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A New Class of Fredholm Integral Equations of the Second Kind with

Non Symmetric Kernel: Solving by Wavelets Method

Abdelaziz Mennouni, Nedjem Eddine Ramdani, Khaled Zennir

abstract: In this paper, we introduce an efficient modification of the wavelets
method to solve a new class of Fredholm integral equations of the second kind
with non symmetric kernel. This method based on orthonormal wavelet basis, as
a consequence three systems are obtained, a Toeplitz system and two systems with
condition number close to 1. Since the preconditioned conjugate gradient normal
equation residual (CGNR) and preconditioned conjugate gradient normal equation
error (CGNE) methods are applicable, we can solve the systems in O(2n log(n))
operations, by using the fast wavelet transform and the fast Fourier transform.
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1. Introduction

Integral equation perform role effectively in many fields of science and engineer-
ing. Recently, there are a lot of orthonormal basis function that have been used to
find an approximate solution, mention Fourier functions [2], Legendre polynomials
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[21] and wavelets [10,12,13,16,17,19,20,26]. Although, the wavelet bases are one of
the most interesting basis, especially for large scale problems, in which the kernel
can be constituted as sparse matrix.
We reminder that usually it is difficult to construct the exact solution of linear and
nonlinear Fredholm integral equation via the well-known methods. A lot of different
useful methods have been developed to approximate the solutions of these equa-
tions. For instance, collocation methods are studied in [15,24], spectral methods
are given in [14,18], transform methods are introduced in [1,3,23], and homotopy
perturbation method is presented in [8] and others.
More recently, the multiresolution analysis has been considered by many researchers
(see [11,12,17,19,20,28]). We mention that wavelets method play a key role to find
the unique solution for some Fredholm integral equations.
In the present paper, we present wavelet basis to find the approximate solution of
the following Fredholm integral equation of second kind:

u(t)− 2β
∫ +∞

0

k(2αs− 2αt)u(t)dt = f(t), s ∈ [0,+∞[, α > 0, β ∈ R, (1.1)

where u(.) is the unknown function, f(.) is the known function and k(s − t) is a
non symmetric kernel.
A considerable part of this proposal is based on a study by [Jin and Yuan, 1998],
in which the authors focused on new class the first kind with symmetric kernel.
In contrast to their work, we focused on the second kind with non symmetric
kernel and as we know that the symmetric property is necessary condition to apply
conjugate gradient method and in our case we don’t have this property so we dealt
with the equivalent two systems that have the symmetric property.
The outline of the paper is as follows: In section 2, we describe the basic formulation
of wavelets and preliminary which are necessary for our development. Section 3 is
devoted to the discretization of the integral equation. In section 4, we study the
condition number of the matrix operator and we give the operation cost to solve
the systems.

2. Preliminaries

2.1. Wavelet bases

The basic tool for our method to approximate the solution of (1.1) is wavelet
Bases. For the convenience of the reader, we recall here some basic concepts and
well-known results concerning the multiresolution analysis (MRA for short). As in
[7,11], let us consider a function ϕ ∈ L2(R) called the father wavelet (or scaling
function), with a compact support [0, a], a > 0. We assume that

ϕ(.− k), k ∈ Z (2.1)

form an orthonormal sequence in L2(R). Let V0 be the closed linear subspace of
L2(R) generated by (2.1). The multiresolution analysis (MRA), depending on the
ϕ(.) consists of:
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(i)
f(.) ∈ V0 if and only if f(2j.) ∈ Vj for all j ∈ Z;

(ii)
· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · ;

(iii)
⋃

j∈Z

Vj = L2(R) and
⋂

j∈Z

Vj = {0} ;

(iv) The sequence (2.1) forms a Riesz basis of V0.

Let Wj be the orthogonal complement of Vj in Vj+1, i.e.,

Vj+1 = Vj ⊕Wj .

According to the above definition, we have

+∞
⊕

−∞

Wj = L2(R).

Following [6,11,22], there exists at least one function ψ ∈W0 such that

ψ(.− k), k ∈ Z

is an orthonormal basis of W0. The function ψ is called the mother wavelet.
A wavelet φ ∈ L2(R) is called orthonormal if the family of functions generated

from φ by
φj,k(s) = 2j/2φ(2js− k), j, k ∈ Z,

is orthonormal, that is,
〈

φj,k, φm,n
〉

= δj,mδk,n.

Let us introduce the following two wavelet sequences:

ϕj,k(s) = 2j/2ϕ(2js− k), j, k ∈ Z,

and
ψj,k(s) = 2j/2ψ(2js− k), j, k ∈ Z.

We recall that
〈

ψm,k, ϕm,l
〉

=
〈

ψn,k, ϕn,l
〉

, for all m,n, k, l ∈ Z.

Therefore, the wavelet sequence {ψj,k} forms a Riesz basis of Hs(R) for s ≥ 0.

Assume that B1 and B2 two bases in Vn with:

B1 = (ϕn,k(.))k, k ∈ Z,

and
B2 =

⋃

−∞<j≤n−1

(ψj,k(.))k, k ∈ Z.

We note that B1 and B2 follow from the father wavelet ϕ and the mother wavelet
ψ, respectively.
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2.2. Wavelet transform

Definition 2.1 (Continuous wavelet transform). The continuous wavelet trans-
form of the mother wavelet ϕ is defined by

(Sϕf)(j, k) =

∫ +∞

−∞

f(t)ϕj,k(t)dt = 〈f, ϕj,k〉.

Definition 2.2 (Discrete wavelet transform). The discrete wavelet transform of
the father wavelet ψ is defined by

(Sψf)(j, k) =

∫ +∞

−∞

f(t)ψj,k(t)dt = 〈f, ψj,k〉.

2.3. Condition number

Condition number of a matrix gives the information about the singularity of
the corresponding matrix.

Definition 2.3 (Condition number). Let A be an n× n invertible matrix. Define
κ(A), the condition number of A, by

κ(A) = ‖A‖‖A−1‖.

The condition number of an n× n invertible matrix A is defined as the ratio of
its maximum singular value to its minimum singular value, that is, for

λM := max {|λ| , λ is an eigenvalue of A} ,

and

λm := min {|λ| , λ is an eigenvalue of A} ,

we have

κ(A) =
λM

λm
.

2.4. Preconditioning and diagonal scaling

A preconditioner P of a matrix A is given by P−1A which its condition number
smaller than the original matrix. In order to solve linear systems of the form
Ax = b, preconditioners are used for numerous iterative methods. Then, while the
condition number of the matrix A decreases, for a lot of iterative linear system
solvers the rate of convergence increases.
Hence, preconditioning is a very effective tool which uses to reduce the condition
number of the matrix A.

Diagonal scaling (DS) is a special case of preconditioning and it is an efficient
tool used to reduce the condition number of matrix A for ensuring the convergence
and the accuracy of the first method. In our case, to reduce the condition number
of the matrix A we apply the diagonal matrix D, in a way to speed up the method.
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2.5. Conjugate gradient method

Conjugate gradient (CG) method uses to solve linear system of the form Ax = b,
this method can be used also to obtain a quick convergence when κ(A) is smaller.

Generally, conjugate gradient method uses for solving large problems in order
to attain a modest accuracy in a reasonable number of iterations.

2.5.1. Conjugate gradient normal equation residual and error. The conjugate gra-
dient method can be applied to solve the normal equations. The CGNE and CGNR
methods are important variants of this approach, which are the simplest methods
for non symmetric or indefinite systems. Since other methods for such systems are
in general rather more complicated than the conjugate gradient method. These
methods transform a linear system to a symmetric definite one for applying the
conjugate gradient method.
CGNR solves the system

(ATA)x = AT b.

CGNE solves the system
(AAT )y = d.

3. Discretization of integral equation

Let Hs(R) and Ht(R) be two Sobolev spaces, with s ≥ t ≥ 0. Letting

(Ku)(s) := 2β
∫ +∞

0

k(2αs− 2αt)u(t)dt, (3.1)

we assume that k(2a.− 2a.) ∈ Hs(R) is continuous non symmetric kernel.
The integral operator K from Hs(R) into Ht(R) is compact.
Eq. (1.1) can be rewritten in operator form as follows:

(I −K)u = f.

We assume that 1 is not a spectrum value of K. Hence, the equivalent variational
form follows:

{

find u ∈ Hs(R), such that

B(u, v) = F (v), v ∈ Hs(R),
(3.2)

where

B(u, v) : = 〈u, v〉 − 〈Ku, v〉

=

∫ +∞

0

u(s)v(s)ds−

∫ +∞

0

∫ +∞

0

k(s− t)u(t)v(s)dsdt,

and

F (v) :=

∫ +∞

0

f(s)v(s)ds.

Since
〈Ku, v〉 ≤ β‖Ku‖Ht‖v‖Ht ,
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it follows that 〈Ku, v〉 is a continuous bilinear form on Ht(R)×Hs(R).
We assume that

〈Ku, v〉 ≥ ρ‖u‖2Hs , for some constant ρ > 0.

Hence, 〈Ku, v〉 is coercive form on Ht(R)×Hs(R).

3.1. Projection of (I −A) with respect to B1 and B2

• Let the matrix (I − An) relative to the basis B1, which is the projection of the
matrix (I −A) on the subspace Vn.

The elements of the matrix (I −An) are given as follows

tp,q := 〈ϕn,p, ϕn,q〉 − 〈Kϕn,p, ϕn,q〉 (3.3)

=

∫ +∞

0

ϕn,p(s)ϕn,q(s)ds− 2β
∫ +∞

0

∫ +∞

0

k(2αs− 2αt)ϕn,p(t)ϕn,q(s)dtds.

For all u, v ∈ Hs(R), we assume that un, vn are the projections of u, v on Vn
respectively. Which implies that (3.2) becomes

∫ +∞

0

un(s)vn(s)ds−

∫ +∞

0

∫ +∞

0

k(s− t)un(t)vn(s)dtds =

∫ +∞

0

f(s)vn(s)ds.

(3.4)
Let

un =
∑

p

xpϕn,p and vn = ϕn,q, for all q ∈ Z. (3.5)

By substituting (3.5) into (3.4), we get a linear system given as follows

(I − T∞)x = b, (3.6)

where (I − T∞)p,q = tp,q is given by (3.3), and

(x)p = xp, (b)q =

∫ +∞

0

f(s)ϕn,q(s)ds.

We mention that ϕ has the compact support [0, a], which leads us to tp,q = tp−q.
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tp,q =

∫ +∞

0

ϕn,p(s)ϕn,q(s)ds −

∫ +∞

0

∫ +∞

0

2βk(2αs− 2αt)ϕn,p(t)ϕn,q(s)dtds

= δp,q − 2β+n
∫ +∞

0

∫ +∞

0

k(2αs− 2αt)ϕ(2nt− p)ϕ(2ns− q)dtds

= δp,q − 2β+n
∫ 2−n(a+p)

2−np

∫ 2−n(a+q)

2−nq

k (2αs− 2αt)ϕ(2nt− p)ϕ(2ns− q)dtds

= δp,q − 2β × 2−n
∫ a

0

∫ a

0

k
[

2−n × 2α(s− t+ p− q)
]

ϕ(t)ϕ(s)dtds

= δp,q − 2−n+β
∫ a

0

∫ a

0

k
[

2−n+α(s− t+ p− q)
]

ϕ(t)ϕ(s)dtds

= tp−q.

Hence (I − T∞) is a Toeplitz matrix.

• The matrix representation of (I−An) relative to the basis B2 has the elements
given as follows

ap,q,i,j := 〈ψp,qψi,j〉 − 〈Kψp,q, ψi,j〉 (3.7)

=

∫ +∞

0

ψp,q(s), ψi,j(s)ds

−2β
∫ +∞

0

∫ +∞

0

k(2αs− 2αt)ψp,q(t)ψi,j(s)dtds,

for −∞ < p, i < n and −∞ < q, j < +∞.
Writing

un =
∑

p,q

xp,qψp,q, and vn = ψp,q, −∞ < p < n, for all q ∈ Z. (3.8)

We substitute (3.8) into (3.4), we obtain the linear system

(I −A∞)x = d, (3.9)

where (I − A∞)p,q,i,j = ap,q,i,j is unsymmetric given by (3.7), x = (xp,q)
T and

d = (dp,q)
T are vectors with dp,q :=

∫ +∞

0

f(s)ψp,q(s)ds.

4. Solving the linear systems

4.1. Condition number

From the previous section we obtained two different linear systems. One of
them is the Toeplitz system (3.6) (relative to B1) and the other one is the systems
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(3.9) (relative to B2).

Let us focus on studying the condition number of the last linear system. Actu-
ally, we will develop the idea of Zhang [28]. In order to do that, firstly, we present
the following Lemma which plays an important role for reducing the condition
number of the matrix.

Lemma 4.1. ( [11,22,28]) Let

f =
∑

j,k

〈f, ψj,k〉ψj,k.

Then f ∈ Hs(R) if and only if

∑

j,k

|〈f, ψj,k〉|
2(1 + 4js) < +∞, −r < s < r,

where r is the regularity of the MRA. Moreover, since {ψj,k} is a Riesz basis of
Hs(R), we also have

C1

∑

j,k

|〈f, ψj,k〉|
2(1 + 4js) ≤ ‖f‖2Hs ≤ C2

∑

j,k

|〈f, ψj,k〉|
2(1 + 4js), (4.1)

where C2 ≥ C1 > 0 are constants.

Secondly, we know that (I−A∞) in system (3.9) is unsymmetric. Then, system
(3.9) becomes

(I −A∞)T (I −A∞)x = (I −A∞)T d, (4.2)

(I −A∞)(I −A∞)T y = d, x = (I −A∞)T y. (4.3)

Now, let φ ∈ Vn with φ =
∑

j,k wj,kψj,k. We have

B1(φ, φ) :=
∑

j,k

∑

i,ℓ

wj,kwi,ℓ
[

〈(I −A∞)T (I −A∞)ψj,k, ψi,ℓ〉
]

= wT (I −A∞)T (I −A∞)w, (4.4)

and

B2(φ, φ) :=
∑

j,k

∑

i,ℓ

wj,kwi,ℓ
[

〈(I −A∞)(I −A∞)Tψj,k, ψi,ℓ〉
]

= wT (I −A∞)(I −A∞)Tw, (4.5)

where w := (wj,k)
T is a vector. By the assumption that

B(u, v) ∈ {B1(u, v), B2(u, v)}
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is a continuous elliptic bilinear from on the space Hs(R)×Hs(R), i.e.,

B(u, v) ≤ β‖u‖Hs · ‖v‖Hs ,

B(u, u) ≥ α‖u‖2Hs .

Since φ ∈ Vj , we get φ ∈ Hs.
Consequently,

C3‖φ‖
2
Hs ≤ B(φ, φ) ≤ C4‖φ‖

2
Hs , for some constants C4 ≥ C3 > 0. (4.6)

4.1.1. Condition number of system (4.4). From (4.4) and (4.6), we get

C3‖φ‖
2
Hs ≤ wT (I −A∞)T (I −A∞)w ≤ C4‖φ‖

2
Hs .

By using (4.1), we obtain

C1

∑

j,k

|〈w,ψj,k〉|
2(1 + 4js) ≤ ‖φ‖2Hs ≤ C2

∑

j,k

|〈w,ψj,k〉|
2(1 + 4js),

then
C1

∑

j,k

|wj,k|
222js ≤ ‖φ‖2Hs ≤ C2

∑

j,k

|wj,k|
2 + C2

∑

j,k

|wj,k|
222js.

Thus,

C1

∑

j,k

|2jswj,k|
2 ≤ ‖φ‖2Hs ≤ C0

∑

j,k

|2jswj,k|
2,

so that

C3C1

∑

j,k

|2jswj,k|
2 ≤ C3‖φ‖

2
Hs ≤ wT (I −A∞)T (I −A∞)w

≤ C4‖φ‖
2
Hs ≤ C4C0

∑

j,k

|2jswj,k|
2.

Consequently,

C5

∑

j,k

|2jswj,k|
2 ≤ wT (I −A∞)T (I −A∞)w ≤ C6

∑

j,k

|2jswj,k|
2,

for some constants C5 ≥ C6 > 0.
By using diagonal scaling D, we get

C5‖w‖
2 ≤ wTD−1/2(I −A∞)T (I −A∞)D−1/2w ≤ C6‖w‖

2,

where ‖ ·‖ is the L2-norm. In the end, the condition number of (I−A∞)T (I−A∞)
is close to 1, that is,

k(D−1/2(I −A∞)T (I −A∞)D−1/2) = O(1).
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4.1.2. Condition number of system (4.5). From (4.5) and (4.6), we get

C3‖φ‖
2
Hs ≤ wT (I −A∞)(I −A∞)Tw ≤ C4‖φ‖

2
Hs .

By following the same steps of the previous system we obtain that the condition
number of (I −A∞)(I −A∞)T after a diagonal scaling is

k(D−1/2(I −A∞)(I −A∞)TD−1/2) = O(1).

4.2. Operation cost of the corresponding systems

In order to numerically solve the system (3.6), we use a finite interval. For this
reason, let us consider the finite section Tn of T∞. Thus, the Toeplitz system (3.6)
becomes an n− by − n system

(I − Tn)x = b. (4.7)

Now, we introduce the relation between (I − Tn) and (I −An), which is similar to
the one given by the authors of [11] as follows

(I −An) =Wn(I − Tn)W
−1
n ,

where (I − An) is the finite section of (I − A∞) and Wn is a finite section of W
which is the wavelet transform matrix between two orthonormal wavelet bases B1

and B2.
Hence, we solve the Toeplitz system (3.6) by solving its equivalent form

(

Wn(I − Tn)W
−1
n

)

Wnx =Wnb,

i.e.,
(I −An)x̃ = b̃, (4.8)

where x̃ :=Wnx and b̃ :=Wnb.
Now, we are going to solve the system (4.8). However, the matrix (I−An) does

not have a small condition number. Then we would like to apply PCG method
with diagonal preconditioner Dn in order to obtain a new matrix with a smaller
condition number. Unfortunately, (I −An) does not have the symmetric property.
That means the PCG method will not work. Thus, two systems are obtained with
symmetric property.

(I −An)
T
n (I −An)x̃ = (I −An)T b̃, (4.9)

(I −An)(I −An)
T ỹ = b̃, x̃ = (I −An)

T ỹ, (4.10)

with (I −An)
T (I −An) and (I −An)(I −An)

T are symmetric.
Now, in order to solve the system (4.8), we solve its two equivalent systems

(4.9) and (4.10). We know that the matrices (I −An)
T (I −An) and (I −An)(I −

An)
T do not have a small condition number. Thus, we apply conjugate gradient

normal equation residual CGNR method to (4.9) and the conjugate gradient normal
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equation error CGNE method to (4.10) with diagonal preconditioner Dn in order
to obtain a new matrices with a smaller condition number.

More precisely, by applying the diagonal preconditioner to (4.9), we have then
the following preconditioned system

D−1
n (I −An)

T (I −An)x̃ = D−1
n (I −An)

T b̃, (4.11)

with the condition number

k
(

D−1
n (I −An)

T (I −An)
)

= k
(

D−1/2
n (I −An)

T (I −An)D
−1/2
n

)

= O(1).

We apply again the diagonal preconditioner to (4.10), we get the following
preconditioned system

D−1
n (I −An)

T (I −An)ỹ = D−1
n b̃, x̃ = (I −An)

T ỹ, (4.12)

with the condition number

k
(

D−1
n (I −An)(I −An)

T
)

= k
(

D−1/2
n (I −An)(I −An)

TD−1/2
n

)

= O(1).

Hence, we can solve the system (4.11) by applying the conjugate gradient normal
equation residual CGNR method and (4.12) by applying the conjugate gradient
normal equation error CGNE method which give as a linear convergence rate (see
[9]).

Thus, the equivalent form of (4.11) is

Ãny1 = z1, (4.13)

where

y1 := Dnx̃, z1 := D−1
n (I −An)

T b̃,

and

Ãn := D−1
n (I −An)

T (I −An)D
−1
n .

The equivalent form of (4.12) is

Ã′
ny2 = z2, (4.14)

where

y2 = Dnỹ, z2 = D−1
n b̃,

and

Ã′
n = D−1

n (I −An)(I −An)
TD−1

n .

In each iteration of CGNR and CGNE methods, requires computing (I−An)
T v1

and (I−An)v2 for some vectors v1 and v2 respectively, and then solving (4.13) and
(4.14) (see [25]).
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Well, after some updates to CG method, we can solve the systems Dnx̃ = y1
and Dnỹ = y2 respectively.
For solving the above systems, we use the algorithm presented in [9].
• For the case (I −An)

T v1, since

(I −An) =Wn(I − Tn)W
−1
n ,

we get
(I −An)

T v1 = (W−1
n )T (I − T Tn )u1,

where u1 =WT
n v1, and by using FWT we could then compute u1 inO(n) operations

( [4,25]).
In addition, by using FFT we could then compute (I − Tn)u1 in O(n logn)

operations ( [5,27]).
In the end, to solve (I −An)v1 = (W−1

n )T (I −Tn)u1 we use FWT and Strang’s
algorithm given in [27]. Therefore, the operation cost decreased to O(n logn).
Regarding the system Dnx̃ = y1 we just need O(n) operations.

Hence, the cost per iteration for (4.9) is O(n log n).

• For the case (I − An)v2, by the similar way as above, we get the cost per
iteration for (4.10) is O(n log n).

Consequently, the total cost per iteration is O(2n logn).
Finally, we can solve the systems (4.7), (4.8) in O(2n logn), as a result of the
independence of the iterations and n.
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