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abstract: In this paper a new numerical method is presented for numerical
approximation of variational problems. This method with variable coefficients is
based on Hermite polynomials. The properties of Hermite polynomials with the
operational matrices of derivative and integration are used to reduce optimal control
problems to the solution of linear algebraic equations. Illustrative examples are
included to demonstrate the validity and applicability of the technique.
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1. Introduction

One of the widely used methods to solve optimal control problems is the direct
method. There is a large number of research papers that employ this method to
solve optimal control problems (see for example [2-4, 8, 9, 14-17, 19, 27-34, 37-40]).
Razzaghi, et. al. used direct method for variational problems by using hybrid of
block-pulse and Bernoulli polynomials [32]. Optimal control of switched systems
based on Bezier control points presented in [15]. A new approach using linear
combination property of intervals and discretization is proposed to solve a class
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of nonlinear optimal control problems, containing a nonlinear system and linear
functional [37,38]. Time varying quadratic optimal control problem was solved
by using Bezier control points [14]. Hybrid functions approach for nonlinear con-
strained optimal control problems presented by Mashayekhi et. al. [27]. The
optimal control problem of a linear distributed parameter system is studied via
shifted Legendre polynomials (SLPs) in [20]. An accurate method is proposed to
solve problems such as identification, analysis and optimal control using the Bern-
stein orthonormal polynomials operational matrix of integration [36]. In [19] Jaddu
and Shimemura proposed a method to solve the linear-quadratic and the nonlinear
optimal control problems by using Chebyshev polynomials to parameterize some of
the state variables, then the remaining state variables and the control variables are
determined from the state equations. Also Razzaghi and Elnagar [33] proposed a
method to solve the unconstrained linear-quadratic optimal control problem with
equal number of state and control variables. Their approach is based on using the
shifted Legendre polynomials to parameterize the derivative of each of the state
variables. The approach proposed in [27] is based on approximating the state vari-
ables and control variables with hybrid functions. In [39] operational matrices with
respect to Hermite polynomials and their applications is presented for solving lin-
ear dfferential equations with variable coeffcients. Investigation of optimal control
problems and solving them using Bezier polynomials has been presented [1]. In
[2] Solution of optimal control problems with payoff term and fixet state endpoint
by using Bezier polynomials has been presented. In this paper, we present a com-
putational method for solving variational problems by using Hermite polynomials.
The method is based on approximating the state variables with Hermite polynomi-
als. Our method consists of reducing the variational problems into a set of linear
algebraic equations by first expanding the state rate x(t) as a Hermite polynomial
with unknown coefficients.

The paper is organized as follows: In Section 2 we describe the basic formulation
of the Hermite functions required for our subsequent development. Section 3 is
devoted to the formulation of optimal control problems. Section 4 summarizes
the application of this method to the optimal control problems, and in Section
5, we report our numerical finding and demonstrate the accuracy of the proposed
method.

2. Hermite Polynomials and Their Properties

Hermite polynomials are a classical orthogonal polynomial sequence that arise
in probability. The explicit expression of Hermite polynomials of degree n is defined
by [39]

Hn(t) = n!

[n
2
]

∑

i=0

(−1)i(2t)n−2i

i!(n− 2i)!
, (2.1)

[n2 ] = largest integer number≤ n
2 , weher t is a real number (t ∈ R), and Rodrigues

formula is the following

Hn(t) = (−1)net
2 dn

dtn
(e−t2). (2.2)
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Eqs. (2.1) and (2.2) are solutions for following equation

x′′ − 2tx′ + 2nx = 0. (2.3)

Namely x(t) = Hn(t). The first few Hermite polynomials areH0(t) = 1 , H1(t) = 2t
, H2(t) = 4t2 − 2 , H3(t) = 8t3 − 12t.

2.1. Some Properties of Hermite Polynomials

Hermite polynomials obey the recurrence relation

Hi+1(t) = 2tHi(t)− 2iHi−1(t). (2.4)

An important property of the Hermite polynomials is the following derivative re-
lation [39]

H ′
i(t) = 2iHi−1(t). (2.5)

Weher i = 0, . . . , n and H ′
i(t) is drevation Hermite polynomials of degree i.

Further, Hi(t) are orthogonal in L2
w(Λ), weher Λ = (−∞,+∞) with respect to the

weight function w(t) = e−t2 and satisfy in the following relation

∫ +∞

−∞

Hi(t)Hj(t)w(t)dt = 2ii!
√
πδi,j . (2.6)

Weher δi,j is kronecker delta function. some property for Hermite polynomials are

Hi(−t) = (−1)nHi(t) , H2i(0) = (−1)i (2i)!i! , H2i+1(0) = 0,

H ′
2i(0) = 0 , H ′

2i+1(0) = (−1)i (2i+2)!
(i+1)! .

2.2. The operational matrices for the Hermite Polynomials

A function x(t) ∈ L2
w(Λ), can be expressed in terms of Hermite polynomials as

x(t) =

+∞
∑

−∞

aiHi(t), (2.7)

where the coeffcients ai is given by

ai =
1

2ii!
√
π

∫ +∞

−∞

Hi(t)x(t)w(t)dt. (2.8)

In practice, only the frst n + 1 term of the Hermite polynomials are considered.
Then we have:

xn(t) =
n
∑

i=0

aiHi(t) = AΦn(t), (2.9)

where Hermite coeffcients vector A and Hermite vector Φ(t) are given by

A = [a0, . . . , an],
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Φn(t) = [H0(t), . . . , Hn(t)]
T , (2.10)

where T denotes transposition.
The operational matrix of derivative: The differentiation of vector Φn(t) can
be expressed as

Φ′
n(t) = DφΦn(t), (2.11)

where Dφ is the (n + 1)(n + 1) operational matrix of derivative for the Hermite
polynomials and it is given as following:

Dφ = (di,j) =

{

2i, j = i− 1,
0, otherwise

(2.12)

The operational matrix of integration: The integration of vector Φn(t) can
be expressed as

∫ t

a

Φn(x)dx = PφΦn(t) (2.13)

where Pφ is the (n + 1)(n + 1) operational matrix of integration for the Hermite
polynomials. The integration of Hi(x) of order i can be obtianed as following for-
mula:

∫ t

a

Hi(x)dx =
1

2(i+ 1)
[Hi+1(t)−Hi+1(a)H0] (2.14)

where for a = 0 we get:

Hi+1(0) =

{

(−1)
i+1

2
(i+1)!

( i+1

2
)!
, if i odd,

0, if i even
(2.15)

finaly we can written Pφ matrix as:

Pφ =





















− 1
2H1(a)

1
2 . . . 0 0 0 0

− 1
4H2(a) 0 1

4 . . . 0 0 0
...

...
...

. . .
...

...
...

− 1
2(i+1)Hi+1(a) . . . 1

2(i+1) . . . 0
...

...
...

...
. . .

...
− 1

2(n+1)Hn+1(a) . . . 0 0 0





















(2.16)

2.3. Approximations by Hermite polynomials

Now in this section, we present some useful theorems which show the approx-
imations of functions by Hermite polynomials. For this purpose, let us defne
Sn = span{H0(t), H1(t), . . . , Hn(t)}. Any polynomial h(t) of degree m can be
expanded in terms of Hi(t), i = 0 . . . n as follows

h(t) =
n
∑

i=0

ciHi(t). (2.17)
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Also the L2(Λ)-orthogonal projection pn : L2(Λ) → Sn is a mapping in a way that
for any y(t) ∈ L2(Λ), we have:

〈pn(y)− y, φ〉 = 0, ∀φ ∈ Sn.

Due to the orthogonality, we can write

pn(y) =

n−1
∑

i=0

ciHi(t), (2.18)

where ci are constants in the following form
ci =

1
γi
〈y(t), Hi(t)〉L2

w
,

where γi = 2ii!
√
π. In the literature of spectral methods, pn(y) is named as Her-

mite expansion of y(t) and approximates y(t) on (−∞,+∞). Also estimating the
distance between y(t) and it’s Hermite expansion as measured in the weighted
norm ‖ . ‖w is an important problem in numerical analysis. The following theorem
provide the basic approximation results for Hermite expansion.

Theorem 2.1. we have
‖ dl

dtl (pn(y)− y) ‖w(t)≤ n(l−m)/2 ‖ dm

dtm y(t) ‖w(t),

0 ≤ l ≤ m, ∀y ∈ Bm(Λ),
where

Bm(Λ) = {∀y ∈ L2
w : dl

dtl
y ∈ L2

w(Λ), 0 ≤ l ≤ m}.
Proof: see [41].

3. Variational Problems

Consider the following variational problem:

Z(x(t)) =

∫ b

a

F (t, x(t), ẋ(t), . . ., x(n)(t))dt, (3.1)

with the boundary conditions

x(a) = a0, ẋ(a) = a1, . . ., x
(n−1)(a) = an−1, (3.2)

x(b) = b1, ẋ(b) = b1, . . ., x
(n−1)(b) = bn−1, (3.3)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T . The problem is to find the extremum of

Eq. (3.1), subject to boundary conditions (3.2) and (3.3). The method consists of
reducing the variational problem into a set of algebraic equations by first expanding
x(t) in terms of Hemite polynomials with unknown coefficients.

4. The Proposed Method

Let

xi(t) ≃ X iΦn(t), (4.1)
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where X i, i = 1, . . . , n, are state coefficient vectors respectively. Then using (2.4)
we get

ẋi(t) ≃ X i[DφΦn(t)], (4.2)

by j times drevating of Eq. (4.2) we have

x
(j)
i (t) ≃ X i[Dj

φΦn(t)], (4.3)

Using Eq. (4.1) we have

x(t) ≃ XΦn(t) = [

n
∑

j=0

X1
jHj(t), . . . ,

n
∑

j=0

Xn
j Hj(t)], (4.4)

where X = (Xk
i )n×(n+1) is state coefficient matrice. The boundary conditions in

Eqs. (3.2) and (3.3) can be rewritten as

x(j)(a) = aj = aj⊗EΦn(t), (4.5)

x(j)(b) = bj = bj⊗EΦn(t). (4.6)

where j = 0, 1 . . . , n and E = [1, 0 . . . , 0] is 1 × (n + 1) constant vector, and the
symbol ′⊗′ denotes Kronecker product [23]. If x(a) or x(b) is unknown in Eqs.
(3.2) and (3.3), then we put

x(a) ≃ XΦT
n (a) =

n
∑

j=0

X1
jHj(a), . . . ,

n
∑

j=0

Xn
j Hj(a), (4.7)

x(b) ≃ XΦT
n (b) =

n
∑

j=0

X1
jHj(b), . . . ,

n
∑

j=0

Xm
j Hj(b). (4.8)

4.1. Performance Index Approximation for the Variational Problem

By expanding x(n)(t) using the Bezier polynomials we have

x(n)(t) = XTΦn(t), (4.9)

whereXT is vector of order 1× (n+ 1), By integrating Eq.(4.9) from 0 to t we get

x(n−1)(t)− x(n−1)(a) =

∫ t

a

XTΦn(t) = XTPφΦn(t), (4.10)

where Pφ is operational matrix of integration given in Eq. (2.5). By using Eqs.
(3.2) and (4.10) we get

x(n−1)(t) = an−1 +XTPφΦn(t). (4.11)
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By n−1 times integrating of Eq.(4.11) from 0 to t and using the boundary conditions
given in Eq.(3.2) we have

x(n−2)(t) = an−2 + an−1t+XTP 2
φΦn(t),

...

ẋ(t) = a1 + a2t+
a3

2!
t2 + · · ·+ an−1

(n− 1)!
tn−2 +XTPn−1

φ Φn(t),

x(t) = a0 + a1t+
a2

2!
t2 + · · ·+ an−1

(n− 1)!
tn−1 +XTPn

φΦn(t). (4.12)

Where Pφ is obtained in Eq.(2.16).
By expanding tj , j = 0, 1, . . . , n− 1 in term of Hermite polynomials we have

tj =
j!

2j

[ j
2
]

∑

i=0

Hj−2i(t)

i!(j − 2i)!
. (4.13)

We can write Eq.(4.13) as following:

tj = djΦn(t), (4.14)

where

dj =
j!

2j

{

[ 1
j

2
!
, 0, 1

( j

2
−1)!2!

, 0, . . . , 0, 1
( j

2
−i)!(2i)!

, 0, 0 . . . , 0], if j even,

[0, 1
[ j
2
]!
, 0, 1

([ j
2
]−1)!(2+1)!

, 0, . . . , 0, 1
([ j

2
]−i)!(2i+1)!

, 0, 0 . . . , 0], if j odd.

}

(4.15)
By substituting Eq. (4.14) in Eq. (4.12) we obtain

x(t) = [a0d0 + a1d1 +
a2

2!
d2 + · · ·+ an−1

(n− 1)!
dn−1 +XTPn

φ ]Φn(t).

So Eq. (3.1) can be rewritten as

Z[x(t)] = Z[X ]. (4.16)

The boundary conditions in Eq.(3.3) can be expressed as

q1k = x(k)(a)− ak = 0, (4.17)

q2k = x(k)(b)− bk = 0, (4.18)

where k = 0, . . . , n − 1. We now find the extremum of Eq.(4.16) subject to Eqs.
(4.17) and (4.19) using the Lagrange multiplier technique. Let

Z[x, λ1, λ2] = Z[X ] + λ1Q1 + λ2Q2, (4.19)

where Q1 and Q2 are of order (n× 1) constant matrices. The necessary conditions
for the extremum of (4.19) are

∇Z[X,λ1, λ2] = 0. (4.20)
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5. Illustrative Examples

This section is devoted to numerical examples. We implemented the proposed
method in last section with MALAB (2017) in personal computer. To illustrate
our technique, we present four numerical examples, and make a comparison with
some of the results in the literatures.

Example 1. Consider the problem of finding the extermal of the functional [5]

Z =

∫ 1

0

[ẋ2(t) + tẋ(t)]dt, (5.1)

The boundary conditions

x(0) = 0, x(1) =
1

4
. (5.2)

The exact solution is obtained by using the Euler equation (∂F∂x − d
dt(

∂F
∂ẋ ) = 0) as

following:

Ze = 0.16666666666666667 , xe(t) = −1

4
t2 +

1

2
t, (5.3)

where F (t, x(t), ẋ(t)) = ẋ2(t) + tẋ(t). Here we solve this problem with Hermite
polynomials by choosing n = 2. Let

x(t) = XΦ2(t), (5.4)

t = dΦ2(t), (5.5)

where X = [X0, X1, X2] is unknown and d = [0, 12 , 0]. Using Eqs. (2.11) and (5.4)
we get

ẋ(t) = X [DφΦ2(t)], (5.6)

where Dφ is the operational matrix of derivative given in Eq. (2.12). By substi-
tuting Eqs. (5.5)-(5.6) in Eqs. (5.1) we obtain

Z(t, x(t)) =

∫ 1

0

[ẋ2(t) + tẋ(t)]dt

=

∫ 1

0

[(XDΦ2(t))(XDΦ2(t))
T + (dΦ2(t))(XDΦ2(t))

T ]dt

= XD[

∫ 1

0

Φ2(t)Φ
T
2 (t)dt]D

TXT + d[

∫ 1

0

Φ2(t)Φ
T
2 (t)dt]D

TXT

= XDVDTXT + dV DTXT

= Z(X), (5.7)

where V =
∫ 1

0 Φ2(t)Φ
T
2 (t)dt. Using the lagrange multiplier technigue to find exter-

mum of Eq.(5.1) with boundary conditions Eq.(5.2) we have

Z(X,λ1, λ2) = Z(X) + λ1Q1 + λ2Q2, (5.8)
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where Q1 = XΦ2(0)− 0 and Q2 = XΦ2(1)− 1
4 .

The necessary conditions are

∇Z(X,λ1, λ2) = 0. (5.9)

We obtain the approximate solution as following

X = [−1

8
,
1

4
,− 1

16
], Z =

1

6
(5.10)

xapp(t) = −1

8
H0(t) +

1

4
H1(t)−

1

16
H2(t) = −1

8
+

1

4
(2t)− 1

16
(4t2 − 2)

=
t

2
− t2

4
, (5.11)

which is the exact solution.

Example 2. Consider the problem of finding the extermal of the functional [5]

Z =

∫ 1

0

[ẋ2(t) + tẋ(t) + x2(t)]dt, (5.12)

The boundary conditions

x(0) = 0, x(1) =
1

4
. (5.13)

The exact solutions of this problem are obtained by

xe(t) = −e−t(et − 1)(e− 2e2 − 2et + e1+t)

4(e2 − 1)
, (5.14)

Ze = 0.1975939946587107. (5.15)

For n = 3 we get

X = [− 219

1892
,
1899

7568
,− 219

3784
,

7

1376
] (5.16)

xapp(t) =− 219

1892
H0(t) +

1899

7568
H1(t)−

219

3784
H2(t) +

7

1376
H3(t)

=
417

946
t− 219

946
t2 +

7

172
t3. (5.17)

Table 1 and Figure 1 show respectively error of exact and approximate values of Z
and plots of errors for state function for example 2.
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Table 1: The approximate values of Z, for Example 2.

n Presented Method error
3 0.1975951374207188 1.1428e-006
4 0.1975939970022613 2.3435e-009
5 0.1975939946699765 1.1266e-011
6 0.1975939946587209 1.0186e-014
7 0.1975939946587107 5.4668e-018

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
b

s
(x

e
-x

a
p

p
)

×10-4

0

0.5

1

1.5

2
n=3

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
b

s
(x

e
-x

a
p

p
)

×10-10

0

1

2

3

4
n=7

Figure 1: Plots of errors for exact and approximate solutions for Example 2(n=3,7)

Example 3. Find the extremum of the functional [10]

Z =

∫ 1

0

[
1

2
ẍ2(t) + 4(1− t)ẋ(t)]dt (5.18)

with the conditions
x(0) = 0, ẋ(0) = 0, (5.19)
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where the values of x(1) and ẋ(1) are unspecified. The exact solutions using Euler
equation are

xe(t) = −1

6
t4 +

2

3
t3 − t2 , Ze = −0.4. (5.20)

For n = 4 we obtain

X = [−5

8
,
1

2
,−3

8
,
1

12
,− 1

96
], (5.21)

xapp(t) = −5

8
H0(t) +

1

2
H1(t)−

3

8
H2(t) +

1

12
H3(t)−

1

96
H4(t)

= −5

8
+

1

2
(2t)− 3

8
(4t2 − 2) +

1

12
(8t3 − 12t)− 1

96
(16t4 − 48t2 + 12)

= −1

6
t4 +

2

3
t3 − t2 (5.22)

which is the exact solution, and also not required to Euler equation and natural
boundary conditions.

Example 4. It has been studied by using bezier parameterization [34] and also
bezier polynomials [1] for optimal control by differential evolution

minZ =

∫ 1

0

[3x2(t) + u2(t)]dt (5.23)

with boundary conditions

ẋ = x+ u, x(0) = 1, (5.24)

where x and u respectively are state and control functions. To solve it by presented
method, we reducte optimal control problems to variational problems, therefore let
u = ẋ− x. then Eqs. (5.23) and (5.24) can be writing as following

minZ =

∫ 1

0

[3x2(t) + (ẋ(t)− x(t))2]dt, (5.25)

with boundary conditions

x(0) = 1. (5.26)

The exact solutions are obtained

xe(t) =
3e−4

3e−4 + 1
e2t +

1

3e−4 + 1
e−2t, Ze = 2.791659975310063. (5.27)

Let n = 3 then we have

X = [
104

59
,−255

236
,
45

118
,− 35

944
], (5.28)
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xapp(t) =
104

59
H0(t)−

255

236
H1(t) +

45

118
H2(t)−

35

944
H3(t)

=
104

59
− 255

236
(2t) +

45

118
(4t2 − 2)− 35

944
(8t3 − 12t)

= − 35

118
t3 +

90

59
t2 − 405

236
t+ 1. (5.29)

Table 1 and figure 2 show respectively error of exact and approximate values of Z
and plots of errors for state function for example 4.

Table 2: Error and the approximate values of Z, for Example 4.

n Presented Method error
3 2.792372881355932 7.1290e-004
4 2.791662024685567 2.0516e-006
5 2.791660082922831 1.0761e-007
6 2.791659975445970 1.3590e-010
7 2.791659975313821 3.7578e-012
8 2.791659975310065 2e-015

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
b

s
(x

e
-x

a
p

p
)

×10-3

0

1

2

3

4

5
n=3

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
b

s
(x

e
-x

a
p

p
)

×10-9

0

0.5

1

1.5

2

2.5

3

3.5
n=8

Figure 2: Plots of errors for exact and approximate solutions for Example 4(n=3,8)
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6. Conclusion

In this paper we presented a numerical scheme for solving variational problems.
The Hemite polynomials was employed. Also several test problems were used to
see the applicability and efficiency of the method. The obtained results show that
the new approach can solve the problem effectively.
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