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abstract: The concept of regular smoothness has been shown to be an appro-
priate and powerfull tool for the convergence of iterative procedures converging to a
locally unique solution of an operator equation in a Banach space setting. Motivated
by earlier works, and optimization considerations, we present a tighter semi-local
convergence analysis using our new idea of restricted convergence domains. Numer-
ical examples complete this study.
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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∞ of nonlinear equation

F (x) = 0, (1.1)

where, F is a Fréchet–differentiable operator defined on a open convex subset Ω of
a Banach space B1 with values in a Banach space B2.

The most popular iterative procedures for generating a sequence approximating
x∞ are undoubtely Newton’s method:

xn+1 = xn − F ′(xn) F (xn) (x0 ∈ Ω), (n ≥ 0), (1.2)

and the Secant method:

xn+1 = xn − [xn, xn−1;F ]
−1 F (xn) (x−1, x0 ∈ Ω), (n ≥ 0). (1.3)
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Here, F ′(x) ∈ L(B1,B2) denotes the Fréchet–derivative of operator F , and [x, y;F ]
∈ L(B1,B2) the divided difference of order one at x ∈ Ω and y ∈ Ω [3], [9]– [18].
Newton’s method requires one function evaluation, and the computation of one
inverse at each step. It is self–correcting, and has a quadratic convergence under
natural conditions [1]– [9].

The Secant method has some attractive properties: it is also self–correcting,
it exhibits superlinear convergence, and no knowledge of the derivatives of the
operators involved is required. These facts not only make the Secant iteration
much cheaper than Newton’s, but also makes this method applicable to equations
with nondifferentiable operators [3], [9]– [18].

In the one dimensional case, the Secant method is of higher efficiency than
the corresponding Newton’s method. A convergence analysis for both methods
has been provided under various assumptions by many authors. A survey of such
results can be found in [3], [9], and the references there (see, also [1], [2], [4]–
[8], [10]– [18]). In the excellent works by Galperin [6], [7], the concept of regular
smoothness was introduced, which became a viable framework for the study of the
convergence of iterative procedures such as Newton’s method, and Secant method.
This way, the applicability of these methods was extended, and in the case of
Newton’s method or the Secant method tighter than before error bounds on the
distances involved were found.

The convergence domain for such methods is small in general. In present study,
we extend the convergence domain for Newton’s method and the Secant method. To
achieve this goal, we first introduce the center-Lipschitz condition which determines
a subset of the original domain for the operator containing the iterates. The scalar
functions are then related to the subset instead of the original domain. This way,
the scalar functions are more precise than if they were depending on the original
domain of the mapping as in earlier studies. The new technique leads to: weaker
sufficient convergence conditions tighter error bounds on the distances involved and
an at least as precise information on the location of the solution. These advantages
are obtained under the same computational cost as in earlier studies, since in
practice the new functions are special cases of the old functions, that can be used
to study other requiring inverses of linear mappings.

We also show that the sufficient convergence conditions can be weakened, indi-
cating that the regular smoothness approach, does not necessarily lead to weakest
possible or usable sufficient convergence conditions.

The rest of the paper is organized as follows. Section 2, 3 contain the semilo-
cal convergence of Newton’s method and the Secant method, respectively. The
numerical examples are presented in the concluding section 4.

2. Semilocal convergence analysis for Newton’s method

Let T denote the class of nondecreasing continuous functions v : [0,∞) −→
[0,∞), that have convex subgraphs {(s, t) : s ≥ 0 and t ≤ v(s)}, and vanish at
zero, i.e., they are concave [3], [6], [7]. The functions of T have left– and right–
hand derivatives at each s > 0 (being monotone), and they coincide everywhere
except, perhaps, for a countable number of points.
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Definition 2.1. [9] Denote by h(F ) the inf
x∈D

‖ F ′(x) ‖. Given an ω1 ∈ T, we say

that F is ω1–regularly smooth on Ω, or, equivalently, that ω1 is a regular smoothness
modulus of F on Ω, if there exists an h ∈ [0, h(F )], such that the inequality

ω−1
1 (hF (x, y)+ ‖ F ′(y)− F ′(x) ‖)− ω−1

1 (hF (x, y)) ≤‖ y − x ‖, (2.1)

holds for all x, y ∈ Ω, where,

hF (x, y) = min{‖ F ′(x) ‖, ‖ F ′(y) ‖} − h. (2.2)

The operator is regularly smooth on Ω, if it is ω1–regularly smooth there for some
ω1 ∈ T.

We denote by ω−1
1 , a function whose closed epigraph cl {(s, t) : s ≥ 0 and t ≥

ω−1
1 (s)} is symmetrical to closure of the subgraph of ω1 with respect to the axis

t = s. Clearly, ω−1
1 is a convex function on [0,∞) vanishing at zero, continuously

increasing in [0, ω1(∞)), and equal to ∞ for all s > ω1(∞). In view of the convexity
of ω−1

1 , each ω1–regularly smooth operator is also ω1–smooth, in the sense that:

‖ F ′(x)− F ′(y) ‖≤ ω1(‖ x− y ‖), for all x, y ∈ Ω. (2.3)

However, the converse is not true [7].

Definition 2.2. Let x0 ∈ Ω be fixed. Given an ω0 ∈ T, we say that ω0 is a
center-regular smoothness modulus of F on Ω at x0, if there exists h ∈ [0, h(F )]
such that:

ω−1
0 (hF (x, x0)+ ‖ F ′(x0)− F ′(x) ‖)− ω−1

0 (hF (x, x0)) ≤‖ x0 − x ‖, (2.4)

for all x ∈ Ω.

Clearly, as in (2.1) and (2.3), we have by (2.4) that

‖ F ′(x0)− F ′(x) ‖≤ ω0(‖ x0 − x ‖) (2.5)

for all x ∈ Ω.
Note that in general

ω0(t) ≤ ω1(t) t ≥ 0, (2.6)

holds,
ω1(t)

ω0(t)
can be arbitrarily large [1]– [5] and (2.1) implies (2.4) but not neces-

sarily vice versa.
It turns out that when upper bounds on the norms ‖ F ′(x)−1 ‖ are to be found

the stronger condition (2.1) (or (2.3)) is used in the literature [1]– [2], [6]– [18],
instead of the needed condition (2.4) (or (2.5)), which is weaker, and tighter.

Let U(z, ρ), U(z, ρ), stand, respectively for the open and closed balls in X with
center z ∈ X and of radius ρ > 0.
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Define parameter r0 and the set Ω0, respectively by

r0 = sup{t ≥ 0 : w0(t) < 1} (2.7)

and
Ω0 = Ω ∩ U(x0, r0) (2.8)

Definition 2.3. Given an w ∈ T, we say that w is a regular smoothness modulus
of F on Ω0, if there exists an h0 ∈ [0, h0(F )], such that the inequality

ω−1(h0F (x, y) + ‖F ′(y)− F ′(x)‖)− ω−1(h0F (x, y)) ≤ ‖y − x‖ (2.9)

holds for all x, y ∈ Ω0, where h0(F ) denotes the inf
x∈Ω0

‖F ′(x)‖ and

h0F (x, y) = min{‖F ′(x)‖, ‖F ′(y)‖} − h0 (2.10)

holds for all x, y ∈ Ω0.

We have that
ω(t) ≤ ω1(t), t ≥ 0, (2.11)

since Ω0 ⊆ Ω.
The construction of function ω depends on function ω0. The creation of function

ω was not possible before in the studies using only function ω1 [1], [2], [5]– [18].
Clearly, in these studies ω can replace ω1 leading to the advantages as stated
previously, when strict inequality holds in (2.1).

These advantages are obtained under the same computational cost, since in
practice the computation of function ω1 requires the computation of functions ω0

and ω1 as special cases. From now on we assume that

ω0(t) < ω(t) for all t ∈ [0, r0). (2.12)

We shall show the advantages first for Newton’s method. It is convenient for
us to adopt some of the new standard notation in [3,6,7], so we can make the
comparison between the two works easier to carry out.

Let ω ∈ T, and Ω(t) =

∫ t

0

ω(τ ) dτ .

Denote:

θ(σ, τ ) := min{τ, σ − τ}, m(u, v, τ) = min{u, (u− θ(u− v, τ ))+},

and

ψ(u, v, w) =

∫ w

0

(ω(m(u, v, τ) + τ )− ω(m(u, v, τ ))) dτ, u, w > 0, (2.13)

where,
a+ = max {a, 0}. (2.14)
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Denote also by ψ0 the function given in (2.13) with ω0 replacing ω.
Set

F0 = F ′(x0)
−1 F (2.15)

for some x0 ∈ Ω, such that F ′(x0)
−1 ∈ L(Y,X).

Clearly, the Newton iterations for F and F0 are identical.
Let h0 be a lower bound for h0(F0):

0 ≤ h0 ≤ h0(F0), (2.16)

and let ω0, ω ∈ T satisfy (2.4), (2.9), respectively with F0 replacing F .
Define the constant:

κ = ω−1
0 (1− h), (2.17)

and consider an upper bound a for the norm:

‖ F0(x0) ‖≤ a. (2.18)

Moreover, define the sequence of triplets (αn, γn, δn) (n ≥ 0) by:

α0 = κ, γ0 = 1, δ0 = a,

αn = (αn−1 − δn−1)
+,

γn = 1− ω0(αn + tn) + ω0(αn),

δn = γ−1
n ψ(αn−1, αn−1 − δn−1, δn−1), (2.19)

where,

tn =

n−1
∑

i=0

δi.

If ω(t) = c t, and ω0(t) = c0 t, then, we have the sequence:

tn+1 = tn +
c (tn − tn−1)

2

2 (1 − c0 tn)
(2.20)

and the triplet is:

αn = κ− tn, γn = 1− c0 tn, δn = tn+1 − tn. (2.21)

Sequence {tn} further reduces to the one considered by Kantorovich for c = c0:

sn+1 = sn +
c (sn − sn−1)

2

2 (1− c sn)
=
.5 c s2n − sn + a

1− c sn
. (2.22)

The analog of the Kantorovich’s majorant function t −→ .5 c t2− t+a is given by:

φh(t) = a− t+ ψ(κ, (κ− t)+ − t, t), t > 0. (2.23)

Denote also by φ0
h, function φh, with ψ replaced by ψ0.
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The triple (αn, γn, δn) given in (2.13) is well defined, if γn > 0. This is true if:

tn < ω−1
0 (1) (n ≥ 0). (2.24)

In this case, δn ≥ 0, and αn = (κ− tn)
+.

As shown in [7] φh is decreasing on [0, ω−1(1)], and is increasing on [ω−1(1),+∞).

Denote by φ−1
h, 1, φ

−1
h, 2 the inverse of the restrictions of φh to [0, ω−1(1)], and to

[ω−1(1),∞), respectively. Similarly, for the inverses of φ0h, 1, and φ0h, 2, which are

defined on [0, ω−1
0 (1)], [ω−1

0 (1),∞), respectively.
We can show the main semilocal convergence result for Newton’s method.

Theorem 2.4. Let F0 : D ⊆ X −→ Y be a ω0 and ω–regularly smooth.

Assume: Conditions (2.12), (2.24)

and
U(x0, t∞) ⊆ D (2.25)

hold, where
t∞ = lim

n→∞
tn. (2.26)

Then, the sequence {xn} (n ≥ 0), generated by Newton’s method (1.2) is well
defined, remains in U(x0, t∞) for all n ≥ 0, and converges to a solution x∞ of
equation F (x) = 0.

Moreover, the following estimates hold:

‖ F ′
0(xn) ‖≥ ω0(αn) + h, (2.27)

γn
−1 ≤ γ−1

n , (2.28)

δn ≤ γ−1
n ψ(αn−1, αn − δn−1, δn−1), (2.29)

∆n+1 =‖ xn+1 − x∞ ‖≤ γn
−1 ψ(αn, ω

−1
0 (‖ F ′

0(x∞) ‖ −h)−∆n,∆n), (2.30)

and
‖ xn − x∞ ‖≤ t∞ − tn, (2.31)

where, γn and δn are defined in (2.32).
Furthemore, if a is such that t∞ ≤ κ, then the solution x∞ is unique in

U(x0, φ
0,−1
h, 2 (0)).

Proof. It is convenient for us to set:

αn = ω−1
0 (‖ F ′

0(xn) ‖ −h0), γn =‖ F ′
0(xn)

−1 ‖−1, δn =‖ xn+1 − xn ‖ . (2.32)

These numbers are well defined, and the relations:

α0 = κ = α0, γ0 = 1 = γ0, δ0 ≤ a = δ0 (2.33)

hold.
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Suppose that n ≥ 1, and for all k ≤ n− 1, the following statements hold:
F ′
0(xk) exists, F

′
0(xk)

−1 ∈ L(Y,X), and

αk ≥ αk, γk ≥ γk, δk ≤ δk. (2.34)

We then have:

‖ xn − x0 ‖≤

n−1
∑

k=0

δk ≤

n−1
∑

k=0

δk = tn, (2.35)

so that F ′
0(xn) exists.

Moreover, due to ω0–regular smoothness of F0 on U(x0, t∞), we have in turn:

‖ F ′
0(xn)− F ′

0(x0) ‖ ≤ ω0(ω
−1
0 (min{‖ F ′

0(x0) ‖, ‖ F
′
0(xn) ‖} − h0)

+ ‖ xn − x0 ‖)−min{‖ F ′
0(x0) ‖, ‖ F

′
0(xn) ‖}+ h0

= ω0(min{κ, αn}+ ‖ xn − x0 ‖)− ω0(min{κ, αn})
≤ ω0(min{κ, αn}+ ‖ xn − x0 ‖)− ω0(min{κ, αn})
≤ ω0(αn + tn)− ω0(αn).

(2.36)

We also have αn ≤ α0 = κ, and
n−1
∑

k=0

δk ≤ δk, which lead to

γn = d(F ′
0(xn)) ≥ d(F ′

0(x0))− ‖ F ′
0(xn)− F ′

0(x0) ‖
≥ 1− ω0(αn + tn) + ω0(αn)
≥ 1− ω0(tn) > 0 (by (2.18)).

(2.37)

It follows from (2.37), and the Banach lemma of invertible operators [11], [2],
[4], [5], that F ′

0(xn)
−1 ∈ L(Y,X), so that (2.27), and (2.28) hold.

Note that in [7], less precise estimates were obtained with ω replacing ω0 in
estimates (2.36), and (2.37).

Using the identity

xn+1 − xn = F ′
0(xn)

−1 (F0(xn)− F0(xn−1)− F ′
0(xn−1) (xn − xn−1)), (2.38)

and (2.28), we obtain:

δn ≤ γn
−1 ψ(αn−1, αn − δn−1, δn−1)

≤ ψ(αn−1, αn − δn−1, δn−1) = δn,
(2.39)

which completes the induction, and also show (2.29).
In view of the estimate:

‖ xn+m − xn ‖≤
n+m−1
∑

k=n

δk ≤
n+m−1
∑

k=n

δk <
∞
∑

k=n

δk = t∞ − tn, (2.40)

we deduce that sequence {xn} is Cauchy in a Banach space X, and as such it
converges to some x∞ ∈ U(x0, t∞) (since U(x0, t∞) is a closed set). We also have:
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‖ F0(xn) ‖≤ ψ(αn−1, αn − δn−1, δn−1) −→ 0 as n→ ∞. (2.41)

That is F (x∞) = 0.
The rest of the proof follows by simply replacing ω by ω0 in the corresponding

proof in [7] for the estimates involving the computation of the inverses.

Remark 2.5. If ω0(t) = ω(t) = ω1(t) (t > 0), then our Theorem 2.4 reduces to
Theorem 4.3 in [7]. Otherwise, it constitutes an improvement with advantages as
stated previously.

Note also that a posteriori bounds given in [7] are also becoming tighter with
our approach.

Note that in Application 3.6, we show how to replace delicate condition (2.24).

3. Semilocal convergence of the Secant method

We need the analogous definitions 2.1–2.3 of regularly continuity for the Secant
method, respectively.

Definition 3.1. [8] The dd [x, y;F ] is said to be ω1–regularly continuous on Ω if
there exist an ω1 ∈ T (call it regularity modulus), and a constant h ∈ [0, h([x, y;F ])]
such that for all x, y, u, v ∈ Ω

ω−1
1

(

min{‖ [x, y;F ] ‖, ‖ [u, v;F ] ‖} − h+ ‖ [x, y;F ]− [u, v;F ] ‖

)

−ω−1
1

(

min{‖ [x, y;F ] ‖, ‖ [u, v;F ] ‖} − h

)

≤‖ x− u ‖ + ‖ y − v ‖,

(3.1)

where,
h([x, y;F ]) = inf

x,y∈Ω2

{‖ [x, y;F ] ‖}. (3.2)

As in (2.1), we have that (3.1) implies:

‖ [x, y;F ]− [u, v;F ] ‖≤ ω(‖ x− u ‖ + ‖ y − v ‖) for all x, y, u, v ∈ Ω. (3.3)

Definition 3.2. Let x−1, x0 ∈ Ω be fixed. The dd[x, y;F ] is said to be ω0− center
regularly continous on Ω0 if there exists ω0 ∈ T, such that for all x, y ∈ Ω0:

ω−1
0

(

min{‖ [x, y;F ] ‖, ‖ [x0, x−1;F ] ‖} − h0+ ‖ [x, y;F ]− [x0, x−1;F ] ‖

)

−ω−1
0

(

min{‖ [x, y;F ] ‖, ‖ [x0, x−1;F ] ‖} − h0

)

≤‖ x− x0 ‖ + ‖ y − x−1 ‖,

(3.4)
condition (3.4) implies

‖ [x, y;F ]− [u, v;F ] ‖≤ ω0(‖ x− x0 ‖ + ‖ y − x−1 ‖). (3.5)
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Definition 3.3. The dd[x, y;F ] is said to be ω− regularly continuous on Ω0, if there
exist ω ∈ T, and a constant h0 ∈ [0, h0([x, y;F ])] such that for all x, y, u, v ∈ Ω0

ω−1

(

min{‖ [x, y;F ] ‖, ‖ [u, v;F ] ‖} − h0+ ‖ [x, y;F ]− [u, v;F ] ‖

)

−ω−1

(

min{‖ [x, y;F ] ‖, ‖ [u, v;F ] ‖} − h0

)

≤‖ x− u ‖ + ‖ y − v ‖,

(3.6)

where
h0([x, y;F ]) = inf

x,y∈Ω2

0

{[x, y;F ]} (3.7)

Next, comments as the ones given after the Definitions 2.1–2.3 can follow in an
analogous way. We shall now define a more precise majorant generator than the
one in [6].

Let:

t :=‖ x− x0 ‖, α := ω−1
0 (‖ [x, x−;F ] ‖ −h0), β :=‖ x− x− ‖,

δ :=‖ x+ − x ‖, [x0, x−1;F ] = I,

α0 := ω−1
0 (1− h0), β0 :=‖ x0 − x−1 ‖, a := α0 − β0,

ψ(s, t) = ω(s+ t)− ω(s), ψ0(s, t) = ω0(s+ t)− ω0(s),

d = ψ0((a− 2 t− δ)+, 2 t+ δ + β0), a = α0 − β0 = ω−1
0 (1 − h0)− β0,

∆n =‖ xn − x∞ ‖ .

Our majorant generator is defined as follows: g : Q ⊆ R
4 −→ R

4: q = (t, α, β, δ),
for

Q = {q : g0((α0−2 t−δ−β0)+, β0+2 t+δ) < 1 for t ≥ 0, α ≥ 0, β ≥ 0, and δ ≥ 0}

into q+ = (t+, α+, β+, δ+) as follows:

t+ := t+ δ, α+ := a− 2 t− δ, β+ := δ,

δ+ := δ

(

ω(a− 2 t+ β)− ω(a− 2 t− δ)

ω0(a− 2 t− δ)

)

, (3.8)

Remark 3.4. Note that if ω0 = ω = ω1, majorant generator (3.8) coincides with
the corresponding one in [8]. Otherwise (i.e. if ω0 < ω1) it is more precise.

We say that the quadruple q′ = (t′, α′, β′, δ′) is majorizing q = (t, α, β, δ) (q ≺
q′), if t ≤ t′, α ≥ α′, β ≤ β′, δ ≤ δ′.

Let q0 = (t0, α0, β0, δ0) ∈ Q, then we have the iteration:

qn+1 = g(qn) (n ≥ 0). (3.9)
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If dn = ψ0(αn+1, β0 + 2 tn + δn) < 1, iteration {qn} is well defined.
In particular, if

d = ψ0((a− 2 t− δ)+, 2 t+ δ + β0) < 1, (3.10)

then, dd [x+, x;F ] is boundedly invertible, and

‖ [x+, x;F ]
−1 ‖≤ (1− d)−1. (3.11)

Indeed, we have in view of (3.4):

‖ I− [x+, x;F ] ‖ = ‖ [x0, x−1;F ]− [x+, x;F ] ‖

≤ ω0

(

ω−1
0 (min{1, ‖ [x+, x;F ] ‖} − h0)

+ ‖ x+ − x0 ‖ + ‖ x− x−1 ‖

)

−min{1, ‖ [x+, x;F ] ‖}+ h0
≤ ω0(min {α0, α+}+ t+ + t+ β0)− ω0(min {α0, α+})

≤ ψ0(min {α0, α+}, 2 t+ δ + β0) = d < 1,

which together with the Banach lemma on invertible operators implies (3.11).
Estimate (3.11) is tighter than the corresponding one in [8] using ω1 instead of

ω0.
This substitution in the proofs of the results in [8] produces the advantages as

already stated in the introduction of this study.
Hence, we arrived at:

Theorem 3.5. We have:
For all n ∈ N, we have: dn < 1 ⇐⇒ 2 tn + δn < a;
If

dn < 1, (n ≥ 0) (3.12)

then, the sequence qn generated by (3.9) is well defined, and converges to (t∞, a−
2 t∞, 0, 0), where t∞ ≤ 0.5 a;

q0 ≺ q0 =⇒ qn ≺ qn,

sequence {xn} generated by the Secant method (1.3) is well defined, remains in
U(x0, t∞ − t0), and converges to a solution x∞ of the equation F (x) = 0;

Moreover, the following estimates hold for all n ≥ 0:

∆n+1 ≤ ∆n

ω(a− tn−1 − tn)− ω(a− tn−1 − tn −∆n−1)

ω0(a− tn − tn+1)
<

∆n ω(∆n−1)

ω0(a− 2 t∞)

and
‖ xn − x∞ ‖≤ t∞ − tn.

Furthermore, x∞ is the only solution in U(x0, a− t∞).
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We would like to know how small q0 ∈ Q should be to force the series
∑

δn or
equivalently sequence {tn} to converge. That is we need to find the convergence
domain Qc of generator (3.8).

Let
Q(t) = {(t0, β0, δ0) : t∞ = t∞(t0, β0, δ0) = t}

denotes the attraction bassin of the fixed point (t, 0, 0) of generator (3.8).
Clearly, we have:

Qc =
⋃

0≤t≤.5 a

Q(t). (3.13)

For all triples (t′, t, β) with 0 ≤ t ≤ t′ ≤ .5 a, and β ≥ 0, the equation

t∞(t, β, δ) = t′ (3.14)

is uniquely solvable for δ: δ = Xt′(t, β).
The function Xt′(t, β) uniquely solves the system

X(t, β)
ω(a− 2 t+ β)− ω(a− 2 t−X(t, β))

ω0(a− 2 t−X(t, β))
= X(t+X(t, β), X(t, β)) (3.15)

and
X(t′, β) = 0.

Application 3.6. If ω1(s) = c s, and ω0(s) = c0 s, the generator (3.8) reduces to

t+ = t+ δ, β+ = δ, δ+ = λ δ
β+ δ

c−1
0 − β0 − 2 t− δ

, λ =
c

c0
. (3.16)

The change of variables (u, v, w) =
1

c−1
0 − β0

(t, β, δ) leads to

u+ = u+ w, v+ = w, w+ = λ w
v + w

1− 2 u− w
. (3.17)

In view of (3.17), system (3.15) reduces to:

λ X(u, v)
v +X(u, v)

1− 2 u−X(u, v)
= X(u+X(u, v), X(u, v))

X(u′, v) = 0, u′ ∈ [0, 0.5]
(3.18)

1. Case λ = 1. The solution of the system is:

Xu′(u, v) =
(.5− u)2 − (.5 − u′)2

2 (.5 − u) + v
. (3.19)

In view of (3.19), we have:

δn = Xt′(tn, βn) =
r2n − (.5 a− t′)2

2 rn + βn

, (3.20)
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where, rn = .5 (c−1 − β0)− tn.

Hence, we get:

X.5 a(0, β0) =
(1 − c β0)

2

4 c
. (3.21)

Condition (3.12) in Theorem 3.5 for starters x−1, x0 can be replaced by:

‖ x−1 − x0 ‖≤ β0 ≤ c−1, ‖ F (x0) ‖≤
(1− c β0)

2

4 c
, (3.22)

whereas in the general case:

‖ x−1 − x0 ‖≤ β0 ≤ ω−1(1− h0), ‖ F (x0) ‖≤ δ0 ≤ X.5 a(0, β0), (3.23)

where Xt′(t, β) is the only solution of the system (3.18), and a = ω−1
0 (1 −

h0)− β0.

Note that for β0 = 0, (3.22), (3.23) can replace condition (2.24) for Newton’s
method, provided that the Lipschitz constant ℓ = 2 c (ℓ0 = 2 c0). That is we
have for Newton’s method:

‖ F0(x0) ‖≤ δ0 ≤
1

2 ℓ
, (3.24)

or
‖ F0(x0) ‖≤ δ0 ≤ X.5 a(0, 0), (3.25)

where Xt′(t, β) is the only solution of the system (3.18), and a = ω−1(1−h).

Condition (3.24) is the famous for its simplicity and clarity Newton–Kanto-
rovich hypothesis for solving nonlinear equations in the Lipschitz case [3],
[9].

2. Case λ 6= 1. The solution Xt′(t, β) is given implicitly, and is of only the-
oretical use. A more direct approach however leads to a weaker sufficient
convergence for Newton’s method than (3.24):

‖ F0(x0) ‖≤ δ0 ≤
1

2 L
, (3.26)

where,

L =
1

8
(
√

ℓ0ℓ+ 4 ℓ0 +
√

8ℓ20 + ℓ0 ℓ) (3.27)

[2]– [4] (see, also (2.20)).

Note that
L < ℓ, (3.28)

which improves (3.24).

Applications for this case can be found in Section 4.



Extending the Applicability of Newton’s and Secant Methods 207

In the case ω0(t) = c0 t
p, ω1(t) = c tp, p ∈ (0, 1), the analogous to condition

(3.26) is given by:

‖ F0(x0) ‖≤ δ0 ≤ h(c1)
1

p , (3.29)

where,

c1 =
ℓ+

√

ℓ2 + 4 ℓ0 ℓ (1 + p)p p1−p

2 ℓ
(3.30)

and

h(c1) =

(

1−
1

t

)p
1 + p

(

(ℓ0 (1 + p))
1

1−p + (ℓ t (t− 1))
1

1−p

)1−p
(3.31)

[5]– [7].

Extension 3.7. The results obtained here can be weakened even further, if Ω0 in
condition (2.9) and after is replaced by Ω∗

0 = Ω ∩ U(x1, r0 − a), since Ω∗
0 ⊆ Ω0

so the corresponding function ω∗ will be at least as tight as ω. We are still using
the initial data, since x1 = x0 − F ′(x0)

−1F (x0) for Newton’s method and x1 =
x0 − [x0, x−1, ;F ]

−1F (x0) for the Secant method. In particular, condition (3.26)
shall become

‖F0(x0)‖ ≤ δ0 ≤
1

2L1
, (3.32)

where L1 =
1

8
(
√

ℓ0ℓ1 + 4 ℓ0 +
√

8ℓ20 + ℓ0 ℓ1), and ℓ1 is the Lipschitz-constant on

Ω∗
0.

Remark 3.8. If ω(t) ≤ ω0(t) for t ∈ [0, r0) holds instead of (2.12) then, clearly
the preceding results hold with function ω0 replacing ω in all estimates. Moreover,
the previously stated advantages also hold in this setting.

4. Numerical Examples

We present two numerical examples.

Example 4.1. Let B1 = B2 = R, x0 = 1, p ∈ [0, 0.5), Ω = U{x0, 1 − p}, and
define function F on Ω by

F (x) = x3 − p. (4.1)

Then, we have δ0 = 1
3 (1 − p), ℓ0 = 3 − p, ℓ = 2(2 − p). Condition (3.24) is

not satisfied, since δ0 >
1
2ℓ , for each p ∈ (0, 0.5). Condition (3.26) is satisfied for

p ∈ [0.4271907643, 0.5) and ℓ1 = 2
3(3−p) (−2p2+5p+6). Moreover, condition (3.32)

is satisfied for p ∈ [0.408945626, 0.5). That is, there exist several values of p for
which the previous conditions cannot guarantee the convergence but our new ones
can.
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Example 4.2. Let B1 = B2 = C[0, 1] be the space of continuous functions defined
in [0, 1] equipped with max-norm. Let S = {x ∈ C[0, 1]; ‖x‖ ≤ R}, such that R > 0
and F defined on S and given by

[F (x)] (s) = x(s)− f(s)− ξ

∫ 1

0

G(s, t) x3(t) dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, ξ is a real constant and the kernel G is the
Green’s function.

G(s, t) =

{

t (1 − s), t ≤ s
s (1− t), s ≤ t.

In this case, for each x ∈ S, F ′(x) is a linear operator defined on S by the following
expression:

[F ′(x)v] (s) = v(s)− 3ξ

∫ 1

0

G(s, t) x2(t) v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f(s) = 1, it follows ‖I − F ′(x0)‖ ≤ 3|ξ|/8. Thus, if
|ξ| < 8/3, F ′(x0)

−1 is defined and

F ′(x0)
−1 ≤

8

8− 3|ξ|
, ‖F (x0)‖ ≤ |ξ|/8, η = ‖F ′(x0)

−1F (x0)‖ ≤
|ξ|

8− 3|ξ|
.

On the other hand, for x, y ∈ S, we have

‖F ′(x0)
−1(F ′(x)− F ′(y))‖ ≤ ‖x− y‖

1 + 3|ξ|(‖x+ y‖)

8− 3|ξ|
≤ ‖x− y‖

1 + 6R|ξ|

8− 3|ξ|

and

‖F ′(x0)
−1(F ′(x) − F ′(1))‖ ≤ ‖x− 1‖

1 + 3|ξ|(‖x+ 1‖)

8− 3|ξ|
≤ ‖x− 1‖

1 + 3(1 +R)|ξ|

8− 3|ξ|

Let ξ = 1.075 and R = 2, then we have

δ0 = 0.225131 · · · , ℓ = 2.91099 · · · , ℓ0 = 2.2356 · · · and ℓ1 = 1.55622.

Using this values we obtain that conditions (3.24) and (3.26) are not satisfied,
since 2δ0ℓ = 1.31071 · · · > 1 and 2δ0L = 1.03064 · · · > 1. But condition (3.32) is
satisfied, since 2δ0L1 = 0.979333 · · · < 1. That is, we can guarantee the convergence
of Newton’s method.

Conclusion

Using the concept of regular smothness and our new idea of restricted conver-
gence domains, we provided under the same computational cost as in [5]- [7]:

1. Weaker sufficient convergence conditions for Newton’s and the Secant meth-
ods;
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2. Finer error sequences for Newton’s and the Secant methods (under the same
hypotheses (see Theorems 2.4 and 3.5)). In practice, this improvement leads
to the computation of fewer iterates needed to achieve a certain error toler-
ance ǫ > 0;

3. An at least as precise information on the location of the solution;

4. The technique of convergence domains can be used to study other methods
involving inverses of linear operators.

Finally, special cases and numerical examples further validating the theoretical
results are also given in this study.
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11. Magrenãn, A.A., Different anomalies in a Jarratt family of iterative root-finding methods,
Appl.Math.Comput.233, (2014), 29-38.
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