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Existence and Decay of Solution to Coupled System of Viscoelastic

Wave Equations with Strong Damping in R
n

Keltoum Bouhali and Fateh Ellaggoune

abstract: In this paper, we establish a general decay rate properties of solutions
for a coupled system of viscoelastic wave equations in R

n under some assumptions on
g1, g2 and linear forcing terms. We exploit a density function to introduce weighted
spaces for solutions and using an appropriate perturbed energy method. The ques-
tions of global existence in the nonlinear cases is also proved in Sobolev spaces using
the well known Galerkin method.
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1. Introduction and previous results

In this paper, we consider the following problem:





(
|u′1|

l−2u′1
)′
+ αu2 − φ(x)∆

(
u1 −

∫ t

0 g1(t− s)u1(s, x)ds + u′1

)
= 0,

(
|u′2|

l−2u′2
)′
+ αu1 − φ(x)∆

(
u2 −

∫ t

0 g2(t− s)u2(s, x)ds + u′2

)
= 0,

(u1(0, x), u2(0, x)) = (u10(x), u20(x)) ∈ (D(Rn))2,
(u′1(0, x), u

′
2(0, x)) = (u11(x), u21(x)) ∈ (Ll

ρ(R
n))2,

(1.1)

where α 6= 0, x ∈ R
n, t ∈ R

+
∗ where the space D(Rn) defined in (2.4) and l, n ≥ 2,

φ(x) > 0, ∀x ∈ R
n, (φ(x))−1 = ρ(x) defined in (A2 ).

This type of problems is usually encountered in viscoelasticity in various areas
of mathematical physics, it was first considered by Dafermos in [6], where the
general decay was discussed. The problems related to (1.1) attract a great deal
of attention in the last decades and numerous results appeared on the existence
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and long time behavior of solutions but their results are by now rather developed,
especially in any space dimension when it comes to nonlinear problems. The term∫ t

0
gi(t − s)∆ui(s)ds corresponds to the memories terms and the scalar functions

gi(t) (so-called relaxation kernel) is assumed to satisfy (2.1)-(2.3). The energy of
(u1, u2) at time t is defined by

E(t) =
(l − 1)

l

2∑

i=1

‖u′i‖
l
Ll

ρ(R
n) +

1

2

2∑

i=1

(
1−

∫ t

0

gi(s)ds

)
‖∇ui‖

2
2

+
1

2

2∑

i=1

(gi ◦ ∇ui) + α

∫

Rn

ρu1u2dx. (1.2)

For α small enough we use Lemma 2.3, we deduce that:

E(t) ≥
1

2
(1− c|α|‖ρ‖−1

Ln/2)
[2(l − 1)

l

2∑

i=1

‖u′i‖
l
Ll

ρ

+

2∑

i=1

(
1−

∫ t

0

gi(s)ds

)
‖∇ui‖

2
2 +

2∑

i=1

(gi ◦ ∇ui)
]
, (1.3)

and the following energy functional law holds

E′(t) ≤
1

2

2∑

i=1

(g′i ◦ ∇ui)(t)−

2∑

i=1

‖∇u′i‖
2
2, ∀t ≥ 0. (1.4)

which means that, our energy is uniformly bounded and decreasing along the tra-
jectories.
The following notation will be used throughout this paper

(g ◦Ψ)(t) =

∫ t

0

g(t− τ ) ‖Ψ(t)−Ψ(τ )‖22 dτ , for any Ψ ∈ L∞(0, T ;L2(Rn)) (1.5)

In the present paper we consider the solutions in an appropriate spaces weighted by
the density function ρ(x) in order to compensate the lack of Poincare’s inequality
which play a decisive role in the proof. To motivate our work, we start with some
results related to viscoelastic plate equations with strong damping in [23]:

utt +∆2u−∆pu−

∫ t

0

g(t− s)∆u(s, x)ds−∆ut + f(u) = 0, x ∈ Ω× R
+,

supplemented with the following conditions:

u(t, x) = ∆u = 0, on ∂Ω× R
+, u(0, x) = u0, ut(0, t) = u1, on Ω. (1.6)

In this paper, Liu and all extend the exponential rate result obtained in [1] to the
general case and show that the rate of decay for the solution is similar to that of
the memory term under the following assumption for the function g is

g′(t) ≤ −ξ(t)g(t), where ξ(t) satisfies ξ′(t) ≤ 0,

∫ t

0

ξ(t)dt = ∞.
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Paper [8] is concerned with a class of plate equations with memory in a history
space setting and perturbations of p−Laplacian type

utt + α∆2u−∆pu−

∫ t

−∞

g(t− s)∆2u(s, x)ds−∆ut + f(u) = h, , (1.7)

for x ∈ Ω× R
+, and results on the well-posedness and asymptotic stability of the

problem were proved.
In many existing works on this field, the following conditions on the kernel

g′(t) ≥ −λgp(t), t ≥ 0, p ≥ 0, (1.8)

is crucial in the proof of the stability. For a viscoelastic systems with oscillating
kernels, we mention the work by Rivera and all [17], the authors proved that if
the kernel satisfies g(0) > 0 and decays exponentially to zero, that is for p = 1 in
(1.8), then the solution also decays exponentially to zero. On the other hand, if the
kernel decays polynomially, i.e. (p > 1) in the inequality (1.8), then the solution
also decays polynomially with the same rate of decay. Recently the problem related
to (1.1) in a bounded domain Ω ⊂ R

n, (n ≥ 1) with a smooth boundary ∂Ω and g
is a positive nonincreasing function was considered as equation in [15], where they
established an explicit and very general decay rate result for relaxation functions
satisfying:

g′(t) ≤ −H(g(t)), t ≥ 0, H(0) = 0,

for a positive function H ∈ C1(R+) and H is linear or strictly increasing and
strictly convex C2 function on (0, r], 1 > r.
For the literature, In R

n, we quote essentially the results of [2], [3], [4], [9]- [13],
[15]- [20] and the references therein. In [10], authors showed for one equation that,
for compactly supported initial data and for an exponentially decaying relaxation
function, the decay of the energy of solution of a linear Cauchy problem (1.1)
without strong damping in the case l = 2, ρ(x) = 1, is polynomial. The finite-
speed propagation is used to compensate the lack of Poincare’s inequality. In the
case l = 2, in [9], author looked into a linear Cauchy viscoelastic equation with
density. His study included the exponential and polynomial rates, where he used
the spaces weighted by density to compensate the lack of Poincare’s inequality in
the absence of strong damping. The same problem treated in [9], was considered
in [11], where under suitable conditions on the initial data and the relaxation
function, they prove a polynomial decay result of solutions. The conditions which
used, on the relaxation function g and its derivative g′ are different from the usual
ones. Coupled systems in R

n, we mention, for instance, the work of [Takashi
Narazaki, 2009. Global solutions to the Cauchy problem for the weakly coupled
system of damped wave equations. Discrete And Continuous Dynamical Systems,
592-601], where the following weakly coupled system of a damped wave equations
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has considered:




u′′ −∆u+ u′ = f(v), t > 0, x ∈ R
n,

v′′ −∆v + v′ = f(u), t > 0, x ∈ R
n,

(u(0, x), v(0, x)) = (φ0(x), ψ0(x)), x ∈ R
n,

(u′(0, x), v′(0, x)) = (φ1(x), ψ1(x)), x ∈ R
n.

(1.9)

Authors have shown the sufficient condition under which the Cauchy problem (1.9)
admits global solutions when n = 1, 2, 3 provided that the initial data are suffi-
ciently small in an associate space. Moreover, they have also shown the asymptotic
behavior of the solutions and to generalize the existence result in [22] to the case
n = 1, 2, 3 and improve time decay estimates when n = 3.

2. Function spaces and statements

In this section we introduce some notation and results needed for our work.
We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denotes
u(x, t) = u and u′(x, t) = u′, when no confusion arises. The constants c used
throughout this paper are positive generic constants which may be different in
various occurrences also the functions considered are all real-valued. Here u′ =
du(t)/dt and u′′ = d2u(t)/dt2. We denote by BR the open ball of Rn with center
0 and radius R.
First we recall and make use the following assumptions on the functions ρ and g
for i = 1, 2 as:
(A1 ) We assume that the function gi : R+ −→ R

+(for i = 1, 2) is of class C1

satisfying:

1−

∫ ∞

0

gi(t)dt ≥ ki > 0, gi(0) = gi0 > 0, (2.1)

and there exist nonincreasing continuous functions ξ1,ξ2: R
+ −→ R

+ satisfying

ξ′(t) ≤ 0, ∀t > 0,

∫ ∞

0

ξ(t) = ∞, ξ(t) = min{ξ1(t), ξ2(t)}, (2.2)

where
g′i(t) + ξ(t)gi(t) ≤ 0. (2.3)

(A2 ) The function ρ : Rn → R
∗
+, ρ(x) ∈ C0,γ(Rn) with γ ∈ (0, 1) and ρ ∈ Ls(Rn)∩

L∞(Rn), where s = 2n
2n−qn+2q .

Definition 2.1 ( [9], [19]). We define the function spaces of our problem and its
norm as follows:

D(Rn) =
{
f ∈ L2n/(n−2)(Rn) : ∇f ∈ (L2(Rn))n

}
, (2.4)

and the spaces L2
ρ(R

n) to be the closure of C∞
0 (Rn) functions with respect to the

inner product:

(f, h)L2
ρ(R

n) =

∫

Rn

ρfhdx. (2.5)
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For 1 < l <∞, if f is a measurable function on R
n, we define

‖f‖Ll
ρ(R

n) =

(∫

Rn

ρ|f |ldx

)1/l

. (2.6)

The space L2
ρ(R

n) is a separable Hilbert space.
So, we are able to construct the necessary evolution triple for the space setting of
our problem, which is:

D(Rn) ⊂ L2
ρ(R

n) ⊂ D−1(Rn), (2.7)

where all the embedding are compact and dense.
The following technical Lemma will play an important role in the sequel.

Lemma 2.2. [5] (Lemma1.1) For any two functions g, v ∈ C1(R) and θ ∈ [0, 1]
we have

v′(t)

t∫

0

g(t− s)v(s)ds = −
1

2

d

dt

t∫

0

g(t− s)|v(t) − v(s)|2ds

+
1

2

d

dt




t∫

0

g(s)ds



 |v(t)|2

+
1

2

t∫

0

g′(t− s)|v(t)− v(s)|2ds

−
1

2
g(t)|v(t)|2.

and

∣∣∣∣
∫ t

0

g(t− s)(v(t) − v(s))ds

∣∣∣∣
2

≤

(∫ t

0

|g(s)|2(1−θ)ds

) t∫

0

|g(t− s)|2θ|v(t)− v(s)|2ds.

Lemma 2.3. [4] Let ρ satisfies (A2), then for any u ∈ D(∇)

‖u‖Lq
ρ(Rn) ≤ ‖ρ‖Ls(Rn)‖∇u‖L2(Rn), (2.8)

with,

s =
2n

2n− qn+ 2q
, 2 ≤ q ≤

2n

n− 2
.

Corollary 2.4. If q = 2, the Lemma 2.3. yields

‖u‖L2
ρ(R

n) ≤ ‖ρ‖Ln/2(Rn)‖∇u‖L2(Rn),

where we can assume ‖ρ‖Ln/2(Rn) = c > 0 to get

‖u‖L2
ρ(R

n) ≤ c‖∇u‖L2(Rn). (2.9)
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To study the properties of the operator φ∆, we consider as in [13], the equation

φ(x)∆u(x) = η(x), x ∈ R
n, (2.10)

without boundary conditions. Since for every u, v in C∞
0 (Rn)

(φ∆u, v)L2
ρ
=

∫

Rn

∇u∇vdx, (2.11)

and L2
ρ(R

n) are defined with respect to the inner product (2.5), we may consider
equation (2.10) as operator equation:

∆0u = η, ∆0 : D(∆0) ⊆ L2
ρ(R

n) → L2
ρ(R

n), η ∈ L2
ρ(R

n).

The relations (2.11) implies that the operators φ∆ with domain of definition
D(∆0) = C∞

0 (Rn) being symmetric. Let us note that the operator φ∆ is not
symmetric in the standard Lebesgue space L2(Rn), because of the appearance of
φ(x) (see [ [21], pages 185-187]). From (2.9) and (2.11) we have

‖u‖L2
ρ
≤ c(∆0u, u)L2

ρ
, for all u ∈ D(∆0). (2.12)

From (2.11) and (2.12) we conclude that ∆0 is a symmetric, strongly monotone
operator on L2

ρ(R
n). The energy scalar product is given by:

(u, v)E =

∫

Rn

∇u∇vdx,

and the energy space is the completion of D(∆0) with respect to (u, v)E . It is
obvious that the energy space XE is the homogeneous Sobolev space D(Rn). The
energy extension ∆E , namely

φ∆ : D(Rn) → D−1(Rn),

is defined to be the duality mapping ofD(Rn). For every η ∈ D−1(Rn) the equation
(2.10), has a unique solution. Define D(∆1) to be the set of all solutions of the
equation (2.10) for arbitrary η ∈ L2

ρ(R
n). The operator extension ∆1 of ∆0, [see

[24], Theorem 19.C] is the restriction of the energy extension ∆E to the set D(∆1).
The operator ∆1 is self-adjoint and therefore graph-closed. Its domain is a Hilbert
space with respect to the graph scalar product

(u, v)D(∆1) = (u, v)L2
ρ
+ (∆1u,∆1v)L2

ρ
, for all u, v ∈ D(∆1).

The norm induced by the scalar product (u, v)D(∆1) is

‖u‖D(∆1) =

{∫

Rn

ρ|u|2dx+

∫

Rn

φ|∆u|2dx

} 1

2

.

which is equivalent to the norm

‖∆1u‖L2
ρ
=

{∫

Rn

φ|∆u|2dx

} 1

2

.
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So, we have established the evolution quartet

D(∆1) ⊂ D(Rn) ⊂ L2
ρ(R

n) ⊂ D−1(Rn), (2.13)

where all the embedding are dense and compact. A consequence of the compactness
of the embedding in (2.13) is that the eigenvalue problem

−∆u = µu, x ∈ R
n, (2.14)

has a complete system of eigenfunctions {wn, µn} with the following properties:






−∆wj = µwj , j = 1, 2 · · · , wj ∈ D(Rn),

0 < µ1 ≤ µ2 ≤ · · · , µj → ∞, as j → ∞.
(2.15)

It can be shown, as in [4], that every solution of (2.14) is such that

u(x) −→ 0, as |x| −→ ∞, (2.16)

uniformly with respect to x. Finally, we give the definition of weak solutions for
the problem (1.1).

Definition 2.5. A weak solution of (1.1) is (u1, u2) such that

• (u1, u2) ∈ (L2[0, T ;D(Rn)])2, (u′1, u
′
2) ∈ (L2[0, T ;Ll

ρ(R
n)])2 and

(u′′1 , u
′′
2) ∈ (L2[0, T ;D−1(Rn)])2,

• For all (v, w) ∈ (C∞
0 ([0, T ]×R

n))2, (u1, u2) satisfies the generalized formula:






∫ T

0 (
(
|u′1|

l−2u′1
)′
, v)Ll

ρ
ds+ α

∫ T

0 (u2, v)L2
ρ
ds+

∫ T

0

∫
Rn ∇u1∇vdxds

+
∫ T

0

∫
Rn ∇u′1∇vdxds−

∫ T

0

∫
Rn

∫ s

0
g1(s− τ )∇u1(τ )dτ∇v(s)dxds = 0,

∫ T

0 (
(
|u′2|

l−2u′2
)′
, w)Ll

ρ
ds+ α

∫ T

0 (u1, w)L2
ρ
ds+

∫ T

0

∫
Rn ∇u2∇wdxds

+
∫ T

0

∫
Rn ∇u′2∇wdxds −

∫ T

0

∫
Rn

∫ s

0
g2(s− τ )∇u2(τ )dτ∇w(s)dxds = 0.

• (u1, u2) satisfies the initial conditions
(u10(x), u20(x)) ∈ (D(Rn))2, (u11(x), u21(x)) ∈ (Ll

ρ(R
n))2.

We are now ready to state and prove our existence results.

3. Well-posedness result for nonlinear case

This section is devoted to prove the existence and uniqueness of solutions to
the system (1.1) taking account the nonlinear case in the terms responsible on the
relation between tow equations, that is replacing αu1, αu2 by f1(u1, u2), f2(u1, u2)
introduced in the last section. First, we prove the existence of the unique solution
of the restricted problem on BR, the main ingredient used here is the Galerkin
approximations introduced in [14].
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Lemma 3.1. Assume that (A1), (A2), (5.2)-(5.6) are satisfied. Suppose that the
constants T > 0, R > 0 and the initial conditions

(u10, u20) ∈ (D(BR))
2, (u11, u21) ∈ (Ll

ρ(BR))
2,

are given. Then there exists a unique solution for the problem (1.1) such that

ui ∈ C[0, T ;D(BR)] and u′i ∈ C[0, T ;Ll
ρ(BR)].

Proof: The existence is proved by using the Galerkin method, which consists in
constructing approximations of the solution, then we obtain a priori estimates nec-
essary to guarantee the convergence of these approximations. So, we take {wi}

∞
i=1

be the eigen-functions of the operator −∆. Then {wi}
∞
i=1 is an orthogonal basis of

D(BR) which is orthonormal in L2
ρ(BR).

Let
Vm = span{w1, w2, · · · , wm},

and the projection of the initial data on the finite dimensional subspace Vm is given
by:

um10 =

m∑

j=0

ajwj , um20 =

m∑

j=0

bjwj , um11 =

m∑

j=0

cjwj , um21 =

m∑

j=0

djwj ,

We search approximate solutions

um1 (x, t) :=

m∑

j=0

hmj (t)wj(x), um2 (x, t) :=

m∑

j=0

kmj (t)wj(x),

of the approximate problem in Vm





∫
BR

(
ρ(x)

(
|u′m1 |l−2u′m1

)′
w −

∫ t

0 g1(t− s)∇um1 (s, x)∇wds
)
dx

+
∫
BR

(ρ(x)f1(u
m
1 , u

m
2 )w +∇um1 ∇w +∇u′m1 ∇w) dx = 0,

∫
BR

(
ρ(x)

(
|u′m2 |l−2u′m2

)′
w −

∫ t

0 g2(t− s)∇um2 (s, x)∇wds
)
dx

+
∫
BR

(ρ(x)f2(u
m
1 , u

m
2 )w +∇um2 ∇w +∇u′m2 ∇w) dx = 0,

um1 (0) = um10, u
′m
1 (0) = um11, u

m
2 (0) = um20, u

′m
2 (0) = um21.

(3.1)

Based on standard existence theory for differential equations, one can conclude the
existence of solution (um1 , u

m
2 ) of (3.1) on a maximal time interval [0, tm), for each

m ∈ N.

• (A priori estimate 1): In (3.1), let w = (um1 )′ in the first equation and
w = (um2 )′ in the second equation, add the resulting equations and integrate by
parts to obtain

d

dt
Em(t) =

1

2

2∑

i=1

(g′i ◦ ∇u
m
i )(t)−

1

2

2∑

i=1

gi(t)‖∇u
m
i (t)‖22 −

2∑

i=1

‖∇u′mi ‖22, (3.2)
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This means, using (A1 ), that for some positive constant C independent of t and
m, we have

Em(t) ≤ Em(0) ≤ C. (3.3)

• (A priori estimate 2): In (3.1), let w = −∆u′m1 in the first equation and w =
−∆u′m2 in the second equation, add the resulting equations, integrate by parts and
use (A1 ) to obtain

d

dt

2∑

i=1

(
l − 1

l
‖∆u′mi ‖lLl

ρ
+

1

2

(
1−

∫ t

0

gi(s)ds

)
‖∆umi ‖22 +

1

2
(gi ◦∆u

m
i )

)

=

2∑

i=1

(
1

2
(g′i ◦∆u

m
i )−

1

2
gi(t)‖∆u

m
i ‖22 + ‖∆u′mi ‖22

)

−

2∑

i=1

∫

BR

ρ(x)fi(u
m
1 , u

m
2 )∆u′mi dx

≤ −

2∑

i=1

∫

BR

ρ(x)fi(u
m
1 , u

m
2 )∆u′mi dx. (3.4)

Then, integrating over (0, t) yields

2∑

i=1

(
l − 1

l
‖∆u′mi ‖lLl

ρ
+

1

2

(
1−

∫ t

0

gi(s)ds

)
‖∆umi ‖22 +

1

2
(gi ◦∆u

m
i )

)

≤

2∑

i=1

(
‖∆umi1‖

l
Ll

ρ
+ ‖∆umi0‖

2
2 −

∫

BR

ρ(x)fi(u
m
1 , u

m
2 )∆umi dx

)

+

2∑

i=1

∫

BR

ρ(x) (fi(u
m
10, u

m
20)∆u

m
i0) dx (3.5)

+

∫ t

0

∫

BR

ρ(x)

(
∂f1
∂u

2

u′m2 ∆um1 +
∂f2
∂u

1

u′m1 ∆um2

)
dxds.

To estimate the terms on the right hand side of (3.6), we use (5.2)-(5.4), Young’s
inequality and (2.9) and take (3.3) into account to get

∫

BR

ρ(x)fi(u
m
1 , u

m
2 )∆umi ≤ k

∫

BR

ρ(x)
(
|um1 |+ |um2 |+ |um1 |βi1 + |um2 |βi2

)
∆umi ,

≤ δ‖∆umi ‖2L2
ρ
+
c

δ

∫

BR

ρ(x)
(
|um1 |2 + |um2 |2 + |um1 |2βi1 + |um2 |2βi2

)
,

≤ δ‖∆umi ‖2L2
ρ
+
c

δ

(
‖um1 ‖2L2

ρ
+ ‖um2 ‖2L2

ρ
+ ‖um1 ‖

2βi1

L2
ρ

+ ‖um2 ‖
2βi2

L2
ρ

)
,

≤ δ‖∆umi ‖2L2
ρ
+
c

δ

(
‖∇um1 ‖2L2

ρ
+ ‖∇um2 ‖2L2

ρ
+ ‖∇um1 ‖

2βi1

L2
ρ

+ ‖∇um2 ‖
2βi2

L2
ρ

)
,

≤ δ‖∆umi ‖2L2
ρ
+
c

δ
Em(0)Em(t),

≤ δ‖∆umi ‖2L2
ρ
+
c

δ
. (3.6)
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Since 1 ≤ βij , i, j = 1, 2. Now, we estimate

I :=

∫

BR

ρ(x)
∂fi
∂u

1

u′mi ∆umi .

First, we observe that
β1j − 1

2β1j

+
1

2β1j

+
1

2
= 1,

and use (A2 ) and the generalized Hölde’s inequality to infer

|I| ≤ d

∫

BR

ρ(x)
(
1 + |um1 |β11

−1 + |um2 |β12
−1

)
u′mi ∆umi ,

≤ d

(
‖u′mi ‖L2

ρ
+ ‖u′mi ‖

L
2β11
ρ

‖um1 ‖
β
11

−1

L
2β11
ρ

+ ‖u′mi ‖
L

2β12
ρ

‖um2 ‖
β
12

−1

L
2β12
ρ

)
‖∆umi ‖L2

ρ
.

Then, by (2.9), (3.3) and Young’s inequality, we arrive at

|I| ≤ c
(
1 + ‖∇um1 ‖

β
11

−1
2 + ‖∇um2 ‖

β
12

−1
2

)
‖∇u′mi ‖L2

ρ
‖∆umi ‖L2

ρ
,

≤ c
(
‖∇u′mi ‖L2

ρ
· ‖∆umi ‖L2

ρ

)
≤ c‖∇u′mi ‖2L2

ρ
+ c‖∆umi ‖2L2

ρ
. (3.7)

Since the other terms in (3.6) can be similarly treated and the norms of the initial
data are uniformly bounded, we combine (3.6), (3.7), use (A1 ) and take δ small
enough to end up with

2∑

i=1

(
‖∇u′mi ‖lLl

ρ
+ ‖∆umi ‖22

)
≤ c+ c

2∑

i=1

∫ t

0

(
‖∇u′mi ‖lLl

ρ
+ ‖∆umi ‖22

)
ds.

Using Gronwall’s inequality, this implies that

2∑

i=1

(
‖∇u′mi ‖lLl

ρ
+ ‖∆umi ‖22

)
≤ C, ∀t ∈ [0, T ] and m ∈ N. (3.8)

• (A priori estimate 3): In (3.1), let w = (um1 )′′ in the first equation and w = (um2 )′′

in the second equation. Then, by exploiting the previous estimates and using
similar arguments, we find

2∑

i=1

‖u′′mi ‖22 ≤ C, ∀t ∈ [0, T ] and m ∈ N. (3.9)

From (3.3), (3.8) and (3.9), we conclude that

umi are uniformly bounded in L∞(0, T ;D(BR)),

um
′

i are uniformly bounded in L∞(0, T ;Ll
ρ(BR)),

um
′′

i are uniformly bounded in L2(0, T ;D−1(BR)),
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which implies that there exists subsequences of {umi }, which we still denote in the
same way, such that

umi
∗

−→ weak ui in L
∞(0, T ;D(BR)),

um
′

i
∗

−→ weak u′i in L
∞(0, T ;Ll

ρ(BR)), (3.10)

um
′′

i
∗

−→ weak u′′i in L2(0, T ;D−1(BR)).

In the sequel, we will deal with the nonlinear term. By Aubin’s Lemma (see [14]),
we find, up to a subsequence, that

umi → ui strongly in L2(0, T ;Ll
ρ(BR)). (3.11)

Then,

umi → ui almost everywhere in (0, T )×BR, (3.12)

and therefore, from (5.5), (5.6),

fi(u
m
1 , u

m
2 ) → fi(u1, u2) almost everywhere in (0, T )×BR, for i = 1, 2. (3.13)

Also, as umi are bounded in L∞(0, T ;L2
ρ(BR)), then the use of (5.2)-(5.6) gives that

fi(u
m
1 , u

m
2 ) is bounded in L∞(0, T ;L2

ρ(BR)). From (3.13), we can deduce that

fi(u
m
1 , u

m
2 )⇀ fi(u1, u2) in L

2(0, T ;L2
ρ(BR)), for i = 1, 2.

Combining the results obtained above, we can pass to the limit and conclude that
(u1, u2) is the solution of system (1.1) restricted un BR.

✷

In the next result, we will extend our solutions to R
n.

Theorem 3.2. Assume that (A1), (A2), (5.2)-(5.6) are satisfied. Suppose that
the initial conditions

(u10, u11) ∈ (C∞
0 (BR)

2, (u20, u21) ∈ (C∞
0 (BR))

2,

are given. Then for the problem (1.1), there exists a unique solution such that

(u1, u2) ∈ (C[0, T ;D(Rn)])2 and (u′1, u
′
2) ∈ (C[0, T ;Ll

ρ(R
n)])2.

Proof: (a) Existence. Let R0 > 0 such that supp(u10, u20) ⊂ BR0
and

supp(u11, u21) ⊂ BR0
. Then, for R ≥ R0, R ∈ N, we consider the approximat-

ing problem




(
|u

′R
1 |l−2u

′R
1

)′

+ f1(u
R
1 , u

R
2 )

−φ(x)∆
(
uR1 +

∫ t

0
g1(s)u

R
1 (s− t, x)ds+ u′R1

)
= 0, x ∈ BR × R

+,
(
|u

′R
2 |l−2u

′R
2

)′

+ f2(u
R
1 , u

R
2 )

−φ(x)∆
(
uR2 +

∫ t

0 g2(s)u
R
2 (s− t, x)ds+ u′R2

)
= 0, x ∈ BR × R

+,

(uR1 (0, x), u
R
2 (0, x)) = (u01(x), u

0
2(x)) ∈ (C∞

0 (BR))
2
,

(u
′R
1 (0, x), u

′R
2 (0, x)) = (u11(x), u

2
2(x)) ∈ (C∞

0 (BR))
2
.

(3.14)
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By Lemma 3.1, problem (3.14) has a unique solution uRi such that

(uR1 , u
R
2 ) ∈ (C[0, T ;D(BR)])

2 and ((uR1 )
′, (uR2 )

′) ∈ (C[0, T ;Ll
ρ(BR)])

2.

We extend the solution of the problem (3.14) as

(ũR1 , ũ
R
2 ) =:

{
(uR1 , u

R
2 ), if |x| ≤ R,

0, otherwise.
(3.15)

The solution (uR1 , u
R
2 ) satisfies the estimates

‖ũRi ‖L∞(0,T ;D(Rn)) ≤ K, ‖f(ũRi )‖L∞(0,T ;D(Rn)) ≤ K,
‖(ũRi )

′‖L∞(0,T ;Ll
ρ(R

n)) ≤ K, ‖(ũRi )
′′‖L∞(0,T ;D−1(Rn)) ≤ K,

(3.16)

where the constant K is independent of R. The estimates (3.16) imply that

ũRi is relatively compact in C([0, T ];L2
ρ(R

n)). (3.17)

Next using relations (3.16) and (3.17), the continuity of the embedding

C([0, T ];L2
ρ(R

n)) ⊂ L2([0, T ];L2
ρ(R

n)),

and the continuity of fi we may extract a subsequence of ũRi , denoted by ũRm

i ,
such that as Rm → ∞ we get

ũRm

i
∗

−→ ũi in L
∞(0, T ;D(BR)),

(ũRm

i )′
∗

−→ u′i in L
∞(0, T ;Ll

ρ(BR)), (3.18)

(ũRm

i )′′
∗

−→ u′′i in L∞(0, T ;D−1(BR)),

f(ũRm

i )
∗

−→ f(ũi) in L
∞(0, T ;D(BR)).

For fixed R = Rm, let Lm denote the operator of restriction

Lm : [0, T ]× R
n → [0, T ]×BR.

It is clear that the restricted subsequence Lmũ
Rm

i satisfies the estimates obtained

in Lemma 3.1. Therefore there exists a subsequence ũ
Rmj

i = ũji for which it can be

shown by following the procedure of Lemma 3.1, that Lmũ
j
i converges weakly to
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solution ũmi . We have





∫ T

0

(
Lm

(
|ũj

′

1 |
l−2ũj

′

1

)′

, v

)

Ll
ρ(BR)

ds+
∫ T

0

(
f1(Lmũ

j
1, Lmũ

j
2), v

)

L2
ρ(BR)

ds

+
∫ T

0

∫
BR

∇Lmũ
j
1∇vdxds−

∫ T

0

∫ t

0 g1(t− s)
∫
BR

∇ũj1∇vdxds

+
∫ T

0

∫
BR

∇Lmũ
′j
1 ∇vdxds

=
∫ T

0

((
|ũ′j1 |

l−2ũj
′

1

)′

, v

)

Ll
ρ(R

n)

ds+
∫ T

0

(
f1(ũ

j
1, ũ

j
2), v

)

L2
ρ(R

n)

+
∫ T

0

∫
Rn ∇ũj1∇vdxds−

∫ T

0

∫ t

0 g1(t− s)
∫
Rn ∇ũj1∇vdxds,

∫ T

0

(
Lm

(
|ũj

′

2 |
l−2ũj

′

2

)′

, v

)

Ll
ρ(BR)

ds+
∫ T

0

(
f2(Lmũ

j
1, Lmũ

j
2), v

)

L2
ρ(BR)

ds

+
∫ T

0

∫
BR

∇Lmũ
j
2∇vdxds−

∫ T

0

∫ t

0
g2(t− s)

∫
BR

∇ũj2∇vdxds

+
∫ T

0

∫
BR

∇Lmũ
′j
2 ∇vdxds

=
∫ T

0

((
|ũ′j2 |

l−2ũj
′

2

)′

, v

)

Ll
ρ(R

n)

ds+
∫ T

0

(
f2(ũ

j
1, ũ

j
2), v

)

L2
ρ(R

n)

+
∫ T

0

∫
Rn ∇ũj2∇vdxds−

∫ T

0

∫ t

0
g2(t− s)

∫
Rn ∇ũj2∇vdxds,

(3.19)
for every v ∈ C∞

0 ([0, T ]×BR). Passing to the limit in (3.19) as j −→ ∞, we obtain
that Lmũi = ũmi . The equalities (3.19) hold for any v ∈ C∞

0 ([0, T ]×R
n) since the

radius R is arbitrarily chosen. Therefore ũi is a solution of the problem (3.14).
(b) Uniqueness. Let us assume that (u11, u21), (u12, u22) are two strong solutions
of (1.1). Then, (z1, z2) = (u11 − u12, u21 − u22) satisfies, for all w ∈ D(Rn)





∫
Rn

(
ρ(x)

(
|z′1|

l−2z′1
)′
w +∇z1∇w +

∫ t

0 g1(s)∇z1(s− t, x)∇wds
)
dx

+
∫
Rn ρ(x)f1(z1, z2)wdx +∇z′1∇w = 0,∫

Rn

(
ρ(x)

(
|z′2|

l−2z′2
)′
w +∇z2∇w +

∫ t

0 g2(s)∇z2(s− t, x)∇wds
)
dx

+
∫
Rn ρ(x)f2(z1, z2)wdx +∇z′2∇w = 0.

(3.20)

Substituting w = z′1 in the first equation and w = z′2 in the second equation, adding
the resulting equations, integrating by parts and using (A1 ), yield

d

dt

2∑

i=1

(
l − 1

l
‖z′i‖

l
Ll

ρ
+

1

2

(
1−

∫ t

0

gi(s)ds

)
‖∇zi‖

2
2 +

1

2
(gi ◦ ∇zi)

)

≤

∫

Rn

([f1(u21, u22) + f1(u11, u12)] z
′
1 + [f2(u21, u22) + f2(u11, u12)] z

′
2) dx.

Making use of (5.6) and following similar arguments that used to obtain (3.7), we
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find

∫

Rn

([f1(u21, u22) + f1(u11, u12)] z
′
1 + [f2(u21, u22) + f2(u11, u12)] z

′
2) dx

≤ k

∫

Rn

(
1 + |u11|

β
11

−1 + |u12|
β
11

−1 + |u21|
β
12

−1 + |u22|
β
12

−1
)
(|z1|+ |z2|)z

′
1dx

+ k

∫

BR

(
1 + |u11|

β
21

−1 + |u12|
β
21

−1 + |u21|
β
22

−1 + |u22|
β
22

−1
)
(|z1|+ |z2|)z

′
2dx,

≤ c

2∑

i=1

(
‖z′i‖

l
Ll

ρ
+ ‖∇zi‖

2
2.
)

(3.21)

Combining (3.20)- (3.21), integrating over (0, t) and using Gronwall’s Lemma, then
we deduce that

2∑

i=1

(
‖z′i‖

l
Ll

ρ
+ ‖zi‖

2
2

)
= 0, (3.22)

which means that (u11, u21) = (u12, u22). This completes the proof. ✷

We can now state and prove the asymptotic behavior of the solution of (1.1).

4. Decay rate for linear cases

We show that our solution decays time asymptotically to zero and the rate of
decay for the solution is similar to that of the memory terms, making some small
perturbation in the associate energy, for this purpose, we introduce the functional

ψ(t) =

2∑

i=1

∫

Rn

ρ(x)ui|u
′
i|
l−2u′idx. (4.1)

The following Lemma will be useful in the proof of our next result.

Lemma 4.1. Under the assumptions (A1), (A2), the functional ψ satisfies, along
the solution of (1.1),

ψ′(t) ≤

2∑

i=1

‖u′i‖
l
Ll

ρ(R
n) − (k − 1− δ + |α|c)

2∑

i=1

‖∇ui‖
2
2 + c

2∑

i=1

(gi ◦ ∇ui), (4.2)

for positive constants c.
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Proof: From (4.1), integrate by parts over Rn, we have

ψ′(t) =

∫

Rn

ρ(x)u′l1dx+

∫

Rn

ρ(x)u1
(
|u′1|

l−2u′1
)′
dx

+

∫

Rn

ρ(x)u′l2dx+

∫

Rn

ρ(x)u2
(
|u′2|

l−2u′2
)′
dx,

=

∫

Rn

(
ρ(x)u′l1 − u1∆u1 − u1∆u

′
1

)
dx

=

∫

Rn

(
−αρ(x)u1u2 + u1

∫ t

0

g1(t− s)∆u1(s, x)ds

)
dx

+

∫

Rn

(
−αρ(x)u1u2 + u2

∫ t

0

g2(t− s)∆u2(s, x)ds

)
dx,

+

∫

Rn

(
−αρ(x)u1u2 + u2

∫ t

0

g2(t− s)∆u2(s, x)ds

)
dx,

=
2∑

i=1

‖u′i‖
l
Ll

ρ(R
n) −

(
1−

∫ t

0

gi(s)ds
) 2∑

i=1

‖∇ui‖
2
2

−
2∑

i=1

‖∇u′i‖
2
2 − 2α

∫

Rn

ρ(x)u1u2dx

+
2∑

i=1

∫

Rn

∇ui

∫ t

0

gi(t− s)(∇ui(s)−∇ui(t))dsdx.

Recalling that
∫ t

0
gi(s)ds ≤

∫∞

0
gi(s)ds = 1− ki, using Young’s inequality, Lemma

2.3 and Lemma 2.2, we obtain

ψ′(t) ≤

2∑

i=1

‖u′i‖
l
Ll

ρ(R
n) −

2∑

i=1

‖∇u′i‖
2
2 − (ki − 1 + |α|‖ρ‖−1

Ls(Rn))

2∑

i=1

‖∇ui‖
2
2

+ δ

2∑

i=1

‖∇ui‖
2
2 +

1

4δ

2∑

i=1

∫

Rn

(∫ t

0

gi(t− s)|∇ui(s)−∇ui(t)|ds

)2

dx,

≤

2∑

i=1

‖u′i‖
l
Ll

ρ(R
n) −

2∑

i=1

‖∇u′i‖
2
2 − (k − 1− δ + |α|c)

2∑

i=1

‖∇ui‖
2
2

+
(1 − k)

4δ

2∑

i=1

(gi ◦ ∇ui).

For α small enough and k = min{k1, k2}. ✷

Our main result reads as follows.

Theorem 4.2. Let (u10, u11), (u20, u21) ∈ D(Rn)×Ll
ρ(R

n) and suppose that (A1),
(A2) hold. Then there exist positive constantsW , ω such that the energy of solution
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given by (1.1) satisfies,

E(t) ≤WE(0) exp

(
−ω

∫ t

0

ξ(s)ds

)
, ∀t ≥ 0. (4.3)

In order to prove this theorem, let us define

L(t) = N1E(t) + εψ(t), ∀ε > 0. (4.4)

for N1 > 1, we need the next lemma, which means that there is equivace between
the perturbed energy and energy functions.

Lemma 4.3. For N1 > 1, we have

β1L(t) ≤ E(t) ≤ L(t)β2, ∀t ≥ 0, (4.5)

holds for some positive constants β1 and β2.

Proof: By (4.1) and (4.4), we have

|L(t)−N1E(t)| ≤ ε|ψ1(t)|,

≤ ε

2∑

i=1

∫

Rn

∣∣ρ(x)ui|u′i|l−2u′i
∣∣ dx.

Thanks to Hölder’s and Young’s inequalities with exponents l
l−1 , l, since

2n
n+2 ≥

l ≥ 2, we have by using Lemma 2.3

∫

Rn

∣∣ρ(x)ui|u′i|l−2u′i
∣∣ dx ≤

(∫

Rn

ρ(x)|ui|
ldx

)1/l (∫

Rn

ρ(x)|u′i|
ldx

)(l−1)/l

,

≤
1

l

(∫

Rn

ρ(x)|ui|
ldx

)
+
l − 1

l

(∫

Rn

ρ(x)|u′i|
ldx

)
,

≤ c‖u′i‖
l
Ll

ρ(R
n) + c‖ρ‖lLs(Rn)‖∇ui‖

l
2. (4.6)

Then, since l ≥ 2, we have by using (1.4)

|L(t)−N1E(t)| ≤ εc
2∑

i=1

(
‖u′i‖

l
Ll

ρ(R
n) + ‖∇ui‖

l
2

)
,

≤ εc(E(t) + El/2(t)),

≤ εcE(t)(1 + E[(l/2)−1](t)),

≤ εcE(t)(1 + E[(l/2)−1](0)),

≤ εcE(t).

Consequently, (4.5) follows. ✷
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Proof of Theorem 4.2 From (1.4), results of Lemma 4.1, we have

L′(t) = N1E
′(t) + εψ′(t),

≤ N1

(1
2

2∑

i=1

(g′i ◦ ∇ui)(t)−

2∑

i=1

‖∇u′i‖
2
2

)

+ ε

2∑

i=1

(
‖u′i‖

l
Ll

ρ(R
n) − (k − 1− δ + |α|c)‖∇ui‖

2
2 + c(gi ◦ ∇ui)

)
,

At this point, we choose N1 large and ε so small such that

L′(t) ≤ M0

2∑

i=1

(gi ◦ ∇ui)− εE(t), ∀t ≥ 0. (4.7)

Multiplying (4.7) by ξ(t) gives

ξ(t)L′(t) ≤ −εξ(t)E(t) +M0ξ(t)
2∑

i=1

(gi ◦ ∇ui). (4.8)

The last term can be estimated, using (A1 ) as follows

ξ(t)

2∑

i=1

(gi ◦ ∇ui) ≤

2∑

i=1

ξi(t)

∫

Rn

∫ t

0

gi(t− s)|ui(t)− ui(s)|
2dsdx,

≤

2∑

i=1

∫

Rn

∫ t

0

ξi(t− s)gi(t− s)|ui(t)− ui(s)|
2dsdx,

≤ −

2∑

i=1

∫

Rn

∫ t

0

g′i(t− s)|ui(t)− ui(s)|
2dsdx,

≤ −

2∑

i=1

(g′i ◦ ∇ui) ≤ −E′(t). (4.9)

Thus, (4.7) becomes

ξ(t)L′(t) +M0E
′(t) ≤ −εξ(t)E(t) ∀t ≥ 0. (4.10)

Using the fact that ξ is a nonincreasing continuous function as ξ1 and ξ2 are
nonincreasing and so ξ is differentiable, with ξ′(t) ≤ 0 for a.e t, then

(ξ(t)L(t) +M0E(t))′ ≤ ξ(t)L′(t) +M0E
′(t) ≤ −εξ(t)E(t) ∀t ≥ 0.(4.11)

Since, using (4.5)

F = ξL+M0E ∼ E, (4.12)
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we obtain, for some positive constant ω

F ′(t) ≤ −ωξ(t)F (t) ∀t ≥ 0. (4.13)

Integration over (0, t) leads to, for some constant ω > 0 such that

F (t) ≤WF (0) exp

(
−ω

∫ t

0

ξ(s)ds

)
, ∀t ≥ 0. (4.14)

Recalling (4.12), estimate (4.14) yields the desired result (4.3). This completes the
proof of Theorem (4.2).

5. Concluding comments

1- One can easily obtain the same result in Theorem (4.2) in the nonlinear case






(
|u′1|

l−2u′1
)′
+ f1(u1, u2)− φ(x)∆

(
u1 +

∫ t

0
g1(s)u1(t− s, x)ds+ u′1

)
= 0,

(
|u′2|

l−2u′2
)′
+ f2(u1, u2)− φ(x)∆

(
u2 +

∫ t

0
g2(s)u2(t− s, x)ds+ u′2

)
= 0,

(u1(0, x), u2(0, x)) = (u10(x), u20(x)) ∈ (D(Rn))2,
(u′1(0, x), u

′
2(0, x)) = (u11(x), u21(x)) ∈ (Ll

ρ(R
n))2,

(5.1)
where our nonlinearity is given by the functions f1, f2 satisfying the next assump-
tions:

(hyp1 ) The functions fi : R
2 → R (for i=1,2) is of class C1 and there exists a

function F such that

f1(x, y) =
∂F

∂x
, f2(x, y) =

∂F

∂y
, (5.2)

F ≥ 0, xf1(x, y) + yf2(x, y)− F (x, y) ≥ 0. (5.3)

and
∣∣∣∣
∂fi
∂x

(x, y)

∣∣∣∣+
∣∣∣∣
∂fi
∂y

(x, y)

∣∣∣∣ ≤ d(1 + |x|βi1−1 + |y|βi2−1) ∀(x, y) ∈ R
2, (5.4)

for some constant d > 0 and 1 ≤ βij ≤
n

n−2 for i, j = 1, 2.
(hyp2 ) There exists a positive constant k such that

|fi(x, y)| ≤ k(|x| + |y|+ |x|βi1 + |y|βi2), (5.5)

and

|fi(x, y)− fi(r, s)|

≤ k(1 + |x|βi1−1 + |y|βi2−1 + |r|βi1−1 + |s|βi2−1)(|x − r|+ |y − s|), (5.6)

for all (x, y), (r, s) ∈ R
2 and i = 1, 2. Noting that we follow the same steps in the

linear cases with the same perturbed function and some calculations related with
the presence of f1, f2.
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2. Let us remark that, it is similar to study the question of existence and decay of
solution of the same problem with the presence of weak-viscoelasticity in the form






(
|u′1|

l−2u′1
)′
+ f1(u1, u2)− φ(x)∆

(
u1 + α1(t)

∫ t

0 g1(s)u1(t− s, x)ds+ u′1

)
= 0,

(
|u′2|

l−2u′2
)′
+ f2(u1, u2)− φ(x)∆

(
u2 + α2(t)

∫ t

0
g2(s)u2(t− s, x)ds+ u′2

)
= 0,

(u1(0, x), u2(0, x)) = (u10(x), u20(x)) ∈ (D(Rn))2,
(u′1(0, x), u

′
2(0, x)) = (u11(x), u21(x)) ∈ (Ll

ρ(R
n))2,

(5.7)
where we should need additional, conditions on α as follows

1− αi(t)

∫ t

0

gi(t)dt ≥ ki > 0,

∫ ∞

0

gi(t)dt < +∞, αi(t) > 0, (5.8)

lim
t→+∞

−α′(t)

α(t)ξ(t)
= 0 (5.9)

where
α(t) = min{α1(t), α2(t)}, ∀t ≥ 0.

For the reader we shall develop here the next important technical Lemma.

Lemma 5.1. For any v ∈ C1
(
0, T,H1(Rn)

)
we have

−

∫

Rn

α(t)

∫ t

0

g(t− s)Av(s)v′(t)dsdx

=
1

2

d

dt
α(t)

(
g ◦A1/2v

)
(t)

−
1

2

d

dt

[
α(t)

∫ t

0

g(s)

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds

]

−
1

2
α(t)

(
g′ ◦A1/2v

)
(t) +

1

2
α(t)g(t)

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds

−
1

2
α′(t)

(
g ◦A1/2v

)
(t) +

1

2
α′(t)

∫ t

0

g(s)ds

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds.

Proof: It’s not hard to see

∫

Rn

α(t)

∫ t

0

g(t− s)Av(s)v′(t)dsdx

= α(t)

∫ t

0

g(t− s)

∫

Rn

A1/2v′(t)A1/2v(s)dxds

= α(t)

∫ t

0

g(t− s)

∫

Rn

A1/2v′(t)
[
A1/2v(s)−A1/2v(t)

]
dxds

+α(t)

∫ t

0

g(t− s)

∫

Rn

A1/2v′(t)A1/2v(t)dxds.
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Consequently,

∫

Rn

α(t)

∫ t

0

g(t− s)Av(s)v′(t)dsdx

= −
1

2
α(t)

∫ t

0

g(t− s)
d

dt

∫

Rn

∣∣∣A1/2v(s)−A1/2v(t)
∣∣∣
2

dxds

+α(t)

∫ t

0

g(s)

(
d

dt

1

2

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dx

)
ds

which implies,

∫

Rn

α(t)

∫ t

0

g(t− s)Av(s)v′(t)dsdx

= −
1

2

d

dt

[
α(t)

∫ t

0

g(t− s)

∫

Rn

∣∣∣A1/2v(s)−A1/2v(t)
∣∣∣
2

dxds

]

+
1

2

d

dt

[
α(t)

∫ t

0

g(s)

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds

]

+
1

2
α(t)

∫ t

0

g′(t− s)

∫

Rn

∣∣∣A1/2v(s)−A1/2v(t)
∣∣∣
2

dxds

−
1

2
α(t)g(t)

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds.

+
1

2
α′(t)

∫ t

0

g(t− s)

∫

Rn

∣∣∣A1/2v(s)−A1/2v(t)
∣∣∣
2

dxds

−
1

2
α′(t)

∫ s

0

g(s)ds

∫

Rn

∣∣∣A1/2v(t)
∣∣∣
2

dxds.

This completes the proof. ✷

Under this additional conditions on α, the decay of energy associate with prob-
lem (5.7) is given in the next result

Theorem 5.2. Let (ui0, ui1) ∈ (D(Rn)×Ll
ρ(R

n)), i = 1, 2 and suppose that (A1),
(A2), (5.2)-(5.6) hold. Then there exist positive constantsW,ω such that the energy
of solution given by (5.7) satisfies,

E(t) ≤WE(t0) exp

(
−ω

∫ t

t0

α(s)ξ(s)ds

)
, (5.10)

where ξ(t) = min{ξ1(t), ξ2(t)}, ∀t ≥ t0 ≥ 0.
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14. J. L. Lions, Quelques méthodes de résolution des problemes aux limites non lineaires, Dunod,
Paris, 1969.

15. Muhammad I. Mustafa and S. A. Messaoudi, General stability result for viscoelastic wave
equations, Journal Of Mathematical Physics 53, 053702, 2012.

16. Muhammad I. Mustafa, Well posedness and asymptotic behavior of a coupled system of
nonlinear viscoelastic equations, Nonlinear Analysis 13, 452-463, 2012.

17. J. E. Munoz Rivera and M.G. Naso, On the decay of the energy for systems with memory
and indefinite dissipation, Asymptotic. Anal. 49 (3), 189-204, 2006.

18. D. Ouchenane, Kh. Zennir and M. Bayoud, Global nonexistence of solutions for a system of
nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian
Mathematical Journal 65, No. 7, 654-669, 2013.

19. Papadopulos, P.G. Stavrakakies, Global existence and blow-up results for an equations of
Kirchhoff type on R

n, Methods in Nolinear Analysis 17, 91-109, 2001.

20. Perikles G. Papadopoulos, Nikos M. Stavrakakis, Central manifold theory for the generalized
equation of Kirchhoff strings on R

n, Nonlinear Analysis 61, 1343-1362, 2005.

21. M. Reed and B. Simon, Methods of Mathematical Physics III: Scattering Theory, Academic
Press, New York, 1979.

22. F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic
system with damping, Nonlinear Analysis, 66, 2889-2910, 2007.



52 Keltoum Bouhali and Fateh Ellaggoune

23. Wenjun Liu, Gang Li and Linghui Hong, Decay of solutions for a plate equation with p-
Laplacian and memory term, Electronic J. Differential Equations 129, 1-5, 2012.

24. E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II, Monotone Operators,
Springer-Verlag, Berlin, 1990.

25. Kh. Zennir, Growth of Solutions With Positive Initial Energy to System of Degeneratly
Damped Wave Equations With Memory, Lobachevskii Journal of Mathematics, Vol. 35, No.
2, pp. 147-156, 2014.

26. Kh. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with
density in Rn, Ann Univ Ferrara, 61, 381-394, 2015.

27. S. Zitouni and Kh. Zennir, On the existence and decay of solution for viscoelastic wave equa-
tion with nonlinear source in weighted spaces, Rend. Circ. Mat. Palermo, II. Ser, 66(3):337-
353, 2016.

Keltoum Bouhali

Universite des freres Mentouri,

Faculte des sciences exactes,

Departement de Mathematiques,

Constantine 25000, Algeria.

E-mail address: klbouhali@yahoo.fr

and

Fateh Ellaggoune,

Department of Mathematics,

University 08 Mai 1945-Guelma, 24000,

Algeria.

E-mail address: fellaggoune@gmail.com


	Introduction and previous results
	Function spaces and statements
	Well-posedness result for nonlinear case
	Decay rate for linear cases
	Concluding comments

