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Existence Results on Nonlinear Fractional Differential Inclusions

Hakimeh Mohammadi

abstract: In this paper, we study the existence of solution for a boundary value
problem of nonlinear fractional differential inclusion of order α ∈ (0, 1) with ini-
tial boundary value problems (BVP for short) and the standard Riemann-Liouville
fractional derivative.

Our approach is based on the topological transversality method in fixed point
theory. we use a powerful method due to Granas to prove the existence of solution
to BVP. Granas method is commonly as topological transversality and relies on
the idea of an essential map. The method has been highly useful proving existence
of solutions for initial and boundary value problem for integer order differential
equations.
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inclusion.
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1. Introduction

In this paper, we study the existence of solution for a boundary value problem
of nonlinear fractional differential inclusion of order α ∈ (0, 1) with initial boundary
value problems (BVP for short) given by

Dαu(t) +Dβu(t) ∈ F (t, u(t)), t ∈ J = [0, 1] (1.1)

u(0) = 0 (1.2)

where 0 < β < α < 1 and Dα, Dβ is the standard Riemann-Liouville fractional
derivative, F : J × Rn → P (Rn) is a Caratheodory multifunction, Here P (Rn)
denotes the family of all nonempty subsets of Rn.
Fractional Differential inclusions have gained considerable importance due to their
application in various science, such as physics, mechanics, chemistry, engineering,
control, etc.(see [6]- [10]and [17]).
Recently, there has been a significant development in the study of ordinary and
partial differential equations and inclusions involving fractional derivatives, see the
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monographs of Kilbas [15], Lakshmikantham [11], Miller and Ross [12], Podlubny
[13], Samko [14], Rezapour [1] , Ouahab [16], .El-Sayed and Ibrahim [15] initiated
the study of fractional multivalued differential inclusions and existence results for
fractional boundary value problem and relaxation theorem, where studied by Oua-
hab [16].
In this paper we use a powerful method due to Granas [2] to prove the existence of
solution to BVP (1.1)-(1.2). Granas method is commonly as topological transver-
sality and relies on the idea of an essential map. The method has been highly useful
proving existence of solutions for initial and boundary value problem for integer
order differential equations. see for example [3], [4], [18].
This paper is organized as follows: in Section 2 we introduce some backgrounds
on fractional calculus and the topological transversality theorem. In Section 3 we
present our main results.

2. The Preliminary

For the convenience of the reader, we present the necessary definitions from
fractional calculus theory. These definitions can be found in the recent literaturs
and books(see [5]).

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,∞) → R is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

provided the right side is pointwise defind on (0,∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a
function f : (0,∞) → R is given by

Dαf(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

0

(t− s)n−α−1f(s) ds.

where n = [α] + 1, provided the right side is pointwise defind on (0,∞).

We denote by ‖y‖ the norm of any element y ∈ Rn and C(J,Rn) is the Banach
space of all continuous functions from J into Rn with the usual norm

‖y‖∞ = sup{‖y(t)‖ : 0 ≤ t ≤ 1}.

AC(J,Rn) is the space of absolutely continuous functions y : J → Rn and L1(J,Rn)
denote the Banach space of functions y : J → Rn that are Lebesgue integrable with
the norm

‖y‖L1 =

∫ 1

0

‖y(t)‖dt.

Let X , Y be banach spaces. A set-valued map F : X → P (Y ) is said to be compact
if F (X) = ⊔{F (y) : y ∈ X} is compact. F has convex (closed, compact) values
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if F (y) is convex (closed, compact) for every y ∈ X . F is bounded on bounded
subsets of X if F (B) is bounded in Y for every bounded subset B of X . A set-
valued map F is upper semicontinuous (usc for short) at z0 ∈ X if for every open
set V containing Fz0, there exists a neighborhood U of z0 such that F (U) ⊂ V .
F is usc on X if it is usc at every point of X if F is nonempty and compact-
valued then F is usc if and only if F has a closed graph. The set of all bounded
closed convex and nonempty subsets of X is denoted by bcc(X). A set-valued map
F : J → P (X) is measurable if for each y ∈ X , the function t 7→ dist(y, F (t)) is
measurable on J . If X ⊂ Y ,F has a fixed point if there exists y ∈ X such that
y ∈ Fy. Also, ‖F (y)‖p = sup{|x| : x ∈ F (y)}.

Definition 2.3. A multivalued map F : [0, 1] × Rn → P (Rn) is said to be L1-
Caratheodory if
(i) t 7→ F (t, x) is measurable for each x ∈ Rn,
(ii) x 7→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1].
(iii) for each ρ > 0, there exists φρ ∈ L1([0, 1], R+) such that

‖F (t, x)‖p = sup{‖v‖ : v ∈ F (t, x) ≤ φρ(t), ‖x‖ ≤ ρ, a.e.t ∈ [0, 1]}.

For each x ∈ C(J,Rn), define the set of selections of F by

S1
F,x = {v ∈ L1(J,Rn) : v ∈ F (t, x(t))a.e.t ∈ J = [0, 1]}.

Note that for an L1-Caratheodory multifunction F : J × Rn → P (Rn) the set
S1
F,x is not empty (see [19]).

Let C be a convex subset of X and U an open subset of C. K∂U (U, P (C)) denotes
the set of all set-valued maps G : U → P (C) which are compact, usc with closed
convex values and have no fixed points on ∂U (i.e., u ∈ Gu for all u ∈ ∂U). A
compact homotopy is a set-valued map H : [0, 1] × U → P (C) which is compact,
usc with closed convex values.
If u ∈ H(λ, u) for every λ ∈ [0, 1], u ∈ ∂U , H is said to be fixed point free on ∂U .
Two set valued maps F,G ∈ K∂U (U, P (C)) are called homotopic in K∂U (U, P (C))
if there exists a compact homotopy H : [0, 1]×U → P (C) which is fixed point free
on ∂U and such thatH(0, .) = F andH(1, .) = G. The function G ∈ K∂U (U, P (C))
is called essential if every F ∈ K∂U (U, P (C)) such that G|∂U = F |∂U , has a fixed
point. Otherwise G is called inessential.

Theorem 2.4. [2]Let G : U → P (C) be the constant set-valued map
G(u) ≡ u0. Then, if u0 ∈ U , G is essential.

Theorem 2.5. (Topological transversality theorem) [2]. Let F,G be two homotopic
maps in K∂U (U, P (C)). Then F is essential if and only if G is essential.

For further details of the Topological Transversality Theory we refer the reader
to [18].
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3. Main results

We are concerned with the existence of solutions for the problem (1.1),(1.2).
Consider the following spaces

ACB(J,R
n) = {u ∈ AC(J,Rn) : u(0) = 0}

ACα(J,Rn) = {u ∈ ACB(J,R
n) :

∫ t

0

| Dαu(t) | ds <∞}

ACα,β(J,Rn) = {u ∈ ACB(J,R
n) :

∫ t

0

| Dαu(t) +Dβu(t) | ds <∞}

ACα,β(J,Rn) is a Banach space with the norm

‖ u ‖ACα,β= max{‖ u ‖∞, ‖ D
αu+Dβu ‖L1}

For the existence of solutions for the problem (1.1),(1.2) we have the following
result which is useful in what follows.

Definition 3.1. A function u ∈ ACα,β(J,Rn) is said a solution to BVP (1.1),(1.2)
if there exists a function v ∈ L1(J,R) with v(t) ∈ F (t, u(t)) for a.e t ∈ J , 0 < β <

α < 1, and the function u satisfies condition (1.2).

Let h : J → Rn be continuous, and consider the linear fractional order differ-
ential equation

Dαu(t) +Dβu(t) = h(t), t ∈ J, 0 < β < α < 1 (3.1)

For the existence of solutions for the problem (1.1)-(1.2), we have the following
result which is useful in what follows.

Lemma 3.2. [21]Let 0 < β < α < 1 and let h : J → Rn be continuous. A function
u is a solution of (3.1), if and only if

u(t) =

∫ t

0

G(t− s)h(s)ds, t ∈ J = [0, 1]

where
G(t) = tα−1Eα−β,α(−t

α−β). (3.2)

Theorem 3.3. Assume the following hypothesis hold:
(A1) The function F : J ×Rn → bcc(Rn) is a L1-Caratheodory multivalued map,
(A2) There exists a function p ∈ L1(J,R+) and a continuous nondecreasing func-
tion ψ : [0,∞) → (0,∞), such that for each (t, u) ∈ J ×Rn

‖ F (t, u) ‖p≤ p(t)ψ(‖ u ‖)

(A3) lim supr 7→∞
r

ψ(r) = ∞

Then, the fractional BVP(1.1)-(1.2) has a Least one solution on J .
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This proof will be given in several steps;
Step 1.Consider the set valued operator γ : C(J,Rn) → P (L1(J,Rn)) defined by
(γu)(t) = F (t, u(t)) , γ is well defined upper semicontinuous, with convex values
and sends bounded subsets of C(J,Rn) into bounded subsets of L1(J,Rn). In fact,
we have

γu := {v : J → Rn,measurable, v(t) ∈ F (t, u(t)), a.e, t ∈ J}

Let z ∈ C(J,Rn), and v ∈ γz. Then

‖v(t)‖ ≤ p(t)ψ(‖z(t)‖) ≤ p(t)ψ(‖z‖∞)

Hence, ‖v‖L1 ≤ K0 := ‖p‖L1ψ(‖z‖∞). This shows that γ is well defined. It is clear
that γ is convex valued. Now, let B be a bounded subset of C(J,Rn). Then, there
exists k > 0 such that ‖u‖∞ ≤ k for u ∈ B.

So, for w ∈ γu we have ‖w‖L1 ≤ k1, where k1 = ‖p‖L1ψ(k). Also, we can argue
as in [20] to show that γ is usc.
Step 2. Priori bounds on solutions. We shall show that if u be a possible solution
of (1.1)-(1.2), then there exists a positive constant R∗, independent of u, such that

‖u‖ACα,β ≤ R∗

Let u be a possible solution of (1.1)-(1.2), by lemma [3.2] there exists v ∈ S1
F,u such

that, for each t ∈ J

u(t) =

∫ t

0

G(t− s)v(s)ds

where G(t) = tα−1Eα−β,α(−t
α−β) and |G(t)| ≤ | −tα

1+(−t)α−β | ≤ tα where |t| ≤ 1

Then, let G0 = sup{‖G(t− s)‖ : t, s ∈ J × J} and P0 = sup{p(t) : t ∈ J}. Hence
for t ∈ J ,

‖u(t)‖ ≤

∫ t

0

|G(t− s)v(s)|ds ≤

∫ t

0

‖G(t− s)‖‖v(s)‖ds

≤ G0

∫ t

0

‖v(s)‖ds ≤ G0

∫ t

0

p(s)ψ(‖u(s)‖)ds

Since ψ is nondecreasing, we have

‖u‖∞ ≤ G0P0ψ(‖u‖∞)t ≤ G0P0ψ(‖u‖∞)

Thus
‖u‖∞

ψ(‖u‖∞)
≤ G0P0 = R̃

So
‖u‖∞

ψ(‖u‖∞)
≤ R̃ (3.5)
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Now, the condition ψ in (A3) shows that there exists R∗
1 > 0 such that for all

R > R∗
1

R

ψ(R)
> R̃ (3.6)

Comparing these last two inequalities (3.5) and (3.6) we see that R0 ≤ R∗
1. Con-

sequently, we obtain ‖u(t)‖ ≤ R∗
1 for all t ∈ J .

Now from (1.1) and (A2) we have

∫ t

0

‖Dαu(s) +Dβu(s)‖ds ≤ ψ(R∗
1)

∫ t

0

p(s)ds := R∗
2

Hence
‖u‖ACα,β ≤ max{R∗

1, R
∗
2} := R∗

.
Step 3. Existence of solutions
For 0 ≤ λ ≤ 1 consider the one-parameter family of problems

Dαu(t) +Dβu(t) ∈ λF (t, u(t)), t ∈ J = [0, 1], 0 < β < α < 1 (1λ)

u(0) = 0 (2λ)

which reduces to (1.1)-(1.2) for λ = 1. For 0 ≤ λ ≤ 1, we define the operator
γλ : C(J,Rn) → P (L1(J,Rn)) by (γλu)(t) = λF (t, u(t)).
Step 1. Shows that γλ is usc, has convex values and sends bounded subsets of
C(J,Rn) into bounded subsets of L1(J,Rn) and if u is a solution of (1λ)− (2λ) for
some λ ∈ [0, 1], then ‖u‖ACα,β ≤ R∗, where R∗ does not depend on λ.
For λ ∈ [0, 1], we define the operators Φ : ACα,β(J,Rn) → C(J,Rn) and Θ :
ACα,β(J,Rn) → L1(J,Rn) by

(Φu)(t) = u(t), (Θu)(t) = Dαu(t) +Dβu(t)

It is clear that Φ is continuous and completely continuous and Θ is linear, contin-
uous and has a bounded inverse denoted by Θ−1, let

V := {u ∈ ACα,β(J,Rn); ‖u‖ACα,β < R∗ + 1}

Define a map H : [0, 1]× V → ACα,β(J,Rn) by

H(λ, u) = (Θ−1oγλoΦ)(u)

We can show that the fixed points of H(λ, .) are solutions of (1λ)− (2λ). Moreover,
H is a compact homotopy between H(0, .) ≡ 0 and H(1, .). In fact, H is compact
since Φ is completely continuous. γλ is continuous and Θ−1 is continuous. Since
solutions of (1λ) satisfy

‖u‖ACα,β ≤ R∗

we see that H(λ, .) has no fixed points on ∂V . Now H(0, .) is essential by Theorem
[2.1] . Hence by Theorem [2.2] , H(1, .) is essential. This implies that Θ−1oγλoΦ
has a fixed point which is a solution to problem (1.1)-(1..2).
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