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abstract: In this paper, we give a short proof for Reich contraction in rectangular
b-metric spaces and almost rectangular b-metric spaces with increased range of
the Lipschtzian constants and illustrate this with a suitable example. Our results
generalize, improve and complement several ones in the existing literature.
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1. Introduction and Preliminaries

In the paper [5] George et al. introduced the concept of rectangular b-metric
space, (see also [3,4,9]) which is not necessarily Hausdoff and which generalizes the
concept of metric space, rectangular metric space and b-metric space (some results
in b-metric spaces can be seen in [1,2]). Later many fixed point results were proved
in a rectangular b-metric space (see [3,4,9]).

Definition 1.1. [5] Let X be a nonempty set and the mapping d : X×X → [0,∞)
satisfies:
(RbM1) d(x, y) = 0 if and only if x = y;
(RbM2) d(x, y) = d(y, x) for all x, y ∈ X;
(RbM3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, v) +
d(v, y)] for all x, y ∈ X and all distinct points u, v ∈ X\{x, y}.
Then d is called a rectangular b-metric on X and (X, d) is called a rectangular
b-metric space (in short RbMS) with coefficient s.

Definition 1.2. [5] Let (X, d) be a rectangular b-metric space, {xn} be a sequence
in X and x ∈ X. Then
(a) The sequence {xn} is said to be convergent in (X, d) and converges to x, if for
every ε > 0 there exists n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact
is represented by lim

n→∞
xn = x or xn → x as n → ∞.
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(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0
there exists n0 ∈ N such that d(xn, xn+p) < ε for all n > n0, p > 0.
(c) (X, d) is said to be a complete rectangular b-metric space if every Cauchy se-
quence in X converges to some x ∈ X.

The main result in the paper [5] is the following theorem (analogue of Banach
contraction principle in rectangular b-metric space).

Theorem 1.3. Let (X, d) be a complete rectangular b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ λd(x, y) (1.1)

for all x, y ∈ X, where λ ∈ [0, 1
s
]. Then T has a unique fixed point.

George et al. (Open problems on page 1012 in [5]) raised the following problems.

Problem 1. (Open Question 1) In Theorem 1.3, can we extent the range of λ to
the case 1

s
< λ < 1?

Problem 2. (Open Question 2) Prove analogue of Chatterjee contraction, Reich
contraction, Ciric contraction and Hardy-Rogers contraction in RbMS.

In [7], the author has given a positive answer to the Open Question 1 of [5].
The purpose of this paper is to obtain analogue of Reich’s contraction principle
(see [8]) in RbMS and thus give a partial solution to the Open Question 2 of [5].
We have also obtained an analogue of Reich’s contraction principle and Banach
contraction principle in an almost rectangular b-metric space, which is possibly a
more generalised version of rectangular b-metric space. Our results improve the
results of [4], [5] and [7] in the sense that the range of Lipschitzian constants used
have been significantly increased in our results and also we have proved the results
in a more generalised concept of almost rectangular b-metric space..

2. Main Result

The following theorem is the analogue of Reich’s contraction principle in rect-
angular b-metric space.

Theorem 2.1. Let (X, d) be a complete rectangular b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ αd(x, y) + βd(x, Tx) + γd(y, T y) (2.1)

for all x, y ∈ X, where α, β, γ are nonnegative constants with α + β + γ < 1 and
min{β, γ} < 1

s
. Then T has a unique fixed point x∗ and limn→∞ T nx = x∗, for all

x ∈ X.

Proof: Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn for all
n ≥ 0. From condition (2.1) we have that

d(xn+1, xn) ≤ αd(xn, xn−1) + βd(xn, xn+1) + γd(xn−1, xn).
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Therefore,

d(xn+1, xn) ≤
α+ γ

1− β
d(xn, xn−1). (2.2)

Put λ = α+γ
1−β

. We have that λ ∈ [0, 1). It follows from (2.2) that

d(xn+1, xn) ≤ λnd(x1, x0) for all n ≥ 1. (2.3)

If xn = xn+1 then xn is fixed point of T . So, suppose that xn 6= xn+1 for all n ≥ 0.
Then xn 6= xn+k for n ≥ 0, k ≥ 1. Namely, if xn = xn+k for some n ≥ 0 and k ≥ 1
we have that xn+1 = xn+k+1. Then (2.2) implies

d(xn+1, xn) = d(xn+k+1, xn+k) ≤ λkd(xn+1, xn) < d(xn+1, xn),

a contradiction.
From conditions (2.1) and (2.3) we obtain

d(xm, xn) ≤ αd(xm−1, xn−1) + βd(xm−1, xm) + γd(xn−1, xn)

≤ αd(xm−1, xn−1) + βλm−1d(x0, x1) + γλn−1d(x0, x1)

= αd(xm−1, xn−1) + (βλm−1 + γλn−1)d(x0, x1)

From this, we have

d(xm, xn) ≤ kd(xm−1, xn−1) + (km + kn)d(x0, x1), (2.4)

where, k = max{α, β, γ, λ}. From (2.4) we further obtain

d(xm, xn) ≤ krd(xm−r , xn−r) + r(km + kn)d(x0, x1), (2.5)

for all r ∈ {1, . . . ,min{m,n}}.
Since lim

n→∞
kn = 0, there exists a natural number n0 such that

0 < kn0 · s < 1. (2.6)

So, from (2.5) we obtain the following inequalities

d(xm, xm+n0
) ≤ kmd(x0, xn0

) +m(km + km+n0)d(x0, x1), (2.7)

d(xn+n0
, xn) ≤ knd(xn0

, x0) + n(kn+n0 + kn)d(x0, x1), (2.8)

d(xm+n0
, xn+n0

) ≤ kn0d(xm, xn) + n0(k
m+n0 + kn+n0)d(x0, x1). (2.9)

Since (X, d) is rectangular b-metric space, from condition (RbM3) we have

d(xm, xn) ≤ s[d(xm, xm+n0
) + d(xm+n0

, xn+n0
) + d(xn+n0

, xn)]. (2.10)

From (2.10), together with (2.6), (2.7), (2.8) and (2.9) we obtain

d(xm, xn) ≤ s
(km + kn)d(x0, xn0

)

1− kn0s

+ s
[km(m+ (m+ n0)k

n0) + kn(n+ (n+ n0)k
n0)]d(x0, x1)

1− kn0s
.
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Since limn→∞ kn = 0 and limn→∞ nkn = 0, we have that {xn} is a Cauchy sequence
in (X, d). By completeness of (X, d) there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. (2.11)

Now we obtain that x∗ is the unique fixed point of T . Namely, there exists k ∈ N

such that for all n > k we have

d(x∗, T x∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, T x
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, T x
∗)]

≤ s[d(x∗, xn) + d(xn, xn+1) + αd(xn, x
∗)

+ βd(xn, xn+1) + γd(x∗, T x∗)].

and

d(Tx∗, x∗) ≤ s[d(Tx∗, xn+1) + d(xn+1, xn) + d(xn, x
∗)]

= s[d(Tx∗, T xn) + d(xn+1, xn) + d(xn, x
∗)]

≤ s[αd(x∗, xn) + βd(x∗, T x∗) + γd(xn, xn+1)

+ d(xn+1, xn) + d(xn, x
∗)].

Since lim
n→∞

d(x∗, xn) = 0, lim
n→∞

d(xn, xn+1) = 0 and min{β, γ} < 1
s
, we have

d(x∗, T x∗) = 0 i. e., Tx∗ = x∗.
For uniqueness, let y∗ be another fixed point of T. Then it follows from (2.1)

that

d(x∗, y∗) = d(Tx∗, T y∗) ≤ αd(x∗, y∗) + βd(x∗, T x∗) + γd(y∗, T y∗)

= αd(x∗, y∗) < d(x∗, y∗)

is a contradiction. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗. ✷

Remark 2.2. Every metric space is a rectangular b-metric space, but the converse
is not true in general (see [5]). We obtain that Theorem 2.1 provides a generaliza-
tion of Reich Principle Contraction.

Remark 2.3. Additionally, if for each y ∈ X the function x 7→ d(x, y) is lower
semicontinuous from Theorem 2.1 then for x∗ for which x∗ = limn→∞ T nx0 the
next estimate holds

d(x∗, xn) ≤
skn

1− kn0s
[d(x0, xn0

) + (n+ (n+ n0)k
n0)d(x0, x1)], (2.12)

where n0 ∈ N such that 0 < λn0 · b2 < 1 and k = max{α, β, γ, α+γ
1−β

}.

Example 2.4. Let X = [0, 2], d(x, y) = (x − y)2 for all x, y ∈ X and T : X → X

be defined by

Tx =

{

x
2 x ∈ [0, 1],
x
3 x ∈ (1, 2].

Then
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1. From inequality
(

a+ b+ c

3

)2

≤
a2 + b2 + c2

3
,

for all a, b, c ∈ [0,∞), we obtain that (X, d) is a complete rectangular b-metric
space with coefficient s = 3.

2. There exist α, β, γ ≥ 0, 1
3 < α + β + γ < 1,min{β, γ} < 1

3 (α = β = γ = 2
7 )

such that T satisfies the contraction condition (2.1) in Theorem 2.1.

From Theorem 2.1 we obtain the following variant of Banach contraction prin-
ciple in b-rectangular metric spaces.

Theorem 2.5. [7] Let (X, d) be a complete rectangular b-metric space with coef-
ficient s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ αd(x, y) (2.13)

for all x, y ∈ X, where α ∈ (0, 1). Then T has a unique fixed point x∗ and
limn→∞ T nx = x∗, for all x ∈ X.

In the next Theorem we show inequality

d(x∗, x0) ≤
s

1− λs
[d(x0, T x0) + d(Tx0, T

2x0)], (2.14)

if λ < 1
s
.

In the rectangular b-metric space (X, d), let B[x, r] denote the closed ball with
centre x and radius r.

Theorem 2.6. If (X, d) is a complete rectangular b-metric space with coefficient
s > 1 and T : X → X is a contraction mapping, then T has a unique fixed point
x∗, and for any x0 ∈ X the sequence T nx0 converges to x∗. If 0 < λs < 1, then
x∗ ∈ B [x0, r], where r = s

1−λs
[d(x0, T x0) + d(Tx0, T

2x0)].

Proof: We show that T : B[x0, r] → B[x0, r]. Let x ∈ B[x0, r]. Then

d(Tx, x0) ≤ s[d(Tx, Tx0) + d(Tx0, T
2x0) + d(T x0 , x0)]

≤ s[λd(x, x0) + d(Tx0, T
2x0) + d(T 2x0, x0)]

≤ s[
λs

1− λs
[d(x0, T x0) + d(Tx0, T

2x0)]

+ d(x0, T x0) + d(Tx0, x0)]

=
s

1− λs
[d(x0, T x0) + d(Tx0, T

2x0)] = r.

By the Theorem 2.5, the result follows. ✷
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Example 2.7. Let X = R, d(x, y) = (x− y)2 for all x, y ∈ X and T : X → X be

defined by Tx =
√

2
3x. Then (X, d) is a complete rectangular b-metric space with

coefficient s = 3. Corollary 2.5 is applicable taking λ = 2
3 . On the other hand,

Theorem 1.3 is not applicable since condition (1.1) implies 2
3 ≤ λ and λ ∈ [0, 1

s
]

implies λ ≤ 1
3 .

Remark 2.8. Theorem 2.5 provides a complete solution to an open problem 1
raised by George et al. in [5].

Also, from Theorem 2.1 we obtain the Kannan theorem [6] in b-rectangular
metric spaces.

Corollary 2.9. Let (X, d) be a complete rectangular b-metric space with coefficient
s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ βd(x, Tx) + γd(y, T y) (2.15)

for all x, y ∈ X, where β, γ nonnegative constants with β+ γ < 1 and min{β, γ} <
1
s
. Then T has a unique fixed point.

From Corollary 2.9 we obtain the next generalization of Theorem 3.2 in [5].

Corollary 2.10. Let (X, d) be a complete rectangular b-metric space with coeffi-
cient s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ λ[d(x, Tx) + d(y, T y)] (2.16)

for all x, y ∈ X, where λ ∈ [0,min{ 1
2 ,

1
s
}). Then T has a unique fixed point.

From Theorem 2.1 we obtain the following variant of Reich-theorem in rectan-
gular b-metric spaces.

Corollary 2.11. Let (X, d) be a complete rectangular b-metric space with coeffi-
cient s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ ad(x, y) + b[d(x, Tx) + d(y, T y)] (2.17)

for all x, y ∈ X, where a, b are nonnegative constants with a + 2b < 1 and b < 1
s
.

Then T has a unique fixed point x∗ and for each x ∈ X the Picard sequence {T nx}
converges to x∗ in (X, d).

Example 2.12. Let X = {0, 1, 52 , 3}, d(x, y) = (x − y)2 for all x, y ∈ X and
T : X → X be defined by T (0) = 5

2 , T (1) = T (52 ) = 1, T (3) = 0. Then (X, d)
is a complete rectangular b-metric space with coefficient s = 3. Corollary 2.11
is applicable with a = 0.4 and b = 0.299 and 1 is the unique fixed point of T .
However, Corollary 2.4 of Ding et al [4] is not applicable as d(T 0, T 3) > ad(x, y)+
b[d(x, Tx) + d(y, T y)] for any a+ 2b < 1

3 .

Remark 2.13. In view of above example we see that Theorem 2.1 and Corollary
2.4 are generalized versions of Corollary 2.11 of [4] in the setting of rectangular
b-metric spaces.
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3. A possibly more general theorem

In this section we prove Theorem 2.1 without assumption (RbM2).

Definition 3.1. Let X be a nonempty set. A mapping d : X × X → [0,∞) is
called an almost-rectangular b-metric on X if d satisfies the conditions (RbM1)
and (RbM3) stated in Definition 1.1 and, in addition, satisfies
(RbM2’) d(xn, x) → 0 ⇒ d(x, xn) → 0.

Theorem 3.2. Let (X, d) be a complete almost-rectangular b-metric space with
coefficient s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ αd(x, y) + βd(x, Tx) + γd(Ty, y) (3.1)

for all x, y ∈ X, where α, β, γ are nonnegative constants with

α+ 2max{β, γ} < 1 and max{β, γ} <
1

s
. (3.2)

Then T has a unique fixed point x∗ and limn→∞ T nx = x∗, for all x ∈ X.

Proof: Define a new rectangular b-metric on X by

ρ(x, y) =
d(x, y) + d(y, x)

2
.

It is easy to check that ρ is a rectangular b-metric on X with coefficient s. Indeed,
the less obvious task is the verification of (RbM3). To check it, pick any x, y ∈ X

and fixe distinct points u, v ∈ X\{x, y}. Then, from

d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)]

and
d(y, x) ≤ s[d(y, v) + d(v, u) + d(u, x)]

one has

ρ(x, y) =
d(x, y) + d(y, x)

2

≤ s

[

d(x, u) + d(u, x)

2
+

d(u, v) + d(v, u)

2
+

d(v, y) + d(y, v)

2

]

= s[ρ(x, u) + ρ(u, v) + ρ(v, y)].

In addition, direct calculation shows

ρ(Tx, T y) ≤ αρ(x, y) + max{β, γ}ρ(x, Tx) + max{β, γ}ρ(y, T y)

for all x, y ∈ X . Notice further that 3.2 implies

min{max{β, γ},max{β, γ}} = max{β, γ} <
1

s
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and

α+max{β, γ}+max{β, γ} < 1.

A direct calculation using property (RbM2’) shows that (X, ρ) is complete. There-
fore, by Theorem 2.1 T has a unique fixed point x∗ ∈ X such that limn→∞ T nx = x∗

for all x ∈ X. ✷

From Theorem 3.2 above, one obtains the following more general form of The-
orem 2.5.

Theorem 3.3. Let (X, d) be a complete almost-rectangular b-metric space with
coefficient s > 1 and T : X → X be a mapping satisfying:

d(Tx, T y) ≤ αd(x, y) (3.3)

for all x, y ∈ X, where α ∈ (0, 1). Then T has a unique fixed point x∗ and
limn→∞ T nx = x∗, for all x ∈ X.

Remark 3.4. Observe the curious fact in these results: the function d does not
need to satisfy the symmetry condition (RbM2).
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