Benzi, Golub and Liesen [10], which considers conditions under which the matrix
formulation is solvable and block diagonal preconditioners but which has a focus
on linear algebra. The conditions for a unique solution can be found in [23] or, in
the substantial area of PDEs, in Babuska [32] and Brezzi [36]. Stokes problems also
arise in a natural way when the (unsteady) Navier-Stokes equations are simplified
using classical operator splitting techniques [39].

A posteriori error analysis in problems related to fluid dynamics is a subject
that has received a lot of attention during the last decades. In the conforming case
there are several ways to define error estimators by using the residual equation.
Ainsworth and Oden [5] and Verfurth [6] give a general overview. In the specific
case of the Stokes and Navier-Stokes equations governing the steady flow of a
viscous incompressible fluid, the work of Bank and Welfert [7], Verfurth [8] and
Oden and Ainsworth [4, 5] laid the basic foundation for the mathematical analysis
of practical methods. Other works for the stationary Navier-Stokes problem have
been introduced in [6, 9, 20, 21, 22, 24, 25].

The plan of the paper is as follows. The model problem is described in section 2,
followed by the discretization by mixed finite element method in section 3. A block
diagonal preconditioners for Stokes problems is described in section 4 . Section 5
shows the methods of a posteriori error estimator of the computed solution and
numerical experiment is described in section 6.

2. Model problem

We will consider the model of viscous incompressible flow in an idealized,
bounded, connected domain in R

2,

∇2−→u +∇p = −→
f in Ω, (2.1)

∇.−→u = 0 in Ω. (2.2)

The boundary value problem which is posed on two dimensional domains Ω, is
defined as:

Cβ : β −→u + (∇−→u − pI)−→n = −→g in Γ =: ∂Ω. (2.3)

We also assume that Ω has a polygonal boundary Γ , so −→n that is the usual outward
pointing normal. The vector field −→u is the fluid velocity, p is the pressure field,

∇ is the gradient, ∇. is the divergence operator, the functional
−→
f in the space

[L2(Ω)]2, −→g in the space [L2(Γ)]2, the pressure p in the space L2(Ω) and β is a
nonzero bounded continuous function defined on ∂Ω.
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Remark 2.1

If β is strictly positive constant such that β ≻≻ 1 then Cβ , is the Dirichlet bound-
ary condition and if β ≺≺ 1 then the Cβ , is the Neumann boundary condition. For
this, β is called the Dirichlet coefficient.

We set

V = H1
0 (Ω)×H1

0 (Ω), (2.4)

and

W = {q ∈ L2(Ω) :

∫

Ω

q(x)dx = 0}. (2.5)

Let the bilinear forms a : V × V −→ R, b : V ×W −→ R and d :W ×W −→ R

a(−→u ,−→v ) =
∫

Ω

∇−→u .∇−→v dx+

∫

Γ

β −→u .−→v , (2.6)

b(−→v , q) = −
∫

Ω

(q∇.−→v )dx, d(p, q) =

∫

Ω

p q dx. (2.7)

These inner products induce norms on V and W denoted by ‖.‖V and ‖.‖W respec-
tively.

‖−→u ‖V = a(−→u ,−→u )
1

2 ∀−→u ∈ V, (2.8)

‖q‖W = d(q, q)
1

2 ∀q ∈W. (2.9)

Given the continuous functional l : V −→ R

l(−→v ) =
∫

Ω

−→
f .−→v dx+

∫

∂Ω

−→g .−→v dx. (2.10)

The weak formulation of the Stokes flow problem (2.1)-(2.2)-(2.3) is then:
Find (−→u , p) ∈ V ×W such that

a(−→u ,−→v ) + b(−→v , p) = l(−→v ), (2.11)

b(−→u , q) = 0, (2.12)

for all (−→v , q) ∈ V ×W .

3. Finite element approximation

Let P be a regular partitioning of the domain Ω into the union of N subdomains
K such that

• N <∝,
• Ω = ∪K∈PK,
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• K ∩ J is empty whenever K 6= J ,
• each K is a convex Lipschitzian domain with piecewise smooth boundary ∂K.

The common boundary between subdomains K and J is denoted by: ΓKJ =
∂K ∩ ∂J .

For any K ∈ P , ωK is of rectangles sharing at least one edge with element K.
We let εh = ∪K∈P ε(K) denotes the set of all edges split into interior and boundary
edges, εh = εh,Ω ∪ εh,Γ, where εh,Ω = {E ∈ εh : E ⊂ Ω} and εh,Γ = {E ∈ εh : E ⊂
∂Ω}.

The finite element subspaces Xh and Mh are constructed in the usual manner
so that the inclusion Xh ×Mh ⊂ V ×W holds.

The mixed finite element approximation to (2.11)-(2.12) is then :
Find (−→u h, ph) ∈ Xh ×Mh such that

a(−→u h,
−→v h) + b(−→v h, ph) = l(−→v h), (3.1)

b(−→u h, qh) = 0, (3.2)

for all (−→v h, qh) ∈ Xh ×Mh.
To define the corresponding linear algebra problem, we use a set of vector-valued

basis functions {−→ϕ j}, so that

−→u h =

nu∑

j=1

uj
−→ϕ j +

nu+n∂∑

j=nu+1

uj
−→ϕ j , (3.3)

and we fix the coefficients uj : j = nu + 1, . . . , nu + n∂ , so that the second term
interpolates the boundary data on ∂ΩD.

We introduce a set of pressure basis functions {Ψk} and set

ph =

np∑

k=1

pkΨk, (3.4)

where nu and np are the numbers of velocity and pressure basis functions, respec-
tively.

We obtain a system of linear equations

(
A BT

B 0

)(
U
P

)
=

(
f
0

)
. (3.5)

The matrix A is the vector Laplacian matrix and B is the divergence matrix

A = [aij ], aij =

∫

Ω

∇−→ϕ i : ∇−→ϕ j +

∫

∂Ω

β−→ϕ i.
−→ϕ j , (3.6)

B = [bkj ], bkj = −
∫

Ω

Ψk∇.−→ϕ j , (3.7)
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for i and j = 1, . . . , nu and k = 1, . . . , np .
The right-hand side vector f in (3.5) is

f = [fi], fi =

∫

Ω

−→
f .−→ϕ i +

∫

∂Ω

−→g .−→ϕ i, (3.8)

for i = 1, ..., nu and k = 1, . . . , np .
We use the iterative methods Minimum Residual Method (MINRES) for solving

the symmetric system.

4. Block diagonal preconditioners

We use a fast and robust linear solvers for stabilized mixed approximations of
the Stokes equations (2.1)-(2.2)-(2.3). The resulting discrete Stokes system is the
saddle-point system [9]

(
A BT

B −C

)(
U
P

)
=

(
f
g

)
, (4.1)

Where the vectors U, P are discretized representations of −→u , p, with f , g taking

into account the source term
−→
f as well as nonhomogeneous boundary conditions.

The matrix C is the zero matrix when a stable finite element discretization Q2−Q1

Taylor-Hood element is used, and is the stabilization matrix otherwise.
We assume that A is symmetric positive definite, which is the case when a

Dirichlet condition is imposed on at least part of the boundary. The matrix C is
always positive semi definite.

For consistency with the continuous Stokes system the matrix B should satisfy
1 ∈ null(BT ) in the case of enclosed flow (see [9, Chapter 3]). Let

D =

[
A BT

B −C

]
, (4.2)

where D ∈ R
n×n is symmetric positive definite as above, C ∈ R

m×m is symmetric
positive semi definite, B ∈ R

m×n with m ≤ n and rank(B) = r ≤ m.
We suppose that the negative Schur complement of D,

S = BA−1BT + C, (4.3)

has rank p. Then under these conditions D has n positive eigenvalues, p negative
eigenvalues and m - p zero eigenvalues [10].

Let the block diagonal preconditioner for D

P1 =

[
A 0
0 H

]
, (4.4)

where H ∈ R
n×n is a symmetric positive definite approximation to the Schur

complement S. In the case where H = S and C = 0, B must be full rank for S, and
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hence P1, to be invertible, and the eigenvalues of the preconditioned system are
given by [11, 12]

λ(P1
−1

D) ∈ {1, 1
2
(1 ±

√
5)}, (4.5)

and in the case where the approximation of S (or indeed A) is inexact the precon-
ditioner is frequently found to be extremely effective also. When the condition on
C is weakened to allow the matrix to be symmetric positive semi-definite, and we
have [13, 14]

λ(P1
−1

D) ∈ [1,
1

2
(1−

√
5)] ∪ [1,

1

2
(1 +

√
5)]. (4.6)

We consider situations where the Schur complement could be singular, and we
construct an inexact approximation H which is invertible.

For the Stokes equations, the approximate Schur complement is either the mass
matrix associated with the pressure approximation space [9]

Q = [mp,ij ], mp,ij =

∫

Ω

Ψi.Ψj , (4.7)

or an approximation. Common approximations of Q are its diagonal [14, 16], a
lumped version [17], or a Chebyshev semi-iteration method applied to Q (see [18,
40]).

Instead of taking S ≈ H , we incorporate a scaling constant α > 0 such that

Pα =

[
A 0
0 αH

]
, (4.8)

as a potential preconditioner for D. We explain why setting a large value of á
can significantly improve the performance of the iterative solver when a stabilized
mixed approximation is employed.
We order the eigenvalues of Pα

−1
D from smallest to largest, so that

λ1 ≤ · · · ≤ λp < 0 < λm+1 · ·· ≤ λm+n, (4.9)

where p = rank(S) ≤ m, S is in (4.3), diag(F) is the diagonal of F ∈ R
n×n.

We have the MINRES convergence bounds [9]

‖rk‖P−1

α

‖r0‖−1

P
−1

α

≤ min
p∈Pk,p(0)=1

max
λ∈σ(P−1

α
D)

|p(λ)| ≤ min
p∈Pk,p(0)=1

max
λ∈[−a,−b]∪[c,d]

|p(λ)|, (4.10)

where Pk is the set of polynomials of at most degree k and σ(P−1

α
D) ⊂ [−a,−b]∪

[c, d] is the set of nonzero eigenvalues of P−1
α

D.
If a-b = d-c, we have

‖r2k‖P−1

α

‖r0‖−1

P
−1

α

≤ 2ηk, η =

√
ad−

√
bc√

ad+
√
bc
. (4.11)



Analysis of Estimators for Stokes Problem 111

This bound can be pessimistic, it will still provide some insight into the effect of α
on preconditioned MINRES convergence.

For stable finite element discretizations Q2 − Q1 of the Stokes equation there
exists an inf-sup constant γ , and a constant Υ resulting from the boundedness of
B, such that

γ2 ≤ PTBA−1BTP

PTQP
≤ Υ2, ∀P ∈ R

m\{0}. (4.12)

For an unstable discretization only the upper bound holds, and a lower bound is
assumed as follows :

γ2 ≤ PT (BA−1BT + C)P

PTQP
,
PTBA−1BTP

PTQP
≤ Υ2, ∀P ∈ R

m\{0}. (4.13)

Theorem 4.1. We suppose that (4.12) holds. For the Stokes equations, we use a
discretization by Q2 − Q1 elements in R

2. Then, the eigenvalues of Pα

−1
D are

contained in [−a,−b] ∪ {0} ∪ [c, d] where, if H = Q ,

2a =

√
1 +

4φ

α
− 1, 2b =

√
1 +

4γ2

α
− 1, c = 1, 2d = 1 +

√
1 +

4φ

α
. (4.14)

and, if H = diag(Q) we have

2a =

√
1 +

9φ

α
− 1, 2b =

√
1 +

γ2

α
− 1, c = 1, 2d = 1 +

√
1 +

9φ

α
. (4.15)

Where, γ is the inf-sup constant, while φ = 1 if Dirichlet conditions are imposed
on the whole boundary and φ = 2 otherwise.

Proof. Same steps of the prof of Lemma 4.1 in [38].

Theorem 4.2. We suppose that (4.13) holds. For the Stokes equations, we use a
discretization by Q1 − P0 or Q1 − Q1 elements in R

2. Then, the eigenvalues of
Pα

−1
D are contained in [−a,−b] ∪ {0} ∪ [c, d] where, if H = Q ,

2a =

√
(1− 1

α
)2 +

4φ

α
− (1− 1

α
), 2b =

√
1 +

4γ2

α
− 1, c = 1,

2d = 1 +

√
1 +

4φ

α
. (4.16)

Alternatively, for Q1 −Q1 elements if H = diag(Q) then, assuming that λp =
−0.25

α
,

2a =

√
(1− 9

4α
)2 +

9φ

α
− (1 − 9

4α
), b =

0.25

α
, c = 1,

2d = 1 +

√
1 +

9φ

α
. (4.17)

Where, γ is as in (4.13) while φ = 2 if Dirichlet conditions are imposed on the
whole boundary and φ = 3 otherwise.

Proof. Same steps of the prof of Theorem 4.1.
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5. Analysis of estimators

In this section, we propose two types of a posteriori error indicator : the local
Poisson problem estimator and the residual error estimator. Which are shown to
give global error estimates.

Theorem 5.1. We have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ 1

2
(‖−→w ‖V + ‖s‖W ), (5.1)

for all (−→w , s) ∈ V ×W .

Proof . Let (−→w , q) ∈ V ×W , we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ a(−→w ,−→w ) + d(s, 0)

‖−→w‖V + ‖0‖W
= ‖−→w ‖V , (5.2)

and we have

sup
(−→v ,q)∈V ×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥ a(−→w ,−→0 ) + d(s, s)

‖−→0 ‖V + ‖s‖W
= ‖s‖W . (5.3)

We gather (5.2) and (5.3) to get (5.1).
Let (−→e , E) ∈ V ×W be the error in the finite element approximation, −→e =

−→u −−→u h and E = p− ph and define (
−→
φ , ψ) ∈ V ×W to be the Ritz projection of

the modified residuals

a(
−→
φ ,−→v ) + d(ψ, q) = a(−→e ,−→v ) + b(−→v , E) + b(−→e , q), (5.4)

for all (−→v , q) ∈ V ×W .

Theorem 5.2. There exist positive constants K1 and K2 such that

K1(‖
−→
φ ‖2V + ‖ψ‖2W ) ≤ ‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ K2(‖

−→
φ ‖2V + ‖ψ‖2W ). (5.5)

Proof. See Ainsworth, M., and Oden, J. [5].�
The local velocity space on each subdomain K ∈ P is

VK = {−→v ∈ H1(K)×H1(K) : −→v =
−→
0 on ∂Ω ∩ ∂K}, (5.6)

and the pressure space is

WK = L2(K). (5.7)

Let the bilinear forms aK : VK × VK −→ R, bK : VK × WK −→ R, and dK :
WK ×WK −→ R,

aK(−→u ,−→v ) =
∫

K

∇−→u .∇−→v +

∫

Γ∩ K

β −→u .−→v , (5.8)
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bK(−→v , q) = −
∫

K

q(∇.−→v ) dx, dK(p, q) =

∫

K

p q dx. (5.9)

Given the continuous functional lK : VK −→ R

lK(−→v ) =
∫

K

−→
f .−→v dx+

∫

Γ∩K

−→g .−→v . (5.10)

Hence for −→v ,−→w ∈ V and q ∈ W we have

a(−→v ,−→w ) =
∑

K∈P

aK(−→v K ,
−→wK), b(−→v , q) =

∑

K∈P

bK(−→v K , qK). (5.11)

The velocity space V(P) is defined by

V (P ) =
∏

K∈P

VK . (5.12)

and the broken pressure space W (P ) is defined by

W (P ) = {q ∈
∏

K∈P

WK :

∫

Ω

q(x)dx = 0}. (5.13)

Examining the previous notations reveals that

W (P ) =W. (5.14)

We consider the space of continuous linear functional τ on V (P ) × W (P ) that
vanish on the space V ×W .
Therefore, let H(div,Ω) denote the space

H(div,Ω) = {A ∈ L2(Ω)2×2 : div(A) ∈ L2(Ω)2}, (5.15)

equipped with norm

‖A‖H(div,Ω) = {‖A‖2L2(Ω) + ‖divA‖2L2(Ω)}
1

2 . (5.16)

Theorem 5.3. A continuous linear functional τ on the space V (P ))×W (P ) van-
ishes on the space V ×W if and only if there exists A ∈ H(div,Ω) such that

τ [(−→v , q)] =
∑

K∈P

∮

∂K

−→nK .A.
−→v Kds, (5.17)

where −→n K denotes the unit outward normal vector on the boundary of K.

Proof. See Ainsworth, M., and Oden, J. [4].�
It will be useful to introduce the stresslike tensor σ(−→v , q) formally defined to

be

σij(
−→v , q) = ν

∂vi
∂xj

− qδij , (5.18)
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Where δij is the Kronecker symbol.
In order to define the value of the normal component of the stress on the interele-
ment boundaries it is convenient to introduce notations for the jump on ΓKJ :

[[−→v .σ(−→v h, qh)]] =
−→n K .σ(

−→v h,K , qh,K) +−→n J .σ(
−→v h,J , qh,J). (5.19)

An averaged normal stress on ΓKJ is defined by

〈−→nK .σ(
−→v h, qh)〉 =

(
α
(1)
KJ 0

0 α
(2)
KJ

)
−→n K .σ(

−→v h,K , qh,K)

+

(
α
(1)
JK 0

0 α(2)
JK

)
−→n K .σ(

−→v h,J , qh,J), (5.20)

where α
(i)
KJ : ΓKJ −→ R are smooth polynomial functions. Naturally, the stress

should be continuous then it is required that the averaged stress coincide with this
value. On ΓKJ , we have

(
α
(1)
KJ 0

0 α
(2)
KJ

)
+

(
α
(1)
JK 0

0 α(2)
JK

)
=

(
1 0
0 1

)
. (5.21)

The notation [[ . ]] is used to define jumps in the elements of V(P) between subdo-
mains. We define

[[−→v ]] =
{
VK − VJ , K > J ,
VJ − VK , K < J ,

(5.22)

and

[[−→n ]] =

{ −→nK −−→n J , K > J ,
−→n J −−→nK , K < J .

(5.23)

For −→v ∈ V (P ), we have

∑

K∈P

∮

∂K

−→n K .σ(
−→u h, ph).

−→v ds =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, ph)〉.[[−→v ]]ds. (5.24)

Lemma 1. There exists µ̂ ∈ H(div,Ω) such that

µ̂[(−→w , q)] =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, qh)〉.[[−→w ]]ds, (5.25)

for all (−→w , q) ∈ V (P )×W (P ).
Proof. The right-hand side of equation (5.25) vanishes en V × W . Applying
theorem 5.3, we obtain (5.25).

We define the linear functional R : V (P )×W (P ) −→ R by

R[(−→w , q)] =
∑

K∈P

{lk(−→w )− aK(−→u h,
−→w )− bK(−→w , ph)− bK(−→u h, q)}

+

∮

∂K

−→n K .σ(
−→u h, ph).

−→wKds− µ̂[(−→w , q)], (5.26)
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for all (−→w , q) ∈ V (P )×W (P ).
For (−→w , q) ∈ V ×W , we obtain

R[(−→w , q)] = a(
−→
φ ,−→w ) + d(ψ, q). (5.27)

Let the lagrangian functional L : V (P )×W (P )×H(div,Ω) −→ R such that

L[(−→w , q), µ] = 1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)]− µ[(−→w , q)], (5.28)

So that

sup
µ∈H(div,Ω)

L[(−→w , q), q] =
{

1
2{a(

−→w,−→w ) + d(q, q)} −R[(−→w , q)] if (−→w , q) ∈ V ×W,
= + ∝ otherwise,

(5.29)
and, for (−→w , q) ∈ V ×W ,

1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)] =

1

2
{a(−→w−→

φ ,−→w −−→
φ ) + d(q − ψ, q − ψ)−

a(
−→
φ ,

−→
φ )− d(ψ, ψ)}

≥ −1

2
{a(−→φ ,−→φ ) + d(ψ, ψ)}

= −1

2
(‖−→φ ‖2V + ‖ψ‖2W ). (5.30)

Therefore,

−1

2
(‖−→φ ‖2V + ‖ψ‖2W ) = inf

(−→w,q)∈V (P )×W (P )
sup

µ∈H(div,Ω)

L[(−→w , q), µ]

= sup
µ∈H(div,Ω)

inf
(−→w,q)∈V (P )×W (P )

L[(−→w , q), µ]

≥ inf
(−→w,q)∈V (P )×W (P )

L[(−→w , q), µ] (5.31)

=
∑

K∈P

inf
−→wK∈VK

{1
2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK)

+bK(−→wK , ph)−
∮

∂K

−→nK .σ(
−→u h, ph).

−→wKds (5.32)

−1

2
dK(∇.−→u h,∇.−→u h)}.

Using (5.31), we obtain:

Theorem 5.4. Let JK : VK → R be a quadratic functional

JK(−→wK) =
1

2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK) + bK(−→wK , ph)

−
∮

∂K

−→n K .σ(
−→u h, ph).

−→wKds. (5.33)
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Then

‖−→φ ‖2V + ‖ψ‖2W ≤
∑

K∈P

{−2 inf−→wK∈VK
JK(−→wK) + dK(∇.−→u h,K ,∇.−→u h,K)}. (5.34)

We have the problems on each subdomain

inf−→wK∈VK
JK(−→wK). (5.35)

Suppose that the minimum exists, then the minimising element is characterized by

finding
−→
φK ∈ VK such that (see M. Ainsworth and J. Oden [5])

a(
−→
φK ,

−→v ) = lK(−→v )− aK(−→u h,
−→v )− bK(−→v , ph) +

∮

∂K

〈−→n K .σ(
−→u h, ph).

−→v 〉ds,(5.36)

for all −→v ∈ VK .
The necessary and sufficient conditions for the existence of a minimum are that
the data satisfy the following equilibration condition:

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph) +

∮

∂K

〈−→nK .σ(
−→u h, ph)〉.

−→
θ ds, (5.37)

for all
−→
θ ∈ Ker[a, VK ],

where

Ker[a, VK ] = {−→θ ∈ VK : aK(−→w ,−→θ ) = 0 for all −→w ∈ VK}. (5.38)

When the subdomain K lies on the boundary ∂Ω the local problem (5.35) will be
subject to a homogeneous Dirichlet condition on a portion of their boundaries and
thus will be automatically well posed. However, elements away from the boundary
are subject to pure Neumann conditions and the null space of the operator a(.,.)
will contain the rigid motions

Ker[a, VK ] = Span{−→θ 1,
−→
θ 2}, (5.39)

where
−→
θ 1 =

(
1
0

)
,
−→
θ 2 =

(
0
1

)
. (5.40)

We construct data which satisfy the condition (5.36). We define

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
=

(
λ
(1)
JK 0

0 λ
(2)
JK

)
− 1

2

(
1 0
0 1

)
. (5.41)

Using (5.18), we obtain

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
+

(
λ
(1)
JK 0

0 λ
(2)
JK

)
=

(
0 0
0 0

)
. (5.42)
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The averaged interelement stress may be rewritten

〈−→n K .σ(
−→w h, qh)〉 = 〈−→nK .σ(

−→v h, qh)〉 1

2

+ [[−→n .σ(−→v h, qh)]]

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
, (5.43)

where 〈−→n K .σ(
−→v h, qh)〉 1

2

denotes the interelement averaged stress obtained using

the symmetrical weighting corresponding to α = 1
2 . Then

lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph) +

∮

∂K

〈−→nK .σ(
−→u h, ph)〉.

−→
θ ds

= −
∑

J∈P

∫

ΓKJ

[[−→n .σ(−→v h, ph)]]

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
−→
θ .ds, (5.44)

for all
−→
θ ∈ Ker[a, VK ].

Let {XA} be chosen so that: Span {XA} × Span{XA} ⊂ X and

∑

A

XA(x) = 1. (5.45)

For example, one might choose the piecewise bilinear pyramid functions associated
with interior nodes in the partition. The relation (5.44) must hold at all points x
contained in elements which do not interest the boundary of the domain.

The functions λ
(k)
KJ : ΓKJ −→ R are chosen to be of the form

λ
(k)
KJ(s) =

∑

A

λ
(k)
KJ,AXA(s), (5.46)

where λkKJ,A are constants to be determined. Owing the constraint (5.44), it is
required that

λkKJ,A + λ
(k)
JK,A = 0, (5.47)

for each A.
Lemma 2. Suppose that for each XA the constants {λ(k)KJ,A} satisfy

−
∑

J∈P

λ
(k)
KJ,Aρ

(k)
KJ,A = b

(k)
K,A, (5.48)

for k=1, 2, where

b
(k)
K,A = lK(XA

−→
θ k)− aK(−→u h, XA

−→
θ k)− bK(XA

−→
θ k, ph)

+

∮

∂K

XA(s)〈−→nK .σ(
−→u h, ph)〉.

−→
θ kds, (5.49)
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and

ρ
(k)
KJ,A =

∫

ΓKJ

[[−→n .σ(−→u h, ph)]].
−→
θ kds. (5.50)

Then

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph) +

∮

∂K

〈−→nK .σ(
−→u h, ph)〉.

−→
θ ds, (5.51)

for all
−→
θ ∈ Ker[a, VK ].

Proof. The result follows immediately by using (5.46), (5.44) and (5.40).
Summarizing and incorporating the results of section 5 we have

Theorem 5.5. There exists a constant C > 0 such that

‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ C
∑

K∈P

η2K , (5.52)

where

ηK = {aK(
−→
φK ,

−→
φK) + dK(∇.−→u h,∇.−→u h)}

1

2 . (5.53)

�

We define the global error estimator ηp by

ηp = (
∑

K∈P

η2K)
1

2 . (5.54)

We define the stress jump across edge or face E adjoining elements T and K

[[∇−→u h − ph
−→
I ]] = ((∇−→u h − ph

−→
I )|T − (∇−→u h − ph

−→
I )|K)−→n E,K ,

where −→n E,K is the outward pointing normal.
We define the equidistributed stress jump operator

−→
R∗

E =

{
1
2 [[∇~uh − phI]] if E ∈ εh,Ω,−→g − [β−→u h + (∇−→u h − phI)

−→n ] if E ∈ εh,Γ,
(5.55)

and the interior residuals

−→
RK = {−→f +∇2−→u h −∇ph}|K , (5.56)

and

RK = {∇.−→u h}|K . (5.57)

The element contribution ηr,K of the residual error estimator is given by

η2r,K = h2K‖−→RK‖20,K + ‖RK‖20,K +
∑

E∈∂K

hE‖
−→
R∗

E‖20,E, (5.58)

and the global residual error estimator ηr is given by
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ηr = (
∑

K∈P η2r,K)
1

2 .

Theorem 5.6. The estimator ηr,K is equivalent to the ηK estimator : there exist
positive constants c1 and C2 such that

c1 ηK ≤ ηr,K ≤ C2 ηK . (5.59)

Proof. Same steps of the prof of Theorem 3.9 in [15].

Theorem 5.7. There exist positive constant C′ such that

‖−→u −−→u h‖2V + ‖p− ph‖2W ≤ C′
∑

K∈P

η2r,K . (5.60)

6. Numerical simulation

Example 1 In this section some numerical results of calculations with finite
element Method and ADINA system will be presented. Using our solver, we run
the test problem driven cavity flow [31, 33, 34, 35, 40, 41, 42].
This is a classic test problem used in fluid dynamics, known as driven-cavity flow.
It is a model of the flow in a square cavity with the lid moving from left to right.
Let the computational model:
{y = 1,−1 ≤ x ≤ 1/ux = 1} a leaky cavity.
The streamlines are computed from the velocity solution by solving the Poisson
equation numerically subject to a zero Dirichlet boundary condition.

Figure 1: Uniform streamline plot with MFE (left), and uniform streamline plot
computed with ADINA system (right) using Q2 − Q1 approximation, a 64 × 64
square grid.
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Figure 2: Velocity vectors solution by MFE (left) associated with a 64× 64 square
grid, Q2 −Q1 approximation and velocity vectors solution (right) computed with
ADINA system.

Table 1: Results for the cavity problem solved with Q1 −Q1 finite elements, for a
range of values of h and α

α h
2−2 2−3 2−4 2−5 2−6 2−7 2−8

1 21 31 35 38 40 41 43
2 18 27 30 33 35 36 37
3 18 25 29 31 33 34 36
4 18 25 28 30 32 33 34
5 17 23 28 30 31 33 33
6 17 23 28 30 30 33 33
7 17 23 28 29 31 31 33
8 17 23 26 29 31 32 32
9 17 22 26 29 31 32 32
10 17 22 26 29 30 32 33
20 17 22 27 28 29 31 32
40 16 23 26 29 30 33 32
60 16 23 28 39 31 32 33
80 16 24 27 29 32 33 34
100 16 23 27 28 32 33 33

Figure 3: Representation of the effect of α on the MINRES iteration count for the
cavity problem.
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Figure 1 shows the uniform streamline by MFE associated with a 64×64 square
grid, Q2 −Q1 approximation. The particles in the body of the fluid move in a cir-
cular trajectory. Table 1 present the iteration numbers for MINRES solution of
the leaky cavity problem using stabilized Q1 − Q1 elements on a uniform mesh.
We observe that when α is increased, the iteration numbers clearly decrease, and
there is hence a considerable benefit to applying the scaled preconditioner. This is
observed for all values of mesh parameter tested. We present these results pictori-
ally in Figure 3.
The results, in Fig. 4, clearly show that increasing α reduces η, but that as we
increase α beyond about 10, η decreases much more slowly. In other words, as α is
increased beyond this point, we would not anticipate a further significant reduction
in iteration numbers for our preconditioned solver. This therefore motivates a value
of α equal to roughly 10, as this choice essentially achieves the optimal predicted
convergence rate, while at the same time ensuring that the negative eigenvalues of
P−1

α
D are far from zero.

Figure 4: Fig. 4. η for the cavity problem, with a mesh parameter of 2−6.

Table 2: ηr is the residual error estimator and ηp is the local Poisson problem error
estimator for leaky driven cavity.

grid ‖−→u −−→u h‖V ηr ηp
8× 8 8.704739× 10−2 1.720480× 100 9.722432× 10−1

16× 16 3.115002× 10−2 1.084737× 100 5.052819× 10−1

32× 32 9.545524× 10−3 5.919904× 10−1 2.782035× 10−1

64× 64 2.676623× 10−3 3.160964× 10−1 1.220784× 10−1
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Figure 5: Fig. 5. local Poisson problem error estimator ηp (left) and residual error
estimator ηr (right) for leaky driven cavity, with 64× 64 square grid.

The computational results of Figure 4 and Table 2 suggest that all two estima-
tors seem to be able to correctly indicate the structure of the error.

Example 2 It’ s a test problem with an exact solution is solved in order to
compare the affectivity of two error estimation strategies: the residual estimator
ηr and the Poisson estimators ηp. The latter approach is frequently used and is
generally considered by practitioners to be one the best error estimation strategies
in terms of its simplicity and reliability, especially when used as a refinement indi-
cator in a self-adaptive refinement setting. This analytic test problem is associated
with the following solution of the Stokes equation system:

ux = 20xy3; uy = 20x4 − 5y4 and p = 60x2y − 20y3 + constant. (6.1)

It is a simple model of colliding flow, and a typical solution of streamline is illus-
trated in Figure 6. To solve this problem numerically, the finite element interpolant
of the velocity in (6.1) is specified everywhere on Ω. The Dirichlet boundary con-
dition for the stream function calculation is the interpolant of the exact stream
function: ψ(x, y) = 5xy4 − x5.
Let β ≻≻ 1 and −→g = (20βxy3;β(20x4 − 5y4)) on Γ.
The flow problem is solved on a square domain ] − 1, 1[×] − 1, 1[ using a nested
sequence of uniformly refined square grids.
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Figure 6: Fig. 6. Uniform streamline plot (left) and pressure plot (right) for the
flow by MFE associated with a 64× 64 square grid.

To interpret the results that are presented some notation will be needed:

e =
√
‖−→u −−→u h‖2V + ‖P − Ph‖20,Ω, (6.2)

eT =
√
‖−→u −−→u h‖2V,T + ‖P − Ph‖20,T , (6.3)

eωT
=
√
‖−→u −−→u h‖2V,ωT

+ ‖P − Ph‖20,ωT
. (6.4)

Figure 6 shows the streamline and pressure plots, and figure 7 shows the estimated
error ηT associated with 64× 64 square grid.

Figure 7: Fig. 7. Estimated error ηT associated with 64× 64 square grid.
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Table 3: Comparison of error estimator effectivity

Grid e e
ηr

e
ηp

8× 8 1.4433e+000 3.1206e - 001 1.1916e+ 000
16× 16 7.7582e -001 3.0597e -001 1.0234e+ 001
32× 32 3.9279e -001 2.9134e -001 9.2872e− 001
64× 64 1.9692e -001 2.9082e -001 9.1723e− 001

Looking at Table 3, we see that the global error e is decreasing and e
ηp

is

very close to 1, e
ηr

is very close to 1
3 , then the Poisson problem estimator ηp

provides the most accurate estimate of the global error and the local estimates ηT
is quantitatively close to the exact error and the estimates ηr is about three times
larger than exact error.

We see that the local error estimator ηG,T (ηG,T = ηT or ηr,T ) satisfied

e ≤ CΩηG and ηG = (
∑

T∈P

η2G,T )
1

2 , (6.5)

ηG,T ≤ C(
∑

T
′
∈P

{‖~e‖2V,T ′ + ‖ε‖20,T ′)
1

2 . (6.6)

Here, the generic constant CΩ is independent of the mesh size and the exact solution
but may depend on the domain and the element aspect ration.
Then the estimators ηG,T is likely to be effective if it is used to drive an adaptive
refinement process.
In general, if an error estimator is to be efficient then the constant on the right hand
side of (6.6) should be bounded. An estimate of this constant (e.g maxT∈Th

ηG,T

eωT

)

is provided in Table 4, where we also estimate this constant for the exact error (e.g
maxT∈P

eT
eωT

).

Table 4: Comparison of affectivity indices

Grid e maxT∈Th

eT
eωT

maxT∈Th

ηr,T

eωT

maxT∈Th

ηT

eωT

8× 8 1.4433e+000 5.8923e-001 2.1659e+000 6.2529e− 001
16× 16 7.7582e -001 6.1997e -001 2.2577e +000 5.5183e− 001
32× 32 3.9279e -001 5.9143e-001 2.2743e +000 5.3152e− 001
64× 64 1.9692e -001 5.3092e -001 2.2162e +000 6.3092e− 001

From the Table 4, maxT∈P
ηr,T

eωT

, and maxT∈Th

ηT

eωT

, seem to be bounded. In

addition maxT∈Th

ηT

eωT

, is close to maxT∈Th

eT
eωT

.
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Figure 8: Fig. 8. Exact error eT (left), estimator ηr,T (middle) and the estimator
ηT (right) for the test problem with 64× 64 square grid.

The local affectivity indices
ηG,T

eωT

will be bounded above and below across the

whole domain, so that elements with large errors can be singled out for local mesh
refinement. This is assessed in Figure 9. Looking at the distribution of these indices
it is clear that the our two estimators give a very different picture. Once again, ηT
is closely aligned with the exact error but ηr,T is not.

Figure 9: Fig. 9. Exact affectivity eT
eωT

(left), estimator affectivity
ηT

eωT

(middle)

and estimator affectivity
ηr,T

eωT

(right) with a 64× 64 square grid.

7. Conclusion

We were interested in this work in the numeric solution for steady incompress-
ible Stokes Equations with a new boundary condition. We use a discretization by
mixed finite element methods. We use a block diagonal preconditioners and the
preconditioned MINRES method for Stokes problem. We observe that when α is
increased, the iteration numbers clearly decrease, and there is hence a considerable
benefit to applying the scaled preconditioner. We obtain a faster convergence.
Two types of a posteriori error indicator are introduced and are shown to give
global error estimates that are equivalent to the true discretization error. The
computational results suggest that all two estimators seem to be able to correctly
indicate the structure of the error.
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