(3s.) v. 396 (2021): 147-155
ISSN-00378712 IN PRESS
doi:10.5269/bspm. 41754

# Some Remarks on Contraction Mappings in Rectangular b-metric Spaces 

Zoran D. Mitrović, Reny George and Nawab Hussain

ABSTRACT: In this paper, we give a short proof for Reich contraction in rectangular b-metric spaces and almost rectangular b-metric spaces with increased range of the Lipschtzian constants and illustrate this with a suitable example. Our results generalize, improve and complement several ones in the existing literature.
Key Words: Fixed points, b-metric space, Rectangular metric space, Rectangular b-metric space.

## Contents

## 1 Introduction and Preliminaries

2 Main Result
3 A possibly more general theorem

## 1. Introduction and Preliminaries

In the paper [5] George et al. introduced the concept of rectangular b-metric space, (see also $[3,4,9]$ ) which is not necessarily Hausdoff and which generalizes the concept of metric space, rectangular metric space and b-metric space (some results in b-metric spaces can be seen in $[1,2]$ ). Later many fixed point results were proved in a rectangular b-metric space (see $[3,4,9]$ ).
Definition 1.1. [5] Let $X$ be a nonempty set and the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies:
(RbM1) $d(x, y)=0$ if and only if $x=y$;
(RbM2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(RbM3) there exists a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, u)+d(u, v)+$ $d(v, y)]$ for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$.
Then $d$ is called a rectangular b-metric on $X$ and $(X, d)$ is called a rectangular $b$-metric space (in short RbMS) with coefficient $s$.

Definition 1.2. [5] Let $(X, d)$ be a rectangular b-metric space, $\left\{x_{n}\right\}$ be a sequence in $X$ and $x \in X$. Then
(a) The sequence $\left\{x_{n}\right\}$ is said to be convergent in $(X, d)$ and converges to $x$, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$ and this fact is represented by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

[^0](b) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy sequence in $(X, d)$ if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+p}\right)<\varepsilon$ for all $n>n_{0}, p>0$.
(c) $(X, d)$ is said to be a complete rectangular b-metric space if every Cauchy sequence in $X$ converges to some $x \in X$.

The main result in the paper [5] is the following theorem (analogue of Banach contraction principle in rectangular b-metric space).
Theorem 1.3. Let $(X, d)$ be a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda d(x, y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in\left[0, \frac{1}{s}\right]$. Then $T$ has a unique fixed point.
George et al. (Open problems on page 1012 in [5]) raised the following problems.
Problem 1. (Open Question 1) In Theorem 1.3, can we extent the range of $\lambda$ to the case $\frac{1}{s}<\lambda<1$ ?
Problem 2. (Open Question 2) Prove analogue of Chatterjee contraction, Reich contraction, Ciric contraction and Hardy-Rogers contraction in RbMS.

In [7], the author has given a positive answer to the Open Question 1 of [5]. The purpose of this paper is to obtain analogue of Reich's contraction principle (see [8]) in RbMS and thus give a partial solution to the Open Question 2 of [5]. We have also obtained an analogue of Reich's contraction principle and Banach contraction principle in an almost rectangular b-metric space, which is possibly a more generalised version of rectangular b-metric space. Our results improve the results of [4], [5] and [7] in the sense that the range of Lipschitzian constants used have been significantly increased in our results and also we have proved the results in a more generalised concept of almost rectangular b-metric space..

## 2. Main Result

The following theorem is the analogue of Reich's contraction principle in rectangular b-metric space.

Theorem 2.1. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y)+\beta d(x, T x)+\gamma d(y, T y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha, \beta, \gamma$ are nonnegative constants with $\alpha+\beta+\gamma<1$ and $\min \{\beta, \gamma\}<\frac{1}{s}$. Then $T$ has a unique fixed point $x^{*}$ and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for all $x \in X$.

Proof: Let $x_{0} \in X$ be arbitrary. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n \geq 0$. From condition (2.1) we have that

$$
d\left(x_{n+1}, x_{n}\right) \leq \alpha d\left(x_{n}, x_{n-1}\right)+\beta d\left(x_{n}, x_{n+1}\right)+\gamma d\left(x_{n-1}, x_{n}\right)
$$

Therefore,

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \frac{\alpha+\gamma}{1-\beta} d\left(x_{n}, x_{n-1}\right) . \tag{2.2}
\end{equation*}
$$

Put $\lambda=\frac{\alpha+\gamma}{1-\beta}$. We have that $\lambda \in[0,1)$. It follows from (2.2) that

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \lambda^{n} d\left(x_{1}, x_{0}\right) \text { for all } n \geq 1 \tag{2.3}
\end{equation*}
$$

If $x_{n}=x_{n+1}$ then $x_{n}$ is fixed point of $T$. So, suppose that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. Then $x_{n} \neq x_{n+k}$ for $n \geq 0, k \geq 1$. Namely, if $x_{n}=x_{n+k}$ for some $n \geq 0$ and $k \geq 1$ we have that $x_{n+1}=x_{n+k+1}$. Then (2.2) implies

$$
d\left(x_{n+1}, x_{n}\right)=d\left(x_{n+k+1}, x_{n+k}\right) \leq \lambda^{k} d\left(x_{n+1}, x_{n}\right)<d\left(x_{n+1}, x_{n}\right)
$$

a contradiction.
From conditions (2.1) and (2.3) we obtain

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq \alpha d\left(x_{m-1}, x_{n-1}\right)+\beta d\left(x_{m-1}, x_{m}\right)+\gamma d\left(x_{n-1}, x_{n}\right) \\
& \leq \alpha d\left(x_{m-1}, x_{n-1}\right)+\beta \lambda^{m-1} d\left(x_{0}, x_{1}\right)+\gamma \lambda^{n-1} d\left(x_{0}, x_{1}\right) \\
& =\alpha d\left(x_{m-1}, x_{n-1}\right)+\left(\beta \lambda^{m-1}+\gamma \lambda^{n-1}\right) d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

From this, we have

$$
\begin{equation*}
d\left(x_{m}, x_{n}\right) \leq k d\left(x_{m-1}, x_{n-1}\right)+\left(k^{m}+k^{n}\right) d\left(x_{0}, x_{1}\right), \tag{2.4}
\end{equation*}
$$

where, $k=\max \{\alpha, \beta, \gamma, \lambda\}$. From (2.4) we further obtain

$$
\begin{equation*}
d\left(x_{m}, x_{n}\right) \leq k^{r} d\left(x_{m-r}, x_{n-r}\right)+r\left(k^{m}+k^{n}\right) d\left(x_{0}, x_{1}\right), \tag{2.5}
\end{equation*}
$$

for all $r \in\{1, \ldots, \min \{m, n\}\}$.
Since $\lim _{n \rightarrow \infty} k^{n}=0$, there exists a natural number $n_{0}$ such that

$$
\begin{equation*}
0<k^{n_{0}} \cdot s<1 . \tag{2.6}
\end{equation*}
$$

So, from (2.5) we obtain the following inequalities

$$
\begin{gather*}
d\left(x_{m}, x_{m+n_{0}}\right) \leq k^{m} d\left(x_{0}, x_{n_{0}}\right)+m\left(k^{m}+k^{m+n_{0}}\right) d\left(x_{0}, x_{1}\right),  \tag{2.7}\\
d\left(x_{n+n_{0}}, x_{n}\right) \leq k^{n} d\left(x_{n_{0}}, x_{0}\right)+n\left(k^{n+n_{0}}+k^{n}\right) d\left(x_{0}, x_{1}\right),  \tag{2.8}\\
d\left(x_{m+n_{0}}, x_{n+n_{0}}\right) \leq k^{n_{0}} d\left(x_{m}, x_{n}\right)+n_{0}\left(k^{m+n_{0}}+k^{n+n_{0}}\right) d\left(x_{0}, x_{1}\right) . \tag{2.9}
\end{gather*}
$$

Since ( $X, d$ ) is rectangular b-metric space, from condition (RbM3) we have

$$
\begin{equation*}
d\left(x_{m}, x_{n}\right) \leq s\left[d\left(x_{m}, x_{m+n_{0}}\right)+d\left(x_{m+n_{0}}, x_{n+n_{0}}\right)+d\left(x_{n+n_{0}}, x_{n}\right)\right] . \tag{2.10}
\end{equation*}
$$

From (2.10), together with (2.6), (2.7), (2.8) and (2.9) we obtain

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq s \frac{\left(k^{m}+k^{n}\right) d\left(x_{0}, x_{n_{0}}\right)}{1-k^{n_{0}} s} \\
& +s \frac{\left[k^{m}\left(m+\left(m+n_{0}\right) k^{n_{0}}\right)+k^{n}\left(n+\left(n+n_{0}\right) k^{n_{0}}\right)\right] d\left(x_{0}, x_{1}\right)}{1-k^{n_{0}} s}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} k^{n}=0$ and $\lim _{n \rightarrow \infty} n k^{n}=0$, we have that $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, d)$. By completeness of $(X, d)$ there exists $x^{*} \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x^{*} \tag{2.11}
\end{equation*}
$$

Now we obtain that $x^{*}$ is the unique fixed point of $T$. Namely, there exists $k \in \mathbb{N}$ such that for all $n>k$ we have

$$
\begin{aligned}
d\left(x^{*}, T x^{*}\right) & \leq s\left[d\left(x^{*}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x^{*}\right)\right] \\
& =s\left[d\left(x^{*}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(T x_{n}, T x^{*}\right)\right] \\
& \leq s\left[d\left(x^{*}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+\alpha d\left(x_{n}, x^{*}\right)\right. \\
& \left.+\beta d\left(x_{n}, x_{n+1}\right)+\gamma d\left(x^{*}, T x^{*}\right)\right] .
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(T x^{*}, x^{*}\right) & \leq s\left[d\left(T x^{*}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x^{*}\right)\right] \\
& =s\left[d\left(T x^{*}, T x_{n}\right)+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x^{*}\right)\right] \\
& \leq s\left[\alpha d\left(x^{*}, x_{n}\right)+\beta d\left(x^{*}, T x^{*}\right)+\gamma d\left(x_{n}, x_{n+1}\right)\right. \\
& \left.+d\left(x_{n+1}, x_{n}\right)+d\left(x_{n}, x^{*}\right)\right] .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} d\left(x^{*}, x_{n}\right)=0, \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$ and $\min \{\beta, \gamma\}<\frac{1}{s}$, we have $d\left(x^{*}, T x^{*}\right)=0$ i. e., $T x^{*}=x^{*}$.

For uniqueness, let $y^{*}$ be another fixed point of T. Then it follows from (2.1) that

$$
\begin{aligned}
d\left(x^{*}, y^{*}\right) & =d\left(T x^{*}, T y^{*}\right) \leq \alpha d\left(x^{*}, y^{*}\right)+\beta d\left(x^{*}, T x^{*}\right)+\gamma d\left(y^{*}, T y^{*}\right) \\
& =\alpha d\left(x^{*}, y^{*}\right)<d\left(x^{*}, y^{*}\right)
\end{aligned}
$$

is a contradiction. Therefore, we must have $d\left(x^{*}, y^{*}\right)=0$, i.e., $x^{*}=y^{*}$.
Remark 2.2. Every metric space is a rectangular b-metric space, but the converse is not true in general (see [5]). We obtain that Theorem 2.1 provides a generalization of Reich Principle Contraction.
Remark 2.3. Additionally, if for each $y \in X$ the function $x \mapsto d(x, y)$ is lower semicontinuous from Theorem 2.1 then for $x^{*}$ for which $x^{*}=\lim _{n \rightarrow \infty} T^{n} x_{0}$ the next estimate holds

$$
\begin{equation*}
d\left(x^{*}, x_{n}\right) \leq \frac{s k^{n}}{1-k^{n_{0}} s}\left[d\left(x_{0}, x_{n_{0}}\right)+\left(n+\left(n+n_{0}\right) k^{n_{0}}\right) d\left(x_{0}, x_{1}\right)\right] \tag{2.12}
\end{equation*}
$$

where $n_{0} \in \mathbb{N}$ such that $0<\lambda^{n_{0}} \cdot b^{2}<1$ and $k=\max \left\{\alpha, \beta, \gamma, \frac{\alpha+\gamma}{1-\beta}\right\}$.
Example 2.4. Let $X=[0,2], d(x, y)=(x-y)^{2}$ for all $x, y \in X$ and $T: X \rightarrow X$ be defined by

$$
T x=\left\{\begin{array}{cl}
\frac{x}{2} & x \in[0,1], \\
\frac{x}{3} & x \in(1,2] .
\end{array}\right.
$$

Then

1. From inequality

$$
\left(\frac{a+b+c}{3}\right)^{2} \leq \frac{a^{2}+b^{2}+c^{2}}{3}
$$

for all $a, b, c \in[0, \infty)$, we obtain that $(X, d)$ is a complete rectangular $b$-metric space with coefficient $s=3$.
2. There exist $\alpha, \beta, \gamma \geq 0, \frac{1}{3}<\alpha+\beta+\gamma<1, \min \{\beta, \gamma\}<\frac{1}{3}\left(\alpha=\beta=\gamma=\frac{2}{7}\right)$ such that $T$ satisfies the contraction condition (2.1) in Theorem 2.1.

From Theorem 2.1 we obtain the following variant of Banach contraction principle in b-rectangular metric spaces.

Theorem 2.5. [7] Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y) \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha \in(0,1)$. Then $T$ has a unique fixed point $x^{*}$ and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for all $x \in X$.

In the next Theorem we show inequality

$$
\begin{equation*}
d\left(x^{*}, x_{0}\right) \leq \frac{s}{1-\lambda s}\left[d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)\right] \tag{2.14}
\end{equation*}
$$

if $\lambda<\frac{1}{s}$.
In the rectangular b-metric space $(X, d)$, let $B[x, r]$ denote the closed ball with centre $x$ and radius $r$.

Theorem 2.6. If $(X, d)$ is a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ is a contraction mapping, then $T$ has a unique fixed point $x^{*}$, and for any $x_{0} \in X$ the sequence $T^{n} x_{0}$ converges to $x^{*}$. If $0<\lambda s<1$, then $x^{*} \in B\left[x_{0}, r\right]$, where $r=\frac{s}{1-\lambda s}\left[d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)\right]$.

Proof: We show that $T: B\left[x_{0}, r\right] \rightarrow B\left[x_{0}, r\right]$. Let $x \in B\left[x_{0}, r\right]$. Then

$$
\begin{aligned}
d\left(T x, x_{0}\right) & \leq s\left[d\left(T x, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)+d\left(T^{x_{0}}, x_{0}\right)\right] \\
& \leq s\left[\lambda d\left(x, x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)+d\left(T^{2} x_{0}, x_{0}\right)\right] \\
& \leq s\left[\frac{\lambda s}{1-\lambda s}\left[d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)\right]\right. \\
& \left.+d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, x_{0}\right)\right] \\
& =\frac{s}{1-\lambda s}\left[d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{2} x_{0}\right)\right]=r .
\end{aligned}
$$

By the Theorem 2.5, the result follows.

Example 2.7. Let $X=\mathbb{R}, d(x, y)=(x-y)^{2}$ for all $x, y \in X$ and $T: X \rightarrow X$ be defined by $T x=\sqrt{\frac{2}{3}} x$. Then $(X, d)$ is a complete rectangular b-metric space with coefficient $s=3$. Corollary 2.5 is applicable taking $\lambda=\frac{2}{3}$. On the other hand, Theorem 1.3 is not applicable since condition (1.1) implies $\frac{2}{3} \leq \lambda$ and $\lambda \in\left[0, \frac{1}{s}\right]$ implies $\lambda \leq \frac{1}{3}$.
Remark 2.8. Theorem 2.5 provides a complete solution to an open problem 1 raised by George et al. in [5].

Also, from Theorem 2.1 we obtain the Kannan theorem [6] in b-rectangular metric spaces.

Corollary 2.9. Let $(X, d)$ be a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \beta d(x, T x)+\gamma d(y, T y) \tag{2.15}
\end{equation*}
$$

for all $x, y \in X$, where $\beta, \gamma$ nonnegative constants with $\beta+\gamma<1$ and $\min \{\beta, \gamma\}<$ $\frac{1}{s}$. Then $T$ has a unique fixed point.

From Corollary 2.9 we obtain the next generalization of Theorem 3.2 in [5].
Corollary 2.10. Let $(X, d)$ be a complete rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \lambda[d(x, T x)+d(y, T y)] \tag{2.16}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in\left[0, \min \left\{\frac{1}{2}, \frac{1}{s}\right\}\right)$. Then $T$ has a unique fixed point.
From Theorem 2.1 we obtain the following variant of Reich-theorem in rectangular b-metric spaces.

Corollary 2.11. Let $(X, d)$ be a complete rectangular $b$-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq a d(x, y)+b[d(x, T x)+d(y, T y)] \tag{2.17}
\end{equation*}
$$

for all $x, y \in X$, where $a, b$ are nonnegative constants with $a+2 b<1$ and $b<\frac{1}{s}$. Then $T$ has a unique fixed point $x^{*}$ and for each $x \in X$ the Picard sequence $\left\{T^{n} x\right\}$ converges to $x^{*}$ in $(X, d)$.
Example 2.12. Let $X=\left\{0,1, \frac{5}{2}, 3\right\}, d(x, y)=(x-y)^{2}$ for all $x, y \in X$ and $T: X \rightarrow X$ be defined by $T(0)=\frac{5}{2}, T(1)=T\left(\frac{5}{2}\right)=1, T(3)=0$. Then $(X, d)$ is a complete rectangular b-metric space with coefficient $s=3$. Corollary 2.11 is applicable with $a=0.4$ and $b=0.299$ and 1 is the unique fixed point of $T$. However, Corollary 2.4 of Ding et al [4] is not applicable as $d(T 0, T 3)>a d(x, y)+$ $b[d(x, T x)+d(y, T y)]$ for any $a+2 b<\frac{1}{3}$.
Remark 2.13. In view of above example we see that Theorem 2.1 and Corollary 2.4 are generalized versions of Corollary 2.11 of [4] in the setting of rectangular $b$-metric spaces.

## 3. A possibly more general theorem

In this section we prove Theorem 2.1 without assumption (RbM2).
Definition 3.1. Let $X$ be a nonempty set. A mapping $d: X \times X \rightarrow[0, \infty)$ is called an almost-rectangular b-metric on $X$ if d satisfies the conditions (RbM1) and (RbM3) stated in Definition 1.1 and, in addition, satisfies
$\left(\right.$ RbM2') $d\left(x_{n}, x\right) \rightarrow 0 \Rightarrow d\left(x, x_{n}\right) \rightarrow 0$.
Theorem 3.2. Let $(X, d)$ be a complete almost-rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y)+\beta d(x, T x)+\gamma d(T y, y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha, \beta, \gamma$ are nonnegative constants with

$$
\begin{equation*}
\alpha+2 \max \{\beta, \gamma\}<1 \text { and } \max \{\beta, \gamma\}<\frac{1}{s} \tag{3.2}
\end{equation*}
$$

Then $T$ has a unique fixed point $x^{*}$ and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for all $x \in X$.
Proof: Define a new rectangular b-metric on $X$ by

$$
\rho(x, y)=\frac{d(x, y)+d(y, x)}{2} .
$$

It is easy to check that $\rho$ is a rectangular b-metric on $X$ with coefficient $s$. Indeed, the less obvious task is the verification of (RbM3). To check it, pick any $x, y \in X$ and fixe distinct points $u, v \in X \backslash\{x, y\}$. Then, from

$$
d(x, y) \leq s[d(x, u)+d(u, v)+d(v, y)]
$$

and

$$
d(y, x) \leq s[d(y, v)+d(v, u)+d(u, x)]
$$

one has

$$
\begin{aligned}
\rho(x, y) & =\frac{d(x, y)+d(y, x)}{2} \\
& \leq s\left[\frac{d(x, u)+d(u, x)}{2}+\frac{d(u, v)+d(v, u)}{2}+\frac{d(v, y)+d(y, v)}{2}\right] \\
& =s[\rho(x, u)+\rho(u, v)+\rho(v, y)]
\end{aligned}
$$

In addition, direct calculation shows

$$
\rho(T x, T y) \leq \alpha \rho(x, y)+\max \{\beta, \gamma\} \rho(x, T x)+\max \{\beta, \gamma\} \rho(y, T y)
$$

for all $x, y \in X$. Notice further that 3.2 implies

$$
\min \{\max \{\beta, \gamma\}, \max \{\beta, \gamma\}\}=\max \{\beta, \gamma\}<\frac{1}{s}
$$

and

$$
\alpha+\max \{\beta, \gamma\}+\max \{\beta, \gamma\}<1
$$

A direct calculation using property ( $\mathrm{RbM} 2^{\prime}$ ) shows that $(X, \rho)$ is complete. Therefore, by Theorem 2.1 $T$ has a unique fixed point $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$ for all $x \in X$.

From Theorem 3.2 above, one obtains the following more general form of Theorem 2.5.

Theorem 3.3. Let $(X, d)$ be a complete almost-rectangular b-metric space with coefficient $s>1$ and $T: X \rightarrow X$ be a mapping satisfying:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha \in(0,1)$. Then $T$ has a unique fixed point $x^{*}$ and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for all $x \in X$.

Remark 3.4. Observe the curious fact in these results: the function d does not need to satisfy the symmetry condition (RbM2).

## Acknowledgments

The authors wishes to thank the editor and the referee for a guidance and a help in the preparation of this paper. We are particularly grateful for helping with the results in the third section of this paper.

## References

1. I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst., 30 (1989), 26-37.
2. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
3. H-S. Ding, M. Imdad, S. Radenović, J. Vujaković, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci. 22(2), (2016), 151-164.
4. H.S. Ding, V. Ozturk, S. Radenović, On some new fixed point results in b-rectangular metric spaces J. Nonlinear Sci. Appl., 8 (2015), 378-386.
5. R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
6. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60, (1968), 71-76.
7. Z. D. Mitrović, On an open problem in rectangular b-metric space, J. Anal., 25, No. 1, (2017), 135-137.
8. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.
9. J. R. Roshan, V, Parvaneh, Z. Kadelburg, N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal., Model. Control, 21(5), (2016), 614-634.

Zoran D. Mitrović,
Nonlinear Analysis Research Group,
Ton Duc Thang University,
Ho Chi Minh City, Vietnam.
Faculty of Mathematics and Statistics,
Ton Duc Thang University,
Ho Chi Minh City, Vietnam.
E-mail address: zoran.mitrovic@tdt.edu.vn
and

Reny George,
Department of Mathematics,
College of Science Prince Sattam bin Abdulaziz University,
Alkharj, Saudi Arabia.
E-mail address: renygeorge02@yahoo.com
and
Nawab Hussain,
Department of Mathematics,
King Abdulaziz University,
P.O. Box 80203, Jeddah 21589,

Saudi Arabia.
E-mail address: nhusain@kau.edu.sa


[^0]:    2010 Mathematics Subject Classification: 47H10, 55M20.
    Submitted February 19, 2018. Published August 02, 2018

